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Abstract
This paper investigates the compilation of a committed-choice rule-
based language, Constraint Handling Rules (CHR), to specialized
hardware circuits. The developed hardware is able to turn the intrin-
sic concurrency of the language into parallelism. Rules are applied
by a custom executor that handles constraints according to the best
degree of parallelism the implemented CHR specification can of-
fer. Our framework deploys the target digital circuits through the
Field Programmable Gate Array (FPGA) technology, by first com-
piling the CHR code fragment into a low level hardware description
language. We also discuss the realization of a hybrid CHR inter-
preter, consisting of a software component running on a general
purpose processor, coupled with a hardware accelerator. The latter
unburdens the processor by executing in parallel the most computa-
tional intensive CHR rules directly compiled in hardware. Finally
the performance of a prototype system is evaluated by time effi-
ciency measures.

Categories and Subject Descriptors F.4.1 [Mathematical Logic]:
Logic and constraint programming

Keywords CHR, Parallelism, Hardware acceleration

1. Introduction
In this paper we focus on the hardware compilation of Constraint
Handling Rules (CHR) [11] programs. CHR is a committed-choice
rule-based language, first developed for writing constraint solvers
[12, 14], and nowadays well-known as a general-purpose lan-
guage [7, 16]. The plain and clear semantics of CHR makes it
suitable for concurrent computation, thus allowing programs to be
interpreted in a parallel computation model [10].

The hardware compilation technique presented in this paper
takes advantage of these features of CHR. Given a program in
a suitable subset of CHR, it generates a parallel hardware whose
components are: (i) a set of parallel hardware blocks, realizing the
rewriting procedures expressed by the CHR rules in the program,
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Figure 1. Hardware compilation diagram flow

and (ii) a custom unit that interconnects the blocks, and concur-
rently enacts the rules embedded in the hardware blocks with the
constraints in the store.

More precisely, our technique to generate the final hardware
digital circuit is based on an intermediate compilation phase, dur-
ing which a CHR code fragment is first translated into a low level
Hardware Description Language (HDL), namely VHDL [33]. From
VHDL we can then easily generate synchronous digital circuits,
by using automatic tools and the well known Field Programmable
Gate Array (FPGA) [15] as deployment technology. Our method-
ology exploits the programmability features of FPGAs to generate
specialized digital circuits for each specific code fragments occur-
ring in a CHR program, in turn compiled in VHDL. The overall
hardware compilation flow is depicted in Figure 1. As mentioned
above the source language is a subset of CHR: this is due to the
intrinsic limitations of hardware circuits, whose resources must be
statically allocated. Still, the considered subset of CHR is Turing-
complete [27] and it allows to provide natural solutions for several
interesting problems.

Concerning the chosen hardware deployment technology, it is
worth recalling that nowadays FPGAs take advantage of the growth
in the number of transistors that can be integrated within a chip,
and can also include more complex components, i.e., processors,
memory blocks or special-purpose units. VHDL, the HDL target
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language of our compilation methodology, works at a very low
level, i.e. very close to the Register Transfer Level (RTL). It mod-
els a synchronous digital circuit in terms of the flow of digital
signals (data) between hardware registers, and the logical oper-
ations performed on those signals. The VHDL code can directly
feed a vendor-specific design automation tool (the synthesizer) that
through different steps produces a gate-level netlist to configure the
FPGA. We could also adopt different behavioral HDLs (other than
VHDL) as target languages of our hardware compilation methodol-
ogy, provided that synthesizer tools to program the FPGA circuits
are available for those HDLs. Finally, it is worth noting that a FPGA
can be programmed multiple times, thus producing specialized cir-
cuits for different CHR code fragments at hand.

In order to overcome the limitations of a pure hardware compi-
lation, which forces us to restrict to a subset of the CHR language,
we also investigate a hybrid execution architecture for general CHR
programs. It combines the custom hardware device described above
with a CPU-based software interpreter. The idea is to move the
heavier computational burden of a CHR program to this specialized
parallel hardware (co-processor), by keeping the remaining part of
the program on the main processor. Roughly, the CPU-based in-
terpreter takes care of producing the constraints, while the custom
hardware can efficiently consume or rewrite them.

In the current approach, the hardware-software partition for
hybrid execution of a CHR program is established a priori by the
programmer, who specifies the rules to deploy to the hardware
accelerator. A wrapper function virtually encapsulates those rules.
It is used as a call, which takes some constraints as input arguments.
These are converted as a query for the hardware in a suitable
format. The constraints resulting from the hardware execution are
returned to the wrapper and made available to the software level.

We also evaluate our hardware compiling methodology in terms
of performance. We prototyped the hardware specialized circuits
for several significant CHR programs, and compared the execution
times obtained. In most cases, we get an improvement of one (or
many) order(s) of magnitude in the completion time over standard
and optimized software-based CHR interpreters.

In summary, in this paper we provide the following original
contributions:

• A novel technique for synthesizing behavioral hardware com-
ponents starting from a subset of CHR;

• An implementation of an efficient and optimized parallel execu-
tion model of CHR by means of hardware blocks, implemented
on FPGA (through an intermediate compilation into a low level
VHDL language);

• The development of a custom reconfigurable hardware co-
processor that significantly speeds up the execution of a CHR
program.

The work is based on some preliminary results that appeared in
informal workshop proceedings [30, 31].

The paper is organized as follows. An overview of the CHR
language and of the FPGA architecture is presented respectively in
Sections 2 and 3. In Section 4 we focus on the technique adopted
for generating hardware blocks from CHR rules and in Section 5
we show how to efficiently accommodate in hardware parallel rules
execution. In Section 6 we illustrate how the FPGA can fit into a
complete computing architecture. Beyond a running example that
drives the reader through the description of the parallelism between
CHR and hardware, several complete practical examples of imple-
mentations are provided. Classical algorithms usually adopted for
showing the expressiveness of CHR in multiset transformation or

constraint solving, are chosen as case studies. Section 7 discusses
related works and finally Section 8 draws the concluding remarks.

2. CHR overview
Constraint Handling Rules is a declarative multi-headed guarded
rule-based programming language. It employs two kinds of con-
straints: built-in constraints, which are predefined by the host lan-
guage, and CHR constraints, which are user-defined by program
rules. Each constraint can have multiple arguments and its num-
ber is called arity. Null-arity built-in constraints are true (empty
constraint) and false (inconsistent constraint). A CHR program is
composed of a finite set of rules acting on constraints. We can dis-
tinguish two kinds of rules:

Simplification: Name @ H , G | B
Propagation: Name @ H ) G | B

Where Name is an optional unique identifier of the rule, H (head)
is a non-empty conjunction of CHR constraints, G (guard) is an
optional conjunction of built-in constraints, and B (body) is the
goal, a conjunction of built-in and CHR constraints. These rules
logically relate head and body provided that the guard is true.
Simplification rules mean that the head is true if and only if the
body is true and propagation rules mean that the body is true
if the head is true. Rules are applied to an initial conjunction
of constraints (query) until no more changes are possible. The
intermediate goals of a computation are stored in the so called
constraint store. During the computation if a simplification rule
fires the head constraints are removed from the store and they are
replaced by the body constraints. If the firing rule is a propagation
rule the body constraints are added to the store keeping the head
constraints. A third rule called simpagation permits to perform both
a simplification and propagation rule:

Simpagation: Name @ H1\H2 , G | B
This rule means that the first part of the head (H1) is kept while
the second is removed from the constraint store. Simplification and
propagation rules are special cases of simpagation when either H1

or H2, respectively, are empty.

EXAMPLE 1. We use, as a running example, the program below
which computes the greatest common divisor (gcd) of a set of
integers using Euclid’s algorithm.

R0 @ gcd(N) <=> N = 0 | true.

R1 @ gcd(N) \ gcd(M) <=> M>=N | Z is M-N, gcd(Z).

Starting from a ground query gcd(n1),...,gcd(nk) the program
computes the gcd of n1, . . . , nk. Rule R0 states that the constraint
gcd with the argument equal to zero can be removed from the store,
while R1 states that if two constraints gcd(N) and gcd(M) are
present, the latter can be replaced with gcd(M-N) if M>=N.

A central property of CHR is monotonicity: if a rule can fire in a
given state then the same firing is possible in a state including some
additional constraints. In symbols, for conjunctions of constraints
A, B and E:

A 7�! B
A ^ E 7�! B ^ E

(1)
A direct consequence is the online property, i.e., the fact that con-
straints can be added incrementally during the execution of a pro-
gram. In fact, monotonicity implies that a final state reached after
an execution with an incremental addition of constraints could have
been equivalently obtained by having all constraints since the be-
ginning.

Monotonicity is also at the basis of the parallelism of CHR [10].
In fact, it implies that rules operating on disjoint parts of the con-
straint store can be safely fired in parallel. This property is referred
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as weak parallelism. Formally, if A, B, C and D are conjunctions
of constraints:

A 7�! B C 7�! D
A ^ C 7�! B ^D

(2)

Weak parallelism cannot be applied to rules that operate on
non disjoint sets of constraints. Strong parallelism, instead, allows
for the parallel execution of rules operating on some common
constraints provided that they do not modify them. In symbols:

A ^ E 7�! B ^ E C ^ E 7�! D ^ E
A ^ E ^ C 7�! B ^ E ^D

(3)

3. FPGA overview
FPGAs are instances of reconfigurable computing, i.e. computer
architectures able to merge the flexibility of software with the
performance of hardware, using as processing element high speed
configurable hardware fabric [15].

FPGAs are devices containing programmable interconnections
between logic components, called logic blocks, that can be pro-
grammed to perform complex combinational functions. In most
FPGAs the logic blocks contain memory elements like simple flip-
flops or complete blocks of memory. FPGAs can also host hardware
components like embedded hard microprocessors or IP (Intellec-
tual Property) cores that use the logic blocks themselves to realize
predefined structures like soft microprocessor cores, i.e., real CPUs
entirely implemented using logic synthesis.

The architecture of an FPGA is model and vendor dependent,
but in most cases it consists of a bi-dimensional array of configura-
tion logic blocks (CLBs), I/O pads, and routing channels. CLBs are
made of few logic cells commonly called slices. Each of them con-
sists of some n-bit lookup tables (LUT), full adders (FAs) and D-
type flip-flops. The n-bit LUT realizes the combinatorial part of the
circuit: it can encode any n-input Boolean function by a truth table
model. The FA is used when there is the need to perform arithmetic
functions, otherwise it can be bypassed by a multiplexer. Likewise
the final D flip-flop can be skipped if we wish an asynchronous
output.

The FPGA programmer usually begins the design flow by de-
scribing the behavior of the desired hardware in a HDL. The HDLs
commonly adopted by the hardware engineers are VHDL [33]
(used in all the implementations proposed in this paper) and Ver-
ilog [32]. HDL code can directly feed a vendor-specific design au-
tomation tool (called synthesizer) that through different steps gen-
erates a technology-mapped netlist used to configure each CLB.
Since each FPGA differs from design architecture, a dedicated pro-
cess, named place-and-route, takes care of choosing which CLBs
need to be employed and how to physically connect them. Before
the actual implementation in hardware, the programmer can vali-
date the map via timing analysis, simulation, and other verification
methodologies. The final result of the design flow is then a bit-
stream file that can be transferred via a serial interface to the FPGA
or to an external memory device charged to deploy it at every boot
of the FPGA.

The key factor that brought FPGAs to success is their pro-
grammability. Such a feature guarantees a very short time to pro-
duction which can easily explain why they quickly emerged as
a way for generating effective and low cost hardware prototypes.
However, nowadays FPGAs are not only used for prototyping, but,
due to the decreasing cost per gate, they are employed as a principal
component in many digital hardware designs.

4. Compilation to hardware
Here we discuss the main ideas behind our CHR-based hardware
specification approach. First, we investigate the features of CHR
that could hamper the hardware synthesis, then we address the cor-

respondence between CHR rules and hardware and finally we de-
scribe how to reproduce in hardware the execution from the query
to the result. As depicted in Figure 1, the complete compilation
flow starts from a subset of CHR and goes to an implementation
on FPGA passing through the low level VHDL language. Part of
the produced VHDL code from the running example is reported in
Appendix A.

4.1 The CHR subset
Since the hardware resources can be allocated only at compile time
(dynamic allocation is not allowed in hardware due to physical
bounds), we need to know the largest number of constraints that
must be kept in the constraint store during the computation. In
order to establish an upper bound to the growth of constraints,
we consider a subset of CHR, which does not include propagation
rules. Programs are composed of simpagation rules of the form:

rule@ c1(X1), . . . , cp(Xp)\cp+1(Xp+1), . . . , cn(Xn) ,
g(X1, . . . , Xn) |
Z1 is f1(X1, . . . , Xn), . . . , Zm is fm(X1, . . . , Xn),
ci1 (Z), . . . , cim (Z).

(4)
where Xi (i 2 {1, . . . , n}) can be a set of variables, Z =
Z1, . . . , Zm and the number of body constraints is less than
or equal to the number of constraints removed from the head
(m  n � p) and no new type of constraints is introduced:
{i1, . . . , im} ✓ {p + 1, . . . , n}. In this way, the number of con-
straints cannot increase and the constraint store size is bounded by
the width of the initial query.

Additionally, we will consider only computations starting from
a ground goal. Note that, since the variables in the body of a rule
are included in those occurring in the head, this implies that all
constraints generated during the computations will be ground, a
fact which will make possible the translation into hardware.

It is worth recalling that the CHR subset identified by the above
conditions is still Turing-complete. This follows from [27], where
several subclasses of CHR are shown to be Turing-complete. In
particular it is shown that RAM machines can be simulated by CHR
programs including only simpagation rules, without free variables
and which do not increase the number of constraints (provided that
the host language arithmetic is available).

4.2 Design of the hardware blocks
The framework we propose logically consists of two parts: (i)
Several hardware blocks representing the rewriting procedure ex-
pressed by the program rules; (ii) an interconnection scheme
among the blocks specific for a particular query. The first one is
the hardware needed to implement the concurrent processes ex-
pressed by the CHR rules of the program, while the second one is
intended for reproducing the query/solution mechanism typical of
constraint programming.

The proposed hardware design scheme is outlined in Figure 2. A
Program Hardware Block (PHB) is a collection of Rule Hardware
Blocks (RHBs), each corresponding to a rule of the CHR program.
Constraints are encoded as hardware signals and their arguments
as the values that signals can assume. The initial query is directly
placed in the constraint store from which several instances of the
PHB concurrently retrieve the constraints, working on separate
parts of the store. The newly computed constraints replace the input
ones. A Combinatorial Switch (CS) sorts, partitions and assigns the
constraints to the PHBs taking care of mixing the constraints in
order to let the rules be executed on the entire store. The following
paragraphs explain in detail the construction of the blocks.
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Figure 2. Hardware design scheme.

4.2.1 Rule Hardware Blocks
The RHB corresponding to the CHR rule in Eq. (4) inputs n signals
that have the value of the variables X1 . . . Xn (the arguments of the
head constraints). If X1 . . . Xn are sets of variables, we use vectors
of signals (records in VHDL). The computational part of the RHB
is given by the functions f1 . . . fm that operate on the inputs. The
resulting output signals have the value of the variables X1 . . . Xp

and Z1 . . . Zm.
We exploit processes, the basic VHDL concurrent statement, to

translate the computational part of a rule to a sequential execution.
Each rule is mapped into a single clocked process containing an if
statement over the guard variables.

Since, due to constraint removals, the number of constraints can
become smaller during the computation, each output signal for a
given constraint is coupled with a valid signal. This tells to the
other components whether the signal should be ignored.

EXAMPLE 2. Figure 3 sketches the RHBs resulting from the two
rules of the gcd program in Example 1. Notice that each constraint
is associated with two signals: one contains the value of the vari-
able of the constraint (solid line), and the other one models its va-
lidity (dashed line).

The block in Figure 3(a) corresponds to Rule R0. It has as input
the value for variable N together with its valid signal. It performs a
check over the guard and if the guard holds the valid signal is set
to false whereas the value of the gcd signal is left unchanged. This
simulates at the hardware level the removal of a constraint from the
constraint store.

The block in Figure 3(b) is the translation of Rule R1. It has
four input signals, corresponding to the values of the variables N
and M, with their valid signals. According to the guard M>=N of
R1, the inputs N and M feed a comparator that checks if the value
of the second signal is greater than or equal to the first. If the
condition is satisfied, the value of the second signal is replaced by
Z = M-N, as computed by a subtractor, while the value of the first
signal remains unchanged. If the guard does not hold, the outputs
of the block coincide with the inputs. In both cases the valid signals
remain unchanged. The computational part is carried out by the
subtraction operator.

4.2.2 Program Hardware Block
The PHB is the gluing hardware for the RHBs: it executes all the
rules of the CHR program and hence it contains all the associated
RHBs, with the corresponding input signals. Intuitively, for any
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gcd 

N
=0

 

gu
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d gcd  
valid  or  invalid 
 

if (N=0) then  
      invalid 
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N 
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      Z 
else  
      M 

(b)

Figure 3. The Rule Hardware Blocks for the gcd rules.

constraint type, the PHB inputs the largest number of constraints
of that type in input to the underlying RHBs. Additionally, the
PHB takes as input the two global input signals clk and reset used
for synchronization and initialization purposes. It provides for the
finish control signal used to denote when the outputs are ready to be
read by the following hardware blocks. The RHBs keep on applying
the rules they implement until the output remains unchanged for
two consecutive clock cycles.

Note that in the hardware each constraint is represented as
a different signal. If the head of a rule contains more than one
constraint of the same type, the corresponding signals must be
considered as input in any possible order by a RHB encoding the
rule. This is obtained by replicating the RHB a number of times
equal to the possible permutations of the constraints of the same
type.

More precisely, for the sake of simplicity, assume that there
is a unique type of constraint and let k be the total number of
input constraints to the PHB. For a rule whose head contains n
constraints (as in the generic rule in Eq. (4)), the number of copies
of RHBs needed is k!/(k � n)!, i.e., the number of sequences of
length n over the set of k inputs. Finally there is a mechanism
for ensuring that only one copy of the RHB can execute per clock
cycle.

EXAMPLE 3. Let us consider the PHB corresponding to the gcd

program in Example 1. As depicted in Figure 4, it takes as input two
signals corresponding to gcd constraints (the maximum between
the number of inputs of R0 and R1). According to the general
argument above, the number of RHB instances for Rule R1 is
2 = 2!/(2 � 2)!. To see why these are required, note that when
N is greater than M, the rule can fire only if fed with the constraint
in reverse order, as it happens for the second copy RHB. Similarly
the number of RHB instances needed for R0 is 2 = 2!/(2� 1)!.

A certain degree of parallelism for rules is set at the level of
the PHB. Here, according to the notion of strong parallelism for

176



gu
ar

d 

RHB  of  R0 

RHB  of  R0 

RHB  of  R1 

RHB  of  R1 

function 

N 
M 

CO
M

M
IT

 

PHB  of  R0 and R1  

The output values 
depend on the validity 
of the guards involved 
in the various RHBs, 
and on the resolution 
strategy when more 
than one rule is 
applicable. 

gcd 

gcd 

gcd 

gcd 

function 

gu
ar

d 
gu

ar
d 

gu
ar

d 

Figure 4. The Program Hardware Block for the gcd program

CHR, introduced in Section 2, we allow for the parallel firing
of rules sharing constraints which are not rewritten. Actually, all
rule instances in the PHB are executed by one or more concurrent
processes that fire synchronously at every clock cycle. Then, the
commit block at the output stage selects only the outputs of a
subset of rules which can fire in parallel, chosen according to
some priority criteria. For instance in the PHB of the gcd example,
Rule R0 cannot be executed in parallel with R1 because they could
rewrite the same constraint.

4.2.3 Combinatorial Switch (CS)
A further level of parallelization is achieved by replicating the
PHBs into several copies that operate on different parts of the
global constraint store, according to weak parallelism as described
in Section 2. PHBs can compute independently and concurrently
because they operate on different constraints. Although they pro-
cess data synchronously, since they share a common clock, it is not
required that they terminate their computation at the same time. In-
deed the CS acts as synchronization barrier letting the faster PHBs
wait for the slower ones. It is also in charge to manage the com-
munication among hardware blocks exchanging data: once all the
PHBs have provided their results, it reassigns the output signals as
input for other PHBs, applying first some permutation to guarantee
that all the combinations will be considered.

In practice, the implementation of this interconnection element
relies on a signal switch that sorts the n constraints in the query
according to all the possible k-combinations on n (where k is the
number of inputs to the single PHB) and connects them to the
inputs of the PHBs. The maximum number of PHBs that can work
in parallel on the constraint store is bn/kc, since, according to weak
parallelism, the same signal (and hence the same constraint) cannot
be fed to different PHBs at the same time.

Implementing CS as a finite state machine leads to a total
number of states S equal to the number of possible combina-

tions divided by the number of concurrent PHBs: S =
(nk)

bn/kc ⇡
Qk�1

i=1 n�i

(k�1)! . Despite the good degree of parallelization achieved by
the CS (it allows bn/kc PHBs to execute in parallel), it needs a
number of states O(nk�1) in order to try all the possible combina-
tions on the input signals. Since the time necessary for evaluating
the query is proportional to the number of states, it is important
to limit the number k of inputs for each PHB. This leak in per-
formance is related to the complexity of the search for matching
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Figure 5. Gcd execution time (log scale)

problem: a very well known issue in CHR [26] and in general in
multi-headed constraint languages. An additional problem is that
CS simply combines all the constraints (including the invalid ones)
in all possible ways. In presence of algorithms that considerably
reduce the number of constraints during computation this can be
highly inefficient. In fact, constraints that have been removed by
the PHBs still continue to be shuffled by the CS uselessly. In Sec-
tion 5 we will discuss how to improve time complexity to space
complexity’s cost giving optimized structures for the CS.

4.2.4 Some experiments with gcd

Here we describe the hardware implementation of the algorithm
presented in Example 1 tailored for finding the greatest common
divisor of at most 128 integers. The resulting hardware design re-
lies on 64 PHBs deriving in parallel the gcd. The CS pairs the con-
straints in a round robin tournament scheme where each constraint
is coupled once with each other. For comparison purposes we im-
plement the same algorithm directly in behavioral VHDL using a
parallel reduction that exploits the associative property of the gcd
operation. Both hardware specifications are then synthesized in a
Xilinx Virtex4 FPGA (xc4vfx60) running at 100MHz. Figure 5 re-
ports the execution times for 16, 32, 64 and 128 2-byte integers.
The two FPGA implementations are labeled respectively as FPGA
(CHR) and FPGA (VHDL). The curves labeled CPU (SWI) and
CPU (CCHR) refer to the computational time of the CHR gcd

program, compiled respectively with the K.U.Leuven CHR sys-
tem of SWI Prolog [23] and the fast C-based system CCHR [35],
and running on Intel Xeon 3.60GHz processor with 3GB of mem-
ory. Observe that the FPGA implementations are at least one order
of magnitude faster than the software implementations (including
CCHR which is claimed to be the fastest CHR implementation cur-
rently available). This is somehow expected, due to the completely
different hardware nature, but still it provides an indication of the
appropriateness of our approach.

Compared to the VHDL solution, the execution time can be
more than an order of magnitude larger. This is primarily due to the
fact that, as mentioned above, the CS does not take into account that
the number of constraints can drastically decrease. An optimization
addressing this issue will be discussed in Section 5.1 (the outcome
of such an optimization is reported in Figure 5, labeled FPGA
(CHR SP)).

The area needed for the largest gcd implementation we tried is
about 2 · 105 LUTs corresponding to about 8% of occupation of
a medium size FPGA. Finally we should notice that the resulting
highest frequencies of operations are all above 250 MHz and up to
350 MHz, which is quite good for a non pipelined architecture.
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Figure 6. Optimization model for strong parallelism.

5. Optimizing hardware compilation
With the aim of facing the problem of time efficiency, three opti-
mizations are proposed relying on different degrees of paralleliza-
tion. In particular, in Section 5.1 we discuss how the property of
strong parallelism can be further exploited with simple changes in
the hardware framework. In Section 5.2 we show how the adop-
tion of a set based semantics for CHR can enable a higher level
of parallelism. Finally, in Section 5.3, the online property of CHR
(see Section 2) is used for boosting the computation of a merge sort
algorithm.

5.1 Strong parallelism
Here we propose an optimization which exploits the strong paral-
lelism property of CHR also at the level of the CS. The idea con-
sists of distinguishing between constraints that are read from those
which are rewritten by the PHBs. Then, the same read constraints
can be processed in parallel by all the PHBs. A hardware block,
obtained as a modification of the CS used before, takes care of
feeding the various PHBs instances with the same read constraints
combined with different sets of rewritten constraints.

For instance, consider the gcd program. The PHB now contains
a single instance of RHB for each Rule R0 and R1. The PHB inputs
a read constraint (the first input of R1) and a removed constraint
(shared between the two rules). Note that in this case, since there is
no rule duplication inside the PHB, the order of signals matters.

Figure 6 shows a possible refined CS for a five constraints query
but the design can be easily adapted (with a linear growth) to a
larger number of constraints. It relies on a circular shift register1

preloaded with the query constraints and with one cell connected
to all the first input (read constraint) and all the others connected
to the second input (removed constraint) of each PHB. Each time
the PHBs terminate their computation the new output constraints
replace the old ones in the shift register and they shift until a valid
constraint fills the first position of the register. Note that since the
outputs carrying the read constraint refer to the same constraint for
all PHBs, they are all left disconnected apart from the first one (see
Figure 6).

Experimental results for the proposed strong parallel architec-
ture are reported in Figure 5, labeled by FPGA (CHR SP). The
reduction in execution time is relevant for all the experiments with
different number of constraints, reaching up to one order of magni-
tude of speed up.

1 A shift register is a cascade of registers in chain, with the data input of
the first element connected to the output of the last one. An enable signal
determines a circular shift of one position of the stored data.
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Figure 7. Prime execution time (log scale)

5.2 Massive parallelism
The set-based semantics CHRmp [21] relies on the idea that con-
straints can be considered as multiplicity independent objects so
that additional copies of them can be freely used. In such a con-
text, a duplicate removal of one constraint can be replaced by the
removal of two copies of the same constraint. The degree of paral-
lelism introduced by this change of perspective is extremely high
since multiple rule instances removing or reading the same con-
straint can be applied concurrently (intuitively each one operates on
a different copy of the constraint). The main drawback of CHRmp

is that it is not sound with respect to the sequential semantics when
the program is not deletion-acyclic (i.e., when two distinct con-
straints are responsible for their mutual removal).

CHRmp is particularly suited for algorithms that considerably
reduce the number of constraints like the filtering ones. Consider
as an example the program below that, starting from the query
prime(2), ..., prime(n) extracts the prime numbers in the
interval [2, n]:

Prime @ prime(X) \ prime(Y) <=> Y mod X = 0 | true.

Note that Rule Prime is in the CHR fragment defined by Eq. (4)
as the number of prime constraints decreases every time the rule
fires. The program is also deletion-acyclic since two integers cannot
be one a proper multiple of the other. Moreover, the execution of
the program can take advantage also from strong parallelism since
multiple instances of the rule can use the same prime constraint for
reading.

The idea for exploiting massive parallelism consists of provid-
ing all possible combinations of constraints (order matters) in in-
put to distinct parallel PHB instances in a single step. This time
the same constraint will be fed to several PHBs. Valid outputs are
collected: a constraint is valid if no PHB has removed it. This is
realized in hardware by suitable AND gates. Finally, valid outputs
are used as input in the next round. The architecture thus ideally
uses

�
n
k

�
PHBs where n is the number of query constraints and k is

the number of inputs of each PHB. In practice, physical bounds can
impose to use a smaller number of PHBs, in a way that processing
all possible combinations of constraints will require more than one
step.

Figure 7 reports the execution time for the Prime program.
The strong parallelism and massive parallelism optimizations are
tagged as FPGA (CHR SP) and FPGA (CHR MP), respectively.
The improvement determined by the massive parallelism is about
an order of magnitude for queries with a low number of constraints,
and it decreases with higher numbers of constraints. This is due
to the fact that the physical bounds of the hardware are quickly
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M0 @ arc(X,A) \ arc(X,B) <=> A<B | arc(A,B).

M1 @ seq(N,A), seq(N,B) <=>

A<B | seq(N+N,A), arc(A,B).

+
M0 @ c(0,X,A) \ c(0,X,B) <=> A<B | c(0,A,B).

M1 @ c(1,N,A), c(1,N,B) <=>

A<B | c(1,N+N,A), c(0,A,B).

Figure 8. Merge sort algorithm

reached. The occupied area of the FPGA determined by a complete
parallelization would increase as

�
n
k

�
. Even though in this case k is

small (k = 2), we obtain a quadratic growth that is not sustainable
and a partial serialization is needed.

5.3 Online optimization
In this section we illustrate the optimizations which can be allowed
by the online property, working on a typical CHR program imple-
menting the merge sort algorithm with optimal complexity [11].

The CHR program consists of the Rules M0 and M1 in the upper
part of Figure 8. Given a ground query of the form seq(1,n1), . . . ,
seq(1,nk) the program returns the ordered sequence of the input
numbers n1, . . . , nk, represented as a chain of arcs using the con-
straint arc/2. For instance, starting from seq(1,9), seq(1,3),
seq(1,7), seq(1,4) the program returns the following arc con-
straints: arc(3,4), arc(4,7), arc(7,9).

Rule M0, where two arcs arc(X,A) and arc(X,B) start from
the same number X, performs their ordered merge into a chain. The
arc with the smaller target is kept by the rule, while the other is
replaced by an arc between A and B. The insertion in the store
of such a constraint may cause a new branch in the sequence,
and hence the rule keeps firing until all the branches have been
removed. In order to reach the optimal complexity O(n log(n)),
the chains which are merged should have the same length. Rule M1
is responsible for the initialization of the arc/2 constraints in order
to meet such a requirement. In a constraint seq(l,n) the second
argument n is one of the numbers to be ordered, while the first
argument l represents the number of elements reachable from n

via arc connections. In the initial query, since no arc connections
exist, all constraints are of the kind seq(1,ni).

The program, strictly speaking, does not belong to the CHR
subset implementable in hardware. In fact, while Rule M0 leaves
unchanged the number of arc/2 constraints, Rule M1 reduces by
one the number of seq/2 constraints but introduces a new arc/2

constraint. However, the program can be easily transformed into
an equivalent one in the CHR subset of interest. Since in Rule M1

the total number of constraints is left unchanged, it is sufficient to
flatten the two types of constraints involved, i.e., arc/2 and seq/2,
into a single one c/3, with an additional argument used to encode
the constraint type. The transformed program can be found in the
bottom part of Figure 8.

Note that such constraint flattening is always possible using
a new constraint with an arity equal to the greatest arity of the
original constraints plus one.

Following the methodology described in Section 4.2, the trans-
formed program for merge sort can be compiled into hardware.
Each PHB has two inputs and two outputs and it includes four
RHBs. In fact, since both Rules M0 and M1 have two constraints
of the same type in the head, as in the running example (see in par-
ticular Example 3), two RHBs are needed for each rule. Note that
the commit stage of a PHB selects the result of a single RHB since
after the constraint flattening no parallelization is possible between
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Figure 9. Merge sort execution time (log scale)

rules. The actual parallelization is performed by the CS that pairs
the query constraints and assigns each couple to a different instance
of the PHB. The number of instances of PHB which works in paral-
lel on the constraint store is thus bn/2c, where n is the total number
of constraints in the store.

We next propose an alternative architecture, which further par-
allelizes rule executions by exploiting the online property of CHR.
The key observation is that, relying on this property, the merging
operation performed by Rule M0 can be executed in parallel to the
generation of the arc constraints as carried out by Rule M1. Hence
the program can be naturally split into two parts corresponding to
the two rules and some of the resulting constraints of one part can
be used to populate runtime the constraint store of the second one.
The arc/2 constraints produced by Rule M1 are consumed only
by Rule M0 while seq/2 constraints are produced and consumed
only by Rule M1. If we consider the two rules as separate programs
joined by the arc production and consumption, we can design a
hardware consisting of two executors linked by a one-way FIFO
buffer.

The executor for each rule consists of a CS and bn/2c instances
of the PHB described above, where n is the number of query
constraints.

The seq/2 query constraints are loaded in the CS of the first
executor and, as new arc/2 constraints are created (actually c/3

constraint with the first argument equal to 0), they are inserted in
the FIFO that feeds the CS of the second executor. Such a CS at the
beginning of the computation is empty, a fact which is concretely
implemented by preloading the CS with constraints which are all
non valid. Then, whenever a new constraint is received from the
buffer it will replace one of the non valid constraints. The two CS
and the FIFO should have the same dimension since, in a normal
execution, all the seq constraints (except the last that always re-
mains unpaired) are converted in arc constraints. The FIFO depth
has to take into account the possibility that the second CS is not
able to receive immediately the sent constraint because the receiv-
ing cell is occupied by a valid constraint.

Figure 9 shows a comparison between the execution time of the
non optimized and optimized hardware implementations, labeled
as FPGA(CHR) and FPGA(CHR CS + CS), respectively. The
optimized implementation, when the number of elements to be or-
dered increases, outperforms the non-optimized one. This shows
the advantage of exploiting the online property that gives the pos-
sibility of dividing the problem into two parts running in parallel.
Also these experiments confirm that the FPGA implementations
are much more efficient than the software ones, in SWI Prolog and
CCHR.
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Figure 10. Hardware/software compilation diagram flow

Finally, we note that in the optimized FPGA architecture the CS
of the second executor could be replaced by a shift register, like the
one used in presence of strong parallelism (see Section 5.1). In fact,
multiple instances of Rule M0 can be strongly parallelized, because
one constraint of the head is kept and hence can be shared among
multiple rules. However experimental results shows that such a
architecture does not speed up the execution at all. This is due to
the fact that when the last arc/2 constraint is generated by the first
executor, the partial result of the second one approximates very
closely the final result (which could be already the correct one).
Thus when the last constraint is retrieved by the second executor,
it has to apply just a single rule to reach the end of the execution.
Hence the chosen parallelism for sorting the constraints does not
matter.

6. An accelerator for CHR
In Section 4 it was shown how to synthesize hardware starting
from a subset of CHR that does not allow constraint propagation.
Since dynamic allocation is not permitted in hardware due to phys-
ical bounds, such a restriction might be expected for a hardware
designer, but it turns out to be very restrictive for software pro-
grammer. In order to overcome this limitation, we propose a mixed
(hardware/software) system where some rules, whose execution
represents the heavier computational task, are executed by special-
ized hardware (synthesized through the aforementioned technique),
while the remaining ones are executed by the main processor that
can overcome the hardware limitations. The processor can easily
take care of producing constraints, while the custom hardware can
efficiently consume or rewrite them.

The issue of partitioning between hardware and software im-
plementations is left to the programmer, who specifies which rules
should be deployed to the hardware accelerator. A wrapper func-
tion virtually encapsulates those rules. It is used as a call, which
takes some constraints as input arguments. These are converted to
a query for the hardware in a suitable format. The constraints re-
sulting from the hardware execution are given back to the wrap-
per and made available to the software level. The wrapper allows
the programmer to access to lower level instructions (in this case a
call to a hardware driver), which speed up the execution. This kind
of modularity is known in the literature as hierarchical composi-
tion [8, 24] and an implementation similar to ours can be found for
instance in [26].

The entire system compilation is split into two branches (see
Figure 10) related to software and hardware parts. The source pro-

gram is annotated by the programmer who specifies the rules that
have to be executed by the hardware accelerator. The hardware
compilation is performed according to the method in Section 4.2
which results in a bit stream directly deployable on an FPGA. On
the other hand the standard software compilation will be necessar-
ily altered to deal with the hardware realization of some rules of
the program. Since our implementation relies on a CHR system
that adopts Prolog as host language, the execution of the hardware
implemented rules will be embedded in a custom made built-in for-
eign Prolog predicate (the wrapper). When it is called, all the con-
straints needed by the hardware are sent to the accelerator, which
will return the resulting constraints back to the constraint store.

GCD matrix calculation. As a first case study, let us consider a
program that, given a set of integers, computes the gcd of all the
pairs of inputs. To this end it builds a bi-dimensional triangular
upper matrix whose elements will contain the gcd of all pairs of
integers belonging to the set. The query is formulated using the
constraint set/2, where the second argument represents a number
in the input set, while the first expresses its (arbitrary) order in the
set, e.g., with the query set(1,n1),. . .,set(k,nk) the program
will compute the gcd for the set {n1, . . . , nk}. The matrix is built
by using the constraint gcd/3. In the constraint gcd(X,Y,M) the
first two arguments, X,Y denote the position of the element in the
matrix whereas the third one will contain the gcd of nX and nY.
The first and the last two rules reported in Figure 11 are the CHR
implementation of the matrix computation. The computation of the
gcd according to Euclid’s algorithm is then expressed by Rules
GCD0 and GCD1. The propagation Rules Matrix0 and Matrix1

are employed to build the matrix from the initial set of inputs.
Rule Matrix0 produces the upper half of the matrix (due to the
guard X<Y), creating the initial query gcd(X,Y,N),gcd(X,Y,M)

for the computation of the gcd between the numbers N and M. Rule
Matrix1, in contrast, generates the diagonal elements. In this case
the gcd is trivially equal to the set element N. These two rules
cannot be implemented in hardware because they are propagation
rules that generate new gcd constraints.

In the hardware accelerator we deploy the functionality of rules
GCD0 and GCD1with the hardware blocks technique reported in Sec-
tion 4.2. The remaining program running on the main processor
consists of the two Rules Matrix0 and Matrix1, with the addition
of the rules reported in the central part of Figure 11. Rule Pack is
intended to append all the constraints of type gcd/3 to a list that
has to be delivered to the hardware accelerator. Call is used to trig-
ger the invocation of the custom Prolog predicate hw_gcd/2 that is
the actual responsible of the data transfer to and from the hardware
accelerator. The constraint call/0 is available to the programmer
to make the rule fire at the preferred time. For instance, in our ex-
ample we could use the query set(1,n1),. . .,set(k,nk),call
if we wish that the gcd constraints were processed after the com-
plete production of all of them. Finally the Rule Unpack transforms
the output list returned by the hardware accelerator into constraints.
In this particular example the application of such a rule would not
be necessary because the output of the gcd computation is just one
constraint, which could be returned by using the Rule Call. This
rule is inserted for generality purpose.

The hardware setup of the test bench relies on a Xilinx Virtex4
FPGA (xc4vfx60) running at 100MHz and connected to a PCI-E
root complex of an ASUS P7P550 motherboard hosting an Intel
Core i7 CPU running at 2.8GHz. On the software side we use the
CHR system [23] for SWI-Prolog which allows for an easy inte-
gration of memory mapping instructions thanks to the embedded
interface to C [34]. We employed this feature for the wrapper im-
plementation. In order to determine the total system execution time
we used a single thread implementation in which the CPU is kept
idle until the FPGA has performed its computation. Figure 12 com-
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GCD0 @ gcd(_,_,0) <=> true.

GCD1 @ gcd(X,Y,N) \ gcd(X,Y,M) <=> M>=N | gcd(X,Y,M-N).

Pack @ gcd(X,Y,N), list_in(L)#passive <=> list_in([(X,Y,N)|L]).

Call @ call, list_in(L1) <=> hw_gcd(L1,L2), list_out(L2).

Unpack @ list_out([(X,Y,N)|L]) <=> list_out(L), gcd(X,Y,N).

Matrix0 @ set(X,N), set(Y,M) ==> X<Y | gcd(X,Y,N), gcd(X,Y,M).

Matrix1 @ set(X,N) ==> gcd(X,X,N).

Figure 11. Gcd matrix program
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Figure 13. Additional time introduced by the hardware accelerator
measured at different sizes of the query

pares the execution times of the gcd matrix running on the plain
CPU and with the help of the FPGA (labeled CPU+FPGA in the
plot). Even if the speed achieved is not comparable with the one
obtained by the execution of the gcd algorithm entirely in FPGA
(see Section 4.2.4), the execution time improvement with respect
to the plain CPU is still in the range of one order of magnitude.
This poorer speed up is rewarded by a higher flexibility.

A comparison of the extra time introduced with the addition of
the hardware accelerator is presented in Figure 13, for 16, 32, 64,
and 128 1-byte constraints. We measured the elapsed time as the
sum of three different components: data formatting, data transfer
and FPGA computation. The first one is the required time by a CHR
rule for calling the foreign Prolog predicate that converts terms in
basic C-type values, arranges the constraint values in data packets,

decodes the incoming packets and unifies the C-type values with
terms. The remaining two components are, respectively, the routing
time to send data through the PCI-E bus and the time needed by the
FPGA for packing/unpacking and processing data. The measures
show that the most expensive phase is the data handling at the level
of the CHR rule, responsible of the built-in execution that sets up
the FPGA computation. Clearly such burden of few microseconds
per constraint is fully rewarded by the speed up gained in the further
concurrent execution of CHR rules in FPGA.

Interval domain solver. As a further case study we consider a clas-
sical problem for constraint programming, i.e., a finite domains
system [1]. In the literature about CHR we can find several pro-
grams working on interval or enumeration constraints [13]. Here
we implement a simple interval domains solver for bound consis-
tency, whose CHR code can be found in Figure 15. The solver
uses the CHR constraint ::/2 for stating that a given variable
ranges on a finite set denoted by the custom operator :. For ex-
ample, the constraint X::a:b means that the variable X can as-
sume any integer value between a and b. Also le/2, eq/2 and
ne/2 are CHR constraints, representing the less or equal, the equal
and the not equal operators, while min and max are Prolog built-
in operators. Rule Redundant eliminates an interval constraint
for a variable when there exists another interval constraint for the
same variable which is included in the first one. Rule Intersect

replaces two intervals with their intersection which is obtained
by calculating the maximum of the lower bounds and the mini-
mum of the upper bounds. Rule Inconsistent identifies empty
intervals (where lower bound is greater than the upper bound).
Rules LessEqual, Equal and NotEqual represent the correspond-
ing arithmetic relations. A sample query for the program can be:
X le Y, X::3:5, Y::2:4. The program first produces the new
constraints X::3:4, Y::3:4, and then it eliminates the redundant
intervals giving as result X le Y, X::3:4, Y::3:4.

The first two Rules Redundant and Intersect are deployed
on FPGA. Note that they are in the CHR fragment defined by
Eq. (4): Redundant removes a constraint without introducing new
ones while Intersect introduces a new constraint, but it removes
two of them.

Observe that the typical queries include free logical variables as
arguments for the constraints (e.g., X and Y occur free in the sample
query above). This is not a problem for the hardware computation
since during the whole program execution such variables are never
bound. Hence they can be replaced by suitable indexes in the
step of packing and formatting the constraints to be sent to the
accelerator. When the output constraints from the accelerator are
received the indexes can be replaced back with the corresponding
logical variables.

The execution time of the interval domains solver is reported
in Figure 14. The times correspond to queries of different length
depending on the number of variables taken into account. More
precisely, the queries contain 20 interval constraints (e.g. X::3:15)
and one arithmetic relation (e.g. X le Y) for each variable. As
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Figure 14. Interval domains solver execution time (log scale)

in the case of the computation of the gcd matrix, the speed up
obtained with the support of the hardware accelerator is above one
order of magnitude on all the queries we considered.

7. Related work
Our hardware compilation method, which starts from a subset of
CHR to arrive at generating a synchronous digital circuit, can also
be seen as an attempt to overcome the too low level feature of tradi-
tional HDLs, such as VHDL [33] and Verilog [32]. These are well
proven and established standard languages for hardware design, but
they force the hardware designer to think at the Register Transfer
Level (RTL) level, thus modeling a synchronous digital circuit in
terms of the flow of digital signals (data) between hardware regis-
ters, and the logical operations performed on those signals. From
these low level language, is pretty easy to end in a gate-level netlist
that can be directly mapped into hardware.

Many alternative environments have been proposed to unify the
hardware engineers and the software developers through the use
of a common high-level language, mainly based on imperative lan-
guages, but none of them has become a standard due to the inherent
lack of concurrency and timing (essential elements for the hardware
synthesis) of such languages [9]. On the other hand, extensions of
commonly adopted HDLs like SystemVerilog [29] still require to
the programmers to own a strong hardware background and are too
specific to be used as general purpose languages.

We can count a large number of successful approaches to hard-
ware description among the functional languages. Since the 80s one
of the most popular domains in which functional languages have
been extensively used is hardware design [25]. General purpose
functional languages, like Haskell, have been widely used as host
languages for embedding HDL (e.g. Hydra [20] or Lava [5]). More
recent approaches like SAFL [19] move from a structural to a be-
havioural description of the hardware. They allow the programmer
to directly describe the algorithm to be implemented rather than the
interconnections among low-level hardware components.

Logic programming and especially Prolog have been used for
many years as formalisms for hardware design specification and
verification as well. We can mention some recent approaches [2, 3]
that present a Prolog-based hardware design environment hinged
on a high-level structural language called HIDE+. Such a language
was developed with the purpose of filling the gap of the structural
HDL languages that can only deal with small circuits. Indeed the
HDL description tends to be very complex due to the need of
making all the connections explicit. Another work on the track
of the behavioural style was presented in [18]. It adopts the Byrd
boxes model [6] of program execution originally developed as

debugging tool for Prolog. The Byrd boxes are used to identify a
statically allocable subset which can be executed by associating a
single Byrd box with each predicate symbol.

CHR is deemed as a highly concurrent language and, indeed,
in our hardware compilation framework we have largely exploited
various forms of parallelism in CHR. However, it is broadly ac-
cepted that a parallel computation model for CHR is still in fieri.
The first example of parallel implementation can be found in [10]
where it is shown how to evaluate the degree of concurrency start-
ing from the confluence analysis of a sequential program execution.
Further works [17, 28] focus on the formal specification and the
development of a parallel implementation of the CHR goal-based
execution schema: multiple processor cores run multiple threads
solving a single CHR goal. Other attempts to exploit concurrency in
CHR were pursued in the last years, mainly driven by the CHR set-
based operational semantics [22]. Although CHR programs usually
adopt a multiset based semantics, it was shown how a large class
of programs can benefit from a tabled rule execution schema that
eliminates the need of a propagation history, and acquires a natural
parallelism by the notion of set. The persistent constraint semantics
presented in [4], which exploits the idea of a mixed store where the
constraints can behave like a set or a multiset, achieves a higher
degree of declarativity, keeping the potentiality of concurrency of
the standard semantics. Finally, massive parallelism [21], used in
Section 5.2, gives the possibility of applying multiple removals to
the same constraint. Such semantics eliminates the conflicts in the
constraint removals by allowing different rule instances to work
concurrently on distinct copies of the constraints.

8. Conclusion
We described the general outline of an efficient hardware imple-
mentation of a CHR subset able to comply with the limitations im-
posed by hardware. The level of parallelization achieved provides a
time efficiency comparable with that obtained with a design directly
implemented in HDL. At the same time, the proposed solution of-
fers a more general framework reusable for a wide range of tasks
and easily integrable with existing low level HDLs. Different de-
grees of parallelization naturally embedded in CHR were pointed
out and fully exploited thanks to the development of custom hard-
ware structures. The proposed hardware compilation was validated
on several case studies related to classical algorithms like Euclid’s
algorithm, a sieve for prime numbers and merge sort.

In order to cope with the static nature of hardware, which pre-
vents a dynamic allocation, our translation has been restricted to a
proper subset of CHR, not including propagation rules. For over-
coming this limitation we proposed a classical CHR executor cou-
pled with a hardware accelerator dedicated to simple tasks like the
fast rewriting of some constraints. Such hybrid system can increase
the performance of CHR, achieving a stronger coupling between
algorithms and platforms. In case of data intensive algorithm, the
burden of setting up the accelerator computation was fully paid off
by the speed up gained in the concurrent execution of CHR rules in
hardware.

Further improvements to the general framework, especially in
terms of applicability to problems where the number of constraints
does not necessarily decrease during the computation, will be sub-
ject to future research. A general treatment of rule dependencies at
the PHB level is still missing and only appropriate considerations
on rules interaction can lead to a hardware performing parallel exe-
cution, pipelining and balancing out circular dependencies. Regard-
ing the hardware accelerator, we should mention the possibility of
automating the process of rule selection for the hardware deploy-
ment. Results coming from a profiler could help a static analysis on
the CHR program in order to identify the rules that are the most ex-
pensive to be executed. Moreover it would be interesting to test our
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Redundant @ X::A:B \ X::C:D <=> C=<A, B=<D | true.

Intersect @ X::A:B, X::C:D <=> X::max(A,C):min(B,D).

Inconsistent @ _::A:B <=> A>B | fail.

LessEqual @ X le Y, X::A:_, Y::_:D ==> Y::A:D, X::A:D.

Equal @ X eq Y, X::A:B, Y::C:D ==> Y::A:B, X::C:D.

NotEqual @ X ne Y, X::A:A, Y::A:A <=> fail.

Figure 15. Interval domains solver algorithm

framework, which provided quite satisfactory preliminary result, to
more complex applications.
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A. Generated VHDL code
This Appendix contains some program listings generated from the
implementation of the running example presented in Section 4.
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In the following we show the VHDL code that implements the
hardware blocks needed to form the PHB of the gcd program re-
ported in Example 3. The first part of the code shows the entity
declaration of gcd, which contains the input and output signals of
the PHB. Besides the signals related to the RHBs gcdx, validx,
gcd_outx and valid_outx, the port listing contains the synchro-
nization signals provided by the PHB: clk, reset and finish.
The architecture of gcd has four processes executed in parallel,
called r0_1, r0_2, r1_1 and r1_2, which correspond to the four
RHBs in Figure 4. In particular, they correspond to the two in-
stances of Rule R0 and R1 presented in Figure 3. The commit-
ting part of the PHB is carried out by the variable flag, which
gives a priority to the PHB outputs assignment. Finally, the pro-
cess finish_p is charged to rise the finish signal, when the output
signals cannot be further modified by the other processes.

entity gcd is
Port ( clk : in STD_LOGIC;

reset : in STD_LOGIC;
gcd1 : in STD_LOGIC_VECTOR (7 downto 0);
gcd2 : in STD_LOGIC_VECTOR (7 downto 0);
gcd_out1 : out STD_LOGIC_VECTOR (7 downto 0)

:= X"00";
gcd_out2 : out STD_LOGIC_VECTOR (7 downto 0)

:= X"00";
valid1 : out STD_LOGIC;
valid2 : out STD_LOGIC;
valid_out1 : out STD_LOGIC := ’1’;
valid_out2 : out STD_LOGIC := ’1’;
finish : out STD_LOGIC := ’0’);

end gcd;

architecture Behavioral of gcd is
signal gcd1_sig : std_logic_vector (7 downto 0)

:= X"00";
signal gcd2_sig : std_logic_vector (7 downto 0)

:= X"00";
signal valid1_sig : std_logic := ’1’;
signal valid2_sig : std_logic := ’1’;
signal finish_sig : std_logic := ’0’;
signal finish_sig_reg : std_logic := ’0’;
signal gcd1_sig_reg : std_logic_vector (7 downto 0)

:= X"00";
signal gcd2_sig_reg : std_logic_vector (7 downto 0)

:= X"00";
shared variable flag : std_logic := ’0’;
shared variable finish_flag : boolean := false;

begin
r1_1: process (clk, reset, gcd1, gcd2, gcd1_sig,

gcd2_sig, valid1_sig, valid2_sig)
begin -- process r1_1

if reset = ’1’ then
gcd2_sig <= gcd2;

elsif (clk’event and clk=’1’) then
if (valid1_sig=’1’ and valid2_sig=’1’) then

if gcd2_sig>=gcd1_sig then
gcd2_sig <= gcd2_sig - gcd1_sig;
flag := ’1’;

else
flag := ’0’;

end if;
end if;

end if;
end process r1_1;

r1_2: process (clk, reset, gcd1, gcd2, gcd1_sig,
gcd2_sig, valid1_sig, valid2_sig)

begin -- process r1_2
if reset=’1’ then

gcd1_sig <= gcd1;
elsif (clk’event and clk=’1’) then

if (valid1_sig=’1’ and valid2_sig=’1’) then
if flag=’0’ then

if gcd1_sig>=gcd2_sig then
gcd1_sig <= gcd1_sig - gcd2_sig;

end if;
end if;

end if;
end if;

end process r1_2;

r0_1: process (clk, reset, gcd1, gcd2, gcd1_sig,
gcd2_sig, valid1_sig, valid2_sig)

begin -- process r0_1
if reset = ’1’ then

valid1_sig <= valid1;
elsif (clk’event and clk=’1’) then

if gcd1_sig=X"00" then
valid1_sig <= ’0’;

else
valid1_sig <= ’1’;

end if;
end if;

end process r0_1;

r0_2: process (clk, reset, gcd1, gcd2, gcd1_sig,
gcd2_sig, valid1_sig, valid2_sig)

begin -- process r0_2
if reset=’1’ then

valid2_sig <= valid2;
elsif (clk’event and clk=’1’) then

if gcd2_sig=X"00" then
valid2_sig <= ’0’;

else
valid2_sig <= ’1’;

end if;
end if;

end process r0_2;

gcd_out1 <= gcd1_sig;
gcd_out2 <= gcd2_sig;
valid_out1 <= valid1_sig;
valid_out2 <= valid2_sig;
finish <= ’1’ when finish_sig=’1’ and finish_sig_reg=’0’

and finish_flag else
’0’;

finish_p: process (clk, reset, gcd1_sig, gcd2_sig,
finish_sig)

begin -- process finish_p
if reset=’1’ then

gcd1_sig_reg <= X"00";
gcd2_sig_reg <= X"00";
finish_sig_reg <= ’0’;
finish_flag := true;
finish_sig <= ’0’;

elsif (clk’event and clk=’1’) then
gcd1_sig_reg <= gcd1_sig;
gcd2_sig_reg <= gcd2_sig;
finish_sig_reg <= finish_sig;
if gcd1_sig=gcd1_sig_reg and

gcd2_sig=gcd2_sig_reg then
finish_sig <= ’1’;

else
finish_sig <= ’0’;

end if;
end if;
if finish_sig=’1’ then

finish_flag := false;
end if;

end process finish_p;

end Behavioral;
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