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Abstract

Many applications exhibit a large amount of po-
tential parallelism that can be exploited at both
data and task levels. In this paper, we consider
applications which can be structured as ensembles
of independent data parallel HPF modules (here-
after HPF tasks), which interact according to static
and predictable patterns. In order to make easy
and effective to program such applications, we de-
vised taskHPF, a coordination language in which
programmers can define the interaction patterns
among HPF tasks in a declarative way. We exam-
ine a small example application to discuss the ben-
efits of our approach, and we show how taskHPF
programs can be translated into efficient message-
passing code.

Keywords: Patterns, Coordination languages,
Task parallelism, Data Parallelism, HPF.

1 Introduction

Many applications show potential for exploit-
ing both data and task parallelism. Data paral-
lelism is characterized by the application of the
same operation to different parts of a related
data set. In task parallelism, distinct parts of
the program proceed independently on gener-
ally distinct sets of processors. For example,
applications in signal and image processing are
usually composed of a set of potentially data
parallel tasks interacting to compute a stream
of homogeneous data sets [2, 3, 18]. Other ap-
plications benefiting from a mixture of task and
data parallelism are multidisciplinary applica-
tions, in which different parts are developed in-

dependently as data parallel programs and in-
teract at a coarser task level. This has caused a
growing interest in models and systems which
allow the expression (and the exploitation) of
both task and data parallelism [2,9, 15, 19, 20].

The main contribution of this paper is the
definition of taskHPF, a high level coordination
language to express task parallelism among a
collection of data parallel HPF tasks, and the
description of its compilation system. taskHPF
allows an application to be organized as a com-
bination of common patterns, such as pipelin-
ing or replication. The taskHPF compiler is
able to optimize and tune the global appli-
cation structure and the resources devoted to
each part of the task parallel application.

The paper is organized as follows. Section 2
gives an overview of the approach and intro-
duces taskHPF. Section 3 discusses a small ex-
ample application and some experimental re-
sults. Then, Section 4 discusses the taskHPF
compiler and implementation issues. Finally,
Section 5 draws conclusions.

2 Overview of taskHPF

taskHPF is a high level coordination language
which allows to compose together a set of HPF
programs, called HPF tasks, which process ho-
mogeneous streams of data. An HPF task is
defined by supplying its HPF computational
code along with an input and output interface.
Then, these tasks can be composed using pre-
defined structures, called patterns or skeletons.
The rationale here is to provide the user with
an easy way to define the most common task



interaction structures in the class of applica-
tions at hand. For example, taskHPF provides
a pipeline pattern, to pipeline sequences of HPF
tasks in a primitive way. Then, it provides di-
rectives which help the programmer in balanc-
ing the pipelined stages. An ON PROCESSORS
directive fixes the number of processors as-
signed to an HPF task, thus devoting more
resources to critical stages. A REPLICATE di-
rective can be used to replicate non-scalable
stages. This improves the pipeline through-
put as different data sets can be computed in
parallel on different sets of processors. Pat-
terns can be composed together to build com-
plex structures in a declarative way, without
explicit management and control of parallelism
in the user code.

The taskHPF compilation system translates
the user defined structure in efficient message-
passing code. Translation exploits a standard
HPF compiler and a PVM version of COLTypr,
a library which provides mechanisms for load-
ing the HPF tasks on set of processors and for
optimized inter-task communications [12, 13].

The main advantage of this approach is to
supply programmers with a concise, pattern—
based, high-level declarative way to describe
the task interaction of their HPF modules.
This shortens the development time and al-
lows several structures to be easily tested.
Moreover, the explicit declaration of coordi-
nation patterns simplifies the job of the com-
piler, which can exploit a library of special-
ized “wrappers”, associated with the various
patterns exploited, to enclose the user-supplied
code. The static knowledge of the application
structure also permits effective mapping tech-
niques to be applied [5, 18]. Note that no other
approaches presented in literature provide lan-
guage constructs to express coordination pat-
terns for data parallel tasks.

Among the diverse previous proposals to
mix data and task parallelism, it is worth cit-
ing the Fx language [10], which allows pro-
grammers to define a flat ensemble of data
parallel tasks (i.e. calls to subroutine, which
are written in an HPF dialect), where data
dependencies between tasks are expressed by

well-defined input/output directives. Cluster-
ing or replication of tasks are poorly expressed
with mapping directive on a processor grid.
The new standard for HPF, HPF 2.0 [11], also
permits mixing task and data parallelism. It
is not clear at the moment whether this new
standard will eventually be embraced by in-
dustrial HPF compilers. In HPF 2.0, commu-
nications between tasks are explicitly accom-
plished by simple assignments outside specific
code blocks associated with independent tasks.
Unfortunately, these extensions are not suit-
able for expressing complex interactions among
asynchronous tasks as required by multidisci-
plinary applications. Moreover, communica-
tion among tasks can occur only implicitly at
subroutine boundaries, and non-deterministic
communication patterns, useful to implement
dynamic policies like load balancing, cannot be
expressed.

Finally, differently from the proposals dis-
cussed above, taskHPF does not need the adop-
tion of new task parallel HPF constructs to
express task parallelism. taskHPF is simply
a coordination layer for HPF tasks which are
separately compiled an off-the-shelf HPF com-
piler!, while the task parallel coordination level
is provided by the portable COLTgpr library.

Execution model of taskHPF. A taskHPF
program defines a network of cooperating HPF
tasks, where each task is assigned to a disjoint
set of processors.

For each task, users define a list of input
and output variables, and three sections of
code: the startup code, the body code, and the
endup code. The startup code contains HPF
local variables declaration and distribution di-
rectives for both local and I/O array variables.
Moreover, it may contain HPF code which ini-
tializes the state of a task. This code is exe-
cuted once, before reading input variables. The
body code is executed when data is read in
the input variables. It produces new values for
the output variables. The endup code is exe-

'We are currently using the version 3.0-4 of the
pghpf compiler by the Portland Group Inc. for clus-
ters of Linux PCs.



Taskl

£
RS

Figure 1: Structure of the parallel computation
defined by ts-pipe.

cuted before terminating the task. Typically
this part specifies how the computation results
must be saved on a file or any action the task
should do before exiting.

Figure 1 shows an abstract representation of
the network of interacting tasks defined by the
ts-pipe program sketched below, where the
called modules® are instances of four distinct
tasks: Taskl, Task2, Task3, and Task4. Note
that the external pattern exploited by the pro-
gram is a pipeline one, and that Task3 is de-
clared as a replicated module.

PIPE ts-pipe IN() OUT(Q)
<Taskl module call>
<Task2 module call>
REPLICATE(3) <Task3 module call>
<Task4 module call>
ENDPIPE

Taskl is the source task, which generates the
stream of items to be computed, while Task4
is the sink task, which consumes the stream
without generating any output. For this rea-
son, the input variable list of a source task and
the output variable list of a sink task must
be empty. Stream generation is carried out
by the body code of the source task, which
is repeatedly activated until the user code
calls taskHPF end(). taskHPF_end() causes
the transmission of an END_OF_STREAM mark
on the output channels (propagating termina-
tion), the execution of the endup code of the
task, and the termination the task.

The execution of a taskHPF program hap-
pens as follows. All the tasks are independent
HPF programs. The user defined body code of
each HPF task defines a data parallel compu-

2The exact taskHPF syntax of calls is not shown.

tation to be applied to each input item. The
result stream is passed to next stage in the
pipelined application structure.

At the beginning tasks configure their com-
munication channels and initialize support
variables. Then, all tasks except the source
task are blocked trying to receive the first item
of the input stream. When a new item is re-
ceived, it is processed and its results are sent
off to the next stage. HPF tasks behave in a
different way when they are located immedi-
ately before (dispatcher task) or after (collec-
tor task) a replicated stage. When a task is
a dispatcher (e.g. Task2), it must deliver the
result to only one copy of the replicated next
stage (e.g. Task3). This is done transparently
by the support of both the stages, which en-
sures the load balancing between the copies
using an on-demand dynamic scheduling pol-
icy. When a stage is a collector (e.g. Task4), it
can receive input data from any of the copies
of the previous stage (e.g. Task3). Again, the
support hides the matter by receiving from any
replica ready to deliver a results, thus merging
the different streams of results in a single in-
put stream from the previous stage. Finally, a
stage can be both a collector and a dispatcher
and combine both behaviors described above.

This execution scheme works also for nested
pipeline patterns, i.e. also if the called modules
of the example above were pipeline patterns
instead of simple tasks.

3 A simple case study

In order to illustrate the potential of taskHPF,
we use a small kernel that was already pre-
sented in literature [10, 19], and represents the
structure of a large class of image and sig-
nal processing applications. The kernel ap-
plication is FFT-Hist, where a stream of two—
dimensional COMPLEX matrixes is processed
sequentially by a pipeline of four tasks. Ma-
trixes can be processed in any order, since the
computations performed on them are indepen-
dent 2D FFTs. The first task in the pipeline,
inpm, reads the matrixes from I/O, and for-



PIPE pipe-fft IN(COMPLEX A(N1,N2)) OUT(COMPLEX C(N1,N2))

cfft IN(A) OUT(COMPLEX B(N1,N2)) ON PROCESSORS(4)
rfft IN(B) OUT(C) ON PROCESSORS(4)

ENDPIPE

PIPE main IN() QUT()

inpm IN() OUT(COMPLEX A(N1i,N2)) ON PROCESSORS(1)
REPLICATE(2) pipe-fft IN(A) OUT(COMPLEX B(N1,N2))
hist IN(B) OUT() ON PROCESSORS(2)

ENDPIPE

(a)
inpm
cfft cfft

rfft rfft

‘ hist

Figure 2: The code (a) and the task graph struc-
ture (b) of our FFT-Hist example.

wards them to task cfft. cfft applies the 1D
FFT algorithm to the columns of each matrix
received. Therefore, in order to obtain inde-
pendent data parallel computations, the input
matrix must be distributed (*,BLOCK). cfft,
after computing 1D FFT on every matrix col-
umn, sends the matrix to rfft, which com-
putes the 1D FFT on the rows. In this case,
we have to use a (BLOCK,*) distribution. Fi-
nally, matrixes produced are sent to task hist,
which collects and analyzes them, and writes
the results to an output file.

Figure 2.(a) shows a portion of the taskHPF
program implementing FFT-Hist. We do not
show the HPF code of the four tasks involved.
The structure expressed by the program in Fig-
ure 2.(a) corresponds to the interaction graph
shown in Figure 2.(b). Note that we have
a PIPE pattern, called pipe-fft, which in-
cludes cfft e rfft3. Since the two tasks scale
quite well [10,19], we map each of them on

3Note the IN(..) and the QUT(..) lists containing
typed elements composing, respectively, the input and
the output data streams.

4 processors (ON PROCESSORS directive). This
pipe-fft module is then composed with inpm
and hist within an external PIPE pattern,
called main. Note that pipe-fft is replicated 2
times to improve scalability (REPLICATE direc-
tive). Finally, inpm and hist are mapped on
a few processors because they perform mainly
I/O operations which, in the absence of a par-
allel file system, do not scale with the number
of processors used.

The above structure for the FFT-Hist pro-
gram is only discussed to illustrate the poten-
tiality of our language. In fact, we were not
able to conduct experiments with a program
exactly structured as shown in Figure 2. The
only machine available for the experiments was
a cluster of three 2-way Linux PCs (6 nodes)
interconnected by a 100BaseT switched Ether-
net. Thus, experiments were conducted with
less resources than those required by the pro-
gram structure illustrated in Figure 2, requir-
ing 18 processors. Instead, we exploited a pro-
gram structured as a single pipeline pattern,
composed of the four stages discussed above.
The first and the last tasks were run on a
single processor, while we assigned two nodes
to the most time-consuming tasks, i.e. cfft
and rftt. The structure used can be obtained
from the code shown in Figure 2.(a), by only
changing the ON PROCESSORS and REPLICATE
directives. To evaluate the results achieved, we
compared the execution times of our taskHPF
program with the times obtained running a
pure HPF version of the same program, where
all the available processors were exploited to
execute the four tasks. We fed the two versions
of the program with a stream of 20 matrixes,
and we observed the same advantages cited in
literature about the benefits of exploiting par-
allelism at both the task and data levels on
this application. When 256 X 256 matrixes were
used, the taskHPF program took 9.2 secs, while
the pure HPF one took 15.8 secs. For 512 x 512
matrixes, execution times were 39.69 secs and
44.67 secs, for taskHPF and pure HPF imple-
mentations, respectively. In the former case,
the taskHPF program was 1.7 times faster than
the HPF one, while in the latter case the
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Figure 3: Structure of the taskHPF compilation
system.

taskHPF program was 1.12 times faster.

4 Implementation

The integration of task and HPF data paral-
lelism presents several implementation issues,
deriving from the need to coordinate parallel
tasks organized according to different execu-
tion styles. Data parallel tasks usually adopt
an SPMD style, while task parallelism is gener-
ally exploited among independent entities run-
ning in MPMD style. Moreover, task paral-
lel entities tend to be more dynamic needing
the ability to spawn new activities during exe-
cution. We tackle these issues exploiting the
structure and the properties of the patterns
used to organize a taskHPF application. Fig-
ure 3 shows how taskHPF programs are com-
piled down to a given parallel machine.

The taskHPF compiler generates a set of
independent HPF programs, where the user—
defined code of each HPF task defines a data
parallel computation to be applied on each in-
put item. This is done in two steps. First,
it derives the intra-task interaction structure
and then it generates the appropriate wrap-
per code for each taskHPF task. The wrap-
per code differs depending on the role and
the number of input and output channels of
each task. The taskHPF compiler has a library
of “canned” wrap codes, called task wrappers.
Task wrappers encapsulate the common code
for all the wrappers of a certain kind and
can be specialized by plugging in program-
dependent information, such as actual type

and sender /receiver identifiers of message pass-
ing primitives, and user defined HPF code.

Task wrappers are defined using HPF with
calls to COLTypr library [12,13], and have spe-
cial markers for the parts to be plugged in the
instantiation phase. COLTypr provides prim-
itives for optimized communications of data
among processes and HPF task spawning.

The program generated by the taskHPF
compiler is a flat ensemble of distinct HPF
programs interacting by means of COLTypF.
All these programs are then passed to an
HPF compiler (which produces distinct SPMD
f90/£77 parallel programs), and eventually are
linked to relevant libraries to be translated in
executable code. Note that also the low-level
communication middle-wares used by COL Typr
and by the HPF program must be linked. For
instance, the pghpf compiler we use exploits
RPM, the PGI Real Parallel Machine system,
while COLTypr uses PVM.

In the following two subsections, we give
some details of the compiler structure and of
the characteristics of the COLTypr library.

4.1 The taskHPF compiler

The taskHPF compiler (Figure 3) is logically
split in two parts: the front-end and the code
generator. The front-end is fairly standard. Tt
parses the source code, checks types and pro-
duces the internal program representation, the
construct tree. The construct tree is an anno-
tated syntax tree in which each internal node
is a pipeline call, and each leaf node is an HPF
task call. Annotations record information on
directives, types, module names and names of
the files in which the HPF code has been saved
for subsequent plugging in the wrapper tem-
plates.

Code generation works on the construct tree
adding further annotations to the nodes. It
gives unique identifiers to HPF tasks and to
channels between tasks, which are needed by
the COLTypr library, and selects a task wrap-
per for each task HPF node. The task wrap-
pers have unique names with which they can
be located in the task wrapper library.



Tasks wrappers are stored as text files in
which immutable HPF code and COLTypr calls
are interspersed with parts to be instanti-
ated/changed.

The efficient implementation of the primitives
to exchange arrays are the key issue to be ad-
dressed in taskHPF support. This is delegated
to the COLTypr library primitives which pro-
vide native optimized communication among
distributed HPF tasks.

Communicating distributed data between
data-parallel tasks entails in fact making sev-
eral point-to-point communications (see Fig-
ure 4). Moreover, since the actual boundaries
of the array sections allocated on each proces-
sor cannot be statically known, all the work
must be done during execution. At run time,
COLTypr inspects the HPF support to find out
on both the sender and receiver sides the actual
mapping of any distributed array exchanged*.
Then, all processes involved in the communi-
cation compute the intersections of their own
array partitions with the ones of the processes
belonging to the partner task. To this end,
COLTypr uses Ramaswamy and Banerjee’s pit-
falls algorithm [14]. A global communication
schedule is thus derived. It establishes, for
each sender process, the portion of array sec-
tions which must be sent to each process of
the receiver task. On the other side, each pro-
cess of the receiver task computes which ar-
ray portions it has to receive from any of the
sender processes. Since computing array inter-
sections and communication schedules is quite
expensive, and the same array transmission is
usually repeated several times, COLTypr reuses
them when possible by storing this information
into appropriate channel descriptors. These
features help in implementing pipeline pat-
terns, since transmitting a homogeneous data
stream entails repeating the same communica-
tions several times.

“In order to obtain portability among different HPF
compilation systems, COLTypr exploits HPF standard
features to interact with the HPF run-time system.

A (BLOCK, *) B (*, BLOCK)

Proc 0 >_<\
Proc 1
e .
Proc 2 7<\\\
Proc 3 \ \
Proc0 Proc1
Task 1 Task 2

Figure 4: Point-to-point communications to send a
two-dimensional array from one HPF task, mapped
on 4 processes, to another HPF task, mapped on 2
processes. Data distributions on the sender and
the receiver tasks are (BLOCK,*) and (*,BLOCK),
respectively.

5 Conclusions

We have given an overview of taskHPF and
described its compilation system. In recent
times, many models proposing the integration
of task and data parallelism have been pro-
posed [2,10,15-17,19,20]. Differently from
other proposals [11, 19], our approach does not
need the introduction of new task parallel HPF
constructs, and programs can be compiled us-
ing off-the-shelf HPF compilers. Moreover, we
do not need compiler analysis to derive the task
interaction structure (pattern) exploited. In
our opinion, taskHPF is easier and more intu-
itive to use with respect to the extension of
HPF due to its declarative nature, and to the
fact that different HPF modules are well sep-
arated and do not need to be changed to de-
fine a different coordination structure for the
same application. Moreover, patterns provide
the compiler with precise information on the
intended use of a given HPF code. This infor-
mation can be used to optimize mapping and
scheduling with limited amount of static anal-
ysis and profiling information [5, 18].

Systems based on patterns or skeletons have
been proposed by different researchers [1,6,
16]. However, to our knowledge our proposal is
the first entirely based on HPF. This allows us
to take advantage of the large body of research
and compiler technology developed in the HPF
community.



We currently have a taskHPF prototype
compiler that implements task and pipeline
patterns and their composition. We intend to
improve this prototype and to investigate our
approach on the test-bed of larger real world
applications. In the mean time, we are working
on the model side to add patterns to the coordi-
nation language in order to enlarge the class of
applications that can be expressed. In partic-
ular, we are thinking of adding a dag pattern,
modeling directed acyclic graphs, and loops to
model repeatedly executed dags.
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