
Scheduling High Performance Data Mining
Tasks on a Data Grid Environment

S. Orlando1, P. Palmerini1,2, R. Perego2, F. Silvestri2,3

1 Dipartimento di Informatica, Università Ca’ Foscari, Venezia, Italy
2 Istituto CNUCE, Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy

3 Dipartimento di Informatica, Università di Pisa, Italy

Abstract Increasingly the datasets used for data mining are becoming
huge and physically distributed. Since the distributed knowledge dis-
covery process is both data and computational intensive, the Grid is a
natural platform for deploying a high performance data mining service.
The focus of this paper is on the core services of such a Grid infras-
tructure. In particular we concentrate our attention on the design and
implementation of specialized Resource Allocation and Execution Man-
agement services aware of data source locations and resource needs of
data mining tasks. Allocation and scheduling decisions are taken on the
basis of performance cost metrics and models that exploit knowledge
about previous executions, and use sampling to acquire estimate about
execution behavior.

1 Introduction

In the last years we observed an explosive growth in the number and size of
electronic data repositories. This gave researchers the opportunity to develop
effective data mining (DM) techniques for discovering and extracting knowledge
from huge amounts of information. Moreover, due to their size and also to social
or legal restrictions that may prevent analysts from gathering data in a single
site, the datasets are often physically distributed. If we also consider that data
mining algorithms are computationally expensive, we can conclude that the Grid
[5] is a natural platform for deploying a High Performance service for the Parallel
and Distributed Knowledge Discovery (PDKD) process. The Grid environment
may in fact furnish coordinated resource sharing, collaborative processing, and
high performance data mining analysis of the huge amounts of data produced and
stored. Since PDKD applications are typically data intensive, one of the main
requirements of such a PDKD Grid environment is the efficient management of
storage and communication resources.

A significative contribution in supporting data intensive applications is cur-
rently pursued within the Data Grid effort [2], where a data management ar-
chitecture based on storage systems and metadata management services is pro-
vided. The data considered here are produced by several scientific laboratories
geographically distributed among several institutions and countries. Data Grid

services are built on top of Globus [4], and simplify the task of managing com-
putations that access distributed and large data sources. The above Data Grid
framework seems to have a core of common requirements with the realization of a
PDKD Grid, where data involved may originate from a larger variety of sources.
Even if the Data Grid project is not explicitly concerned with data mining is-
sues, its basic services could be exploited and extended to implement higher level
grid services dealing with the process of discovering knowledge from larger and
distributed data repositories. Motivated by these considerations, in [10] a spe-
cialized grid infrastructure named Knowledge Grid (K-Grid) has been proposed.
This architecture was designed to be compatible with lower-level grid mecha-
nisms and also with the Data Grid ones. The authors subdivide the K-Grid
architecture into two layers: the core K-grid and the high level K-grid services.
The former layer refers to services directly implemented on the top of generic
grid services, the latter refers to services used to describe, develop and execute
parallel and distributed knowledge discovery (PDKD) computations on the K-
Grid. Moreover, the layer offers services to store and analyze the discovered
knowledge.

In this paper we adopt the K-Grid architecture [10], and concentrate our at-
tention on its core services, i.e. the Knowledge Directory Service (KDS) and the
Resource Allocation and Execution Management (RAEM) services. The KDS
extends the basic Globus Metacomputer Directory Service (MDS) [3], and is
responsible for maintaining a description of all the data and tools used in the
K-Grid. The metadata managed by the KDS are represented through XML doc-
uments stored in the Knowledge Metadata Repository (KMR). Metadata regard
the following kind of objects: data sources characteristics, data management
tools, data mining tools, mined data, and data visualization tools. Metadata rep-
resentation for output mined data models may also adopt the Predictive Model
Markup Language (PMML) [6] standard, which provides the XML specification
for several kinds of data mining sources, models, and tools, also granting the
interoperability among different PMML compliant tools.

The RAEM service provides a specialized broker of Grid resources for PDKD
computations: given a user request for performing a DM analysis, the broker
takes allocation and scheduling decisions, and builds the execution plan, estab-
lishing the sequence of actions that have to be performed in order to prepare
execution (e.g., resource allocation, data and code deployment), actually execute
the task, and return the results to the user. The execution plan has to satisfy
given requirements (such as performance, response time, and mining algorithm)
and constraints (such as data locations, available computing power, storage size,
memory, network bandwidth and latency). Once the execution plan is built, it is
passed to the Grid Resource Management service for execution. Clearly, many
different execution plans can be devised, and the RAEM service has to choose
the one which maximizes or minimizes some metrics of interest (e.g. throughput,
average service time).

In this paper we analyze some of the issues encountered in the design and
implementation of an allocation and scheduling strategy for the RAEM service,

i.e. for the broker of the K-Grid architecture. In its decision making process, this
service has to exploit a composite performance model which consider the actual
status of the Grid, the location of data sources, and the task execution behavior.
The broker needs quite detailed knowledge about computation and communi-
cation costs to evaluate the profitability of alternative mappings and related
dataset transfer/partitioning. For example, the broker could evaluate when it is
profitable to launch a given expensive mining analysis in parallel. Unfortunately,
the performance costs of many DM tools depend not only on the size of data,
but also on the specific mining parameters provided by the user. Consider for
example the Association Rule Mining (ARM) analysis: its complexity not only
depends on the size of the input dataset, but also on the user-provided support
and confidence thresholds. Moreover, the correlations between the items present
in the various transactions of a dataset largely influences the number and the
maximal length of the rules found by an ARM tool. Therefore, it becomes diffi-
cult to predict in advance either the computational and input/output costs, or
the size of the output data.

In order to deal with these issues, we propose to include in the KDS ser-
vice dynamic information about the performances of the various DM tools over
specific data sources. This information can be added as additional metadata as-
sociated with datasets, and collected by monitoring previous runs of the various
software components on the specific datasets. Unfortunately these metadata may
not be available when, for example, a dataset is analyzed for the first time. In
the absence of knowledge about costs, the Grid RAEM service would make blind
allocation and scheduling decisions. To overcome this problem, we suggest to ex-
ploit sampling as a method to acquire preventive knowledge about the rough
execution costs of specific, possibly expensive, DM jobs. Sampling has also been
suggested as an efficient and effective approach to speed up data mining process,
since in some case it may be possible to extract accurate knowledge from a sam-
ple of an huge dataset [11]. Unfortunately, the accuracy of the mined knowledge
depends on the size of the sample in a non-linear way, and determining how
much data has to be used is not possible a priori, thus making the approach im-
practical. In this paper we investigate an alternative use of sampling: in order to
forecast the actual execution cost of a given DM algorithm on the whole dataset,
we run the same algorithm on a small sample of the dataset. Many DM algo-
rithms demonstrate optimal scalability with respect to the size of the processed
dataset, thus making our performance estimate possible and accurate enough.
Moreover, even if a wrong estimate is made, this can only affect the optimal
use of the Grid and not the results of the final DM analysis to be performed on
the whole dataset. Besides execution costs, with sampling we can also estimate
the size of the mined results, as well as to predict the amount of I/O and main
memory required. These costs will thus feed specific performance models used
by the K-Grid scheduler in order to forecast communication overhead, the effect
of resource sharing, and the possible gain deriving from parallelism exploitation.

The paper is organized as follows. Section 2 introduce our K-Grid scheduler
and presents the cost model on which it is based on. In Section 3 we discuss the

methodology to be used to predict performances by sampling. Section 4 discusses
our mapper and the relative simulative framework, and reports some preliminary
results. Finally, Section 5 draws some conclusions and outlines future work.

2 Distributed Scheduling on the Knowledge Grid

In general a Grid broker should perform the following actions: (1) discover a
number of resources that fit with the minimum requirements for the execution;
(2) verify permissions for submitting a job on these resources; (3) select the best
matching resources with respect to the application performance requirements,
and schedule the job. Existing broker for Grids fits more or less with the model
above. The main difference regard their organization (e.g., centralized, hierar-
chical, distributed), and the scheduling policy (e.g., we may optimize system
throughput or application completion time). Moreover, scheduling algorithms
may consider the state of the system as unchanged in the future, i.e. only de-
pending on the decisions taken by the scheduler, or may try to predict possible
changes in the system state. In both cases, it is important to know in advance
information about task durations under several resource availability constraints
and possible resource sharing. The algorithms used to schedule jobs may be clas-
sified as dynamic or static [9]. Dynamic scheduling may be on-line, i.e. when a
task is assigned to a machine as soon as it arrives, or batch, i.e. when the ar-
rived tasks are collected into a set that is examined for mapping at pre-scheduled
times. On the other hand, static approaches, which exploit very expensive map-
ping strategies, are usually adopted to map long-running applications. Due to
the characteristics of DM jobs, which are often interactive, we believe that the
best scheduling policy to be used in the design of a K-Grid scheduler should be a
dynamic one. In this preliminary study, we thus evaluate feasibility and benefits
of adopting a centralized local on-line scheduler for a Grid organization, which
includes several clusters connected to the Grid, and may be shared by several
Virtual Organizations (VO). This local scheduler will be part of a more complex
hierarchical superscheduler for our K-Grid. The only performance measure con-
sidered in this work is completion time of DM jobs in order to optimize system
throughput, while the constraints regard data access, computing power, memory
size, and network bandwidth.

2.1 Task scheduling issues

Before sketching the dynamic scheduling algorithm used for mapping DM jobs,
we introduce the issues encountered in scheduling these kind of computations
and the simple cost model proposed. Most of the terminology used and the model
of performance adopted have been inspired by [7,9].

Several decisions have to be taken in order to map and schedule the execution
of a given (data mining) task on the Grid. First consider that a DM task ti is
completely defined in terms of the DM analysis requested, the dataset Di (of size
|Di|) to analyze, and the user parameters ui that specify and affect the analysis

behavior. Let αi(Di) be the knowledge model extracted by ti, where |αi(Di)|
is its size. In general the knowledge model extracted has to to be returned to
a given site, where further analysis or visualization must be performed. Before
discussing in detail the mapping algorithm and the simulation environment, let
us make the following assumptions:

– A centralized local scheduler controls the mapping of DM tasks onto a small
Grid organization, which is composed of a set M = {m1, . . . ,m|M|} of |M|
machines, where a known performance factor pj is associated with each ma-
chine mj . This performance factor measures the relative speed of the various
machines. Since in this paper we do not consider node multitasking, we do
not take into account possible external machine loads that could affect these
performance factors. Moreover, the machines are organized as a set of clus-
ters CL = {cl1, . . . , cl|CL|}, where each cluster clJ comprises a disjoint set
of machines in M interconnected by a high-speed network. In particular,
clJ = {mJ

1 , . . . ,mJ
|clJ |}. Each cluster clJ is thus a candidate for hosting a

parallel implementation of a given DM analysis. The performance factors of
a cluster clJ is pJ , which is equal to the factor of the slowest machine in the
cluster.

– The code (sequential or parallel) that implements each DM tool is considered
to be available at each Grid site. So the mapping issues, i.e. the evaluation
of the benefits deriving from the assignment of a task to a given machine,
only concern the communication times needed to move input/output data,
and also the ready times of machines and communication links.

– On the basis of sampling or historical data we assume that it is possible
to estimate ei, defined as the base (normalized) sequential computational
cost of task ti, when executed on dataset Di with user parameters ui. Let
eij = pj · ei be the execution time of ti on machine mj .
When an analysis is performed in parallel on a cluster clJ , we assume
that, in the absence of load imbalance, task ti can be executed in paral-
lel with a quasi perfect speedup. In particular, let eiJ be the execution time
of task ti on a cluster clJ , defined as maxmJ

t ∈clJ (eit/|clJ |) + ovh =
maxmJ

t ∈clJ ((pt · ei)/|clJ |) + ovh. The term ovh models the overhead due
to the parallelization and heterogeneity of the cluster. Consider that when
a cluster is homogeneous and ei is large enough, ovh is usually very small.

– A dataset Di may be centralized, i.e. stored in a single site, or distributed.
In the following we will not consider the inherent distribution of datasets,
even if we could easily add such a constraint into our framework. So we only
assume that a dataset is moved when it is advantageous for reducing the
completion time of a job. In particular, a centralized dataset stored in site h
can be moved to another site j, and the cost depends on the average network
bandwidth bhj between the two sites. For example,Di can be transferred with
a cost of |Di|

bhj
.

Moving datasets between sites has to be carried out by the replica manager of
the lower Grid services, which is also responsible of the coherence of copies.
Future accesses to the a dataset may take advantage of the existence of

different copies disseminated on the Grid. So, when a task ti must be mapped,
we have to consider that, for each machine, we have to choose the most
advantageous copy of a dataset to be moved or accessed.

2.2 Cost model

In the following cost model we assume that each input dataset is initially stored
on at least a single machine mh, while the knowledge model extracted must be
moved to a machine mk. Due to decisions taken by the scheduler, datasets may
be replicated onto other machines, or partitioned among the machines composing
a cluster.

Sequential execution. Dataset Di is stored on a single machine mh. Task ti is se-
quentially executed on machine mj , and its execution time is eij . The knowledge
model extracted |αi(Di)| must be returned to machine mk. We have to consider
the communications needed to move Di from mh to mj , and those to move the
results to mk. Of course, the relative communication costs involved in dataset
movements are zeroed if either h = j or j = k. The total execution time is thus:

Eij = |Di|
bhj

+ eij + |αi(Di|)
bjk

Parallel execution. Task ti is executed in parallel on a cluster clJ , with an
execution time of eiJ . In general, we have also to consider the communications
needed to move and partition Di from machine mh to cluster clJ , and to return
the results |αi(Di)| to machine mk. Of course, the relative communication costs
are zeroed if the dataset is already distributed, and is allocated on the machines
of clJ . The total execution time is thus:

EiJ =
∑

mJ
t ∈clJ

|Di|/|clJ |
bht

+ eiJ +
∑

mJ
t ∈clJ

|αi(Di)|/|clJ |
btk

Finally, consider that the parallel algorithm we are considering requires coal-
location and coscheduling of all the machines of the cluster. A different model
of performance should be used if we adopted a more asynchronous distributed
DM algorithm, where first independent computations are performed on distinct
dataset partitions, and then the various results of distributed mining analysis
are collected and combined to obtain the final results.

Performance metrics. To optimize scheduling, our batch mapper has to forecast
the completion time of tasks. To this end, the mapper has also to consider
the tasks that were previously scheduled, and that are still queued or running.
Therefore, in the following we analyze the actual completion time of a task for
the sequential case. A similar analysis could be done for the parallel case. Let Cij

be the wall-clock time at which all communications and sequential computation
involved in the execution of ti on machine mj complete. To derive Cij we need
to define the starting times of communications and computation on the basis of
the ready times of interconnection links and machines. Let shj be the starting
time of the communication needed to move Di from mh to mj , sj the starting

time of the sequential execution of task ti on mj , and, finally, sjk the starting
time of the communication needed to move αi(Di) from mj to mk. From the
above definitions:

Cij = (shj + |Di|
bhj

) + δ1 + eij + δ2 + |αi(Di)|
bjk

= shj + Ehj + δ1 + δ2

where δ1 = sj − (shj + |Di|
bhj

) ≥ 0 and δ2 = sjk − (sj + eij) ≥ 0.
If mj is the specific machine chosen by our scheduling algorithm for executing

a task ti, where T is the set of all the tasks to be scheduled, we define Ci = Cij .
The makespan for the complete scheduling is thus defined as maxti∈T (Ci), and its
minimization roughly corresponds to the maximization of the system thoughput.

3 Sampling as a method for performance prediction

Before discussing our mapping strategy based on the cost model outlined in the
previous Section, we want to discuss the feasibility of sampling as a method to
predict the performance of a given DM analysis. The rationale of our approach is
that, since DM tasks may be very expensive, it may be more profitable to spend a
small additional time to sample their execution in order to estimate performances
and schedule tasks more accurately, than adopting a blind scheduling strategy.
For example, is a task is guessed to be expensive, we may be profitable to move
data to execute the task on a remote machine characterized by an early ready
time, or distribute data on a cluster to perform the task in parallel. Differently
from [11], we are not interested in the accuracy of the knowledge extracted
from a sampled dataset, but only in an approximate performance prediction
of the task. To this end, it becomes important to study and analyze memory
requirements and completion times of a DM algorithm as a function of the size
of the sample exploited, i.e. to study the scalability of the algorithm. From this
scalability study we expect to derive, for each algorithm, functions that, given the
measures obtained with sampling, return predicted execution time and memory
requirement for running the same analysis on the whole dataset.

0

200

400

600

800

1000

1200

1400

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ot

al
 ti

m
e

(s
ec

)

Sample rate

DCP

s=.5%
s=1.%
s=2.%

0

50

100

150

200

250

300

350

400

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ot

al
 ti

m
e

(s
ec

)

Sample rate

k-means

file size = 128 MB
file size = 256 MB
file size = 384 MB

(a) (b)

Figure1. Execution time of the DCP ARM algorithm (a), and the k-means clustering
one (b), as a function of the sample rate of the input dataset.

Suppose that a given task ti is first executed on a sample D̂i of dataset Di

on machine mj . Let êij be this execution time, and let êi = êij/pj be the

normalized execution time on the sample. Sampling is feasible as a method to
predict performance of task ti iff, on the basis of the results of sampling, we can
derive a cost function F (), such that ei = F (|Di|). In particular, the coefficients
of F () must be derived on the basis of the sampled execution, i.e., in terms of
êi, D̂i, and |D̂i|. The simplest case is when the algorithm scales linearly, so that
F () is a linear function of the size of the dataset, i.e. ei = γ · |Di|, where
γ = êi / |D̂i|.

We analyzed two DM algorithms: DCP, an ARM algorithm which exploits
out-of-core techniques to enhance scalability [8], and k-means [1], the popular
clustering algorithm. We ran DCP and k-means on synthetic datasets by varying
the size of the sample considered. The results of the experiments are promising:
both DCP and k-means exhibit quasi linear scalability with respect to the size
of the sample of a given dataset, when user parameters are fixed. Figure 1.(a)
reports the DCP completion times on a dataset of medium size (about 40 MB)
as a function of the size of the sample, for different user parameters (namely
the minimum support s% of frequent itemsets). Similarly, in Figure 1.(b) the
completion time of k-means is reported for different datasets, but for identical
user parameters (i.e., the number k of clusters to look for). The results obtained
for other datasets and other user parameters are similar, and are not reported
here for sake of brevity. Note that the slopes of the various linear curves depend
on both the specific user parameters and the features of the input dataset Di.
Therefore, given a dataset and the parameters for executing one of these DM al-
gorithms, the slope of each curve can be captured by running the same algorithm
on a smaller sampled dataset D̂i. For other algorithms, scalability curves may be
more complex than a simple linear one. For example when the dataset size has
a strong impact on the in-core or out-core behavior of an algorithm, or on the
main memory occupation. So, in order to derive an accurate performance model
for a given algorithm, it should be important to perform an off-line training of
the model, for different dataset characteristics and different parameter sets.

Another problem that may occur in some DM algorithms, is the generation
of false patterns for small sampling sizes. In fact, according to [11], we found
that the performance estimation for very small sampling sizes may overestimate
the actual execution times on the complete datasets. An open question is to un-
derstand the impact of this overestimation in our Grid scheduling environment.

4 On-line scheduling of DM tasks

We analyzed the effectiveness of a centralized on-line mapper based on the MCT
(Minimum Completion Time) heuristics [7,9], which schedules DM tasks on a
small organization of a K-Grid. The mapper does not consider node multitasking,
is responsible for scheduling both dataset transfers and computations involved
in the execution of a given task ti, and also is informed about their comple-
tions. The MCT mapping heuristics adopted is very simple. Each time a task
ti is submitted, the mapper evaluates the expected ready time of each machine
and communication links. The expected ready time is an estimate of the ready

0[1]

1[1]

2[1]

0[0]

1[0]

2[0]

0 10 20 30 40 50 60 70 80 90

ho
st

 id

Time Units

Blind - 10% of tasks are expensive

0[1]

1[1]

2[1]

0[0]

1[0]

2[0]

0 10 20 30 40 50 60

ho
st

 id

Time Units

MCT+sampling - 10% of tasks are expensive

(a) (b)

0[1]

1[1]

2[1]

0[0]

1[0]

2[0]

0 50 100 150 200 250 300

ho
st

 id

Time Units

Blind - 60% of tasks are expensive

0[1]

1[1]

2[1]

0[0]

1[0]

2[0]

0 20 40 60 80 100 120 140 160 180 200

ho
st

 id
Time Units

MCT+sampling - 60% of tasks are expensive

(c) (d)

Figure2. Gannt charts showing the busy times (in time units of 100 sec.) of our six
machines when either the 10% (a,b) or the 60% (c,d) of the tasks are expensive: (a,b)
blind scheduling heuristics, (c,d) MCT+sampling scheduling heuristics.

time, the earliest time a given resource is ready after the completion of the jobs
previously assigned to it. On the basis of the expected ready times, our mapper
evaluates all possible assignment of ti, and chooses the one that reduces the com-
pletion time of the task. Note that such estimate is based on both estimated and
actual execution times of all the tasks that have been assigned to the resource in
the past. To update resource ready times, when data transfers or computations
involved in the execution of ti complete, a report is sent to the mapper.

Note that any MCT mapper can take correct scheduling decisions only if the
expected execution time of a task is known. When no performance prediction
is available for ti, our mapper first generates and schedules t̂i, i.e. the task ti
executed on the sampled dataset D̂i. Unfortunately, the expected execution time
of sampled task t̂i is unknown, so that the mapper has to assume that it is equal
to a given small constant. Since our MCT mapper can not be able to optimize the
assignment of t̂i, it simply assigns t̂i to the machine that hosts the corresponding
input dataset, so that no data transfers are involved in the execution of t̂i. When
t̂i completes, the mapper is informed about its execution time. On the basis of
this knowledge, it can predict the performance of the actual task ti, and optimize
its subsequent mapping and scheduling.

4.1 Simulation Framework and some preliminary results

We designed a simulation framework to evaluate our MCT on-line scheduler,
which exploits sampling as a technique for performance prediction. We thus
compared our MCT+sampling strategy with a blind mapping strategy. Since the
blind strategy is unaware of actual execution costs, it can only try to minimize
data transfer costs, and thus always maps each task on the machine that holds
the corresponding input dataset. Moreover, it can not evaluate the profitability
of parallel executions, so that sequential implementations are always preferred.

The simulated environment is similar to an actual Grid environment we have
at disposal, and is composed of two clusters of three machines. Each cluster is
interconnected by a switched fast Ethernet, while a slow WAN interconnection
exists between the two clusters. The two clusters are homogeneous, but the
machines of one cluster are two times faster than the machines of the other one.
To fix simulation parameters, we actually measured average bandwidths bWAN

and bLAN of the WAN and LAN interconnections, respectively. Unfortunately,
the WAN interconnection is characterized by long latency, so that, due to the
TCP default window size, single connections are not able to saturate the actual
bandwidth available. This effect is exacerbated by some packet losses, so that
retransmissions are necessary and the TCP pipeline can not be filled. Under
these hypotheses, we can open a limited number of concurrent sockets, each one
characterized by a similar average bandwidth bWAN (100KB/s).

We assumed that DM tasks to be scheduled arrive in a burst, according to an
exponential distribution. They have random execution costs, but the x% of them
corresponds to expensive tasks (1000 sec. as mean sequential execution time on
the slowest machine), while the (100− x)% of them are cheap tasks (50 sec. as
mean sequential execution time on the slowest machine). Datasets Di are all of
medium size (50MB), and are randomly located on the machines belonging to
the two clusters.

0

50

100

150

200

250

300

350

60% 30% 10%

Percentage of heavy tasks

Makespan
(Time Units) MCT+sampling

BLIND

Figure3. Comparison of makespans observed for different percentages of expensive
tasks, when either a blind heuristics or our MCT+sampling one is adopted.

In these first simulation tests, we essentially checked the feasibility of our
approach. Our goal was thus to evaluate mapping quality, in terms of makespan,
of an optimal on-line MCT+sampling technique. This mapper is optimal because

it is supposed to also know in advance (through an oracle) the exact costs of the
sampled tasks. In this way, we can evaluate the maximal improvement of our
technique over the blind scheduling one.

Figures 2 illustrate two pairs of Gannt charts, which show the busy times of
the six machines of our Grid testbed when tasks of different weights are sub-
mitted. In particular, each pair of charts is relative to two simulations, when
either the blind or the MCT+sampling strategy is adopted. Machine i of cluster
j is indicated with the label i[j]. Note that when the blind scheduling strategy is
adopted, since cluster 0 is slower than the other and no datasets are moved, the
makespan on the slower machines results higher. Note that our MCT+sampling
strategy sensibly outperforms the blind one, although it introduces higher com-
putational costs due to the sampling process. Finally, Figure 3 shows the im-
provements in makespans obtained by our technique over the blind one when
the percentage of heavy tasks is varied.

5 Conclusions and Future Works

In this paper we have discussed an on-line MCT heuristic strategy for schedul-
ing high performance DM tasks onto a local organization of a Knowledge Grid.
Scheduling decisions are taken on the basis of cost metrics and models based on
information collected during previous executions, and use sampling to forecast
execution costs. We have also reported the results of some preliminary simula-
tions showing the improvements in the makespan (system throughput) of our
strategy over a blind one. Our mapping and scheduling techniques might be
adopted by a centralized on-line mapper, which is part of a more complex hier-
archical Grid superscheduler, where the higher levels of the superscheduler might
be responsible for taking rough schedule-decisions over multiple administrative
organizations, e.g., by simply balancing the load among them by only consid-
ering aggregate queue lengths and computational power. The higher levels of a
superscheduler, in fact, do not own the resources involved, may have outdated
information about the load on these resources, and may be unable to exert any
control over tasks currently on those domains.

The on-line mapper we have discussed does not permit node multitasking,
and schedules tasks in batch. In future works we plan to consider also this feature,
e.g., the mapper could choose to concurrently execute a compute-bound and an
I/O-bound task on the same machine .

Finally, a possible drawback of our technique is the additional cost of sam-
pling, even if it is worth considering that sampling has been already recognized
as a feasible optimization technique in other fields, such as optimization of SQL
queries. Of course, knowledge models extracted by sampling tasks could in some
cases be of interest for the users, who might decide on the basis of the sam-
pling results to abort or continue the execution on the whole dataset. On the
other hand, since the results obtained with sampling actually represent a par-
tial knowledge model extracted from a partition of the dataset, we could avoid
to discard these partial results. For example, we might exploit a different DM

algorithm, also suitable for distributed environments, where independent DM
analysis are performed on different dataset partitions, and then the partial re-
sults are merged. According to this approach, the knowledge extracted from the
sample D̂i might be retained, and subsequently merged with the one obtained
by executing the task on the rest of the input dataset Di \ D̂i.

References

1. R. Baraglia, D. Laforenza, S. Orlando, P. Palmerini, and R. Perego. Implementa-
tion issues in the design of I/O intensive data mining applications on clusters of
workstations. In Proc. of the 3rd Workshop on High Performance Data Mining,
Cancun, Mexico. Spinger-Verlag, 2000.

2. A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke. The Data
Grid: towards an architecture for the distributed management and analysis of large
scientific datasets. J. of Network and Comp. Appl., (23):187–200, 2001.

3. S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, and S. Tuecke.
A directory service for configuring high-performance distributed computations. In
Proc. 6th IEEE Symp. on High Performance Distributed Computing, pages 365–
375. IEEE Computer Society Press, 1997.

4. I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. Intl
J. of Supercomputer Applications, 11(2):115–128, 1997.

5. I. Foster and C. Kesselman, editors. The Grid: Blueprint for a Future Computing
Infrastructure. 1999.

6. The Data Mining Group. PMML 2.0. http://www.dmg.org/pmmlspecs v2/pmml v2 0.html.
7. M. Maheswaran, A. Shoukat, H. J. Siegel, D. Hensgen, and R. F. Freund. Dy-

namic matching and scheduling of a class of independent tasks onto heterogeneous
computing systems. In 8th HCW, 1999.

8. S. Orlando, P. Palmerini, and R. Perego. Enhancing the Apriori Algorithm for
Frequent Set Counting. In Proc. of 3rd Int. Conf. DaWaK 01 - Munich, Germany.
LNCS Spinger-Verlag, 2001.

9. H. J. Siegel and Shoukat Ali. Techniques for Mapping Tasks to Machines in Het-
erogeneous Computing Systems. Journal of Systems Architecture, (46):627–639,
2000.

10. D. Talia and M. Cannataro. Knowledge grid: An architecture for distributed knowl-
edge discovery. Comm. of the ACM, 2002. to appear.

11. M. J. Zaki, S. Parthasarathy, W. Li, and M. Ogihara. Evaluation of sampling for
data mining of association rules. In 7th Int. Work. on Research Issues in Data
Eng., pages 42–50, 1997.

