
AssistConf: a Grid configuration tool for the ASSIST parallel programming
environment

R. Baraglia1, M. Danelutto2, D. Laforenza1, S. Orlando3, P. Palmerini1,3, P. Pesciullesi2,
R. Perego1, M. Vanneschi2

1Istituto ISTI, Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
2Dipartimento di Informatica, Università di Pisa, Italy

3Dipartimento di Informatica, Università Ca’ Foscari, Venezia, Italy

Abstract

This paper presentsAssistConf, a graphical user in-
terface designed to configure anASSIST program and to
run it on a Grid platform. ASSIST (A Software develop-
ment System based upon Integrated Skeleton Technology)
is a new programming environment for the development
of parallel and distributed high-performance applications.
The main goals ofASSIST are allowing high-level pro-
grammability and software productivity for complex mul-
tidisciplinary applications, and performance portability
across different platforms, including homogenous parallel
machines and cluster/Beowulf systems, heterogeneous clus-
ters, and computational Grids.AssistConf is used to con-
figure theASSIST program and establish a mapping be-
tween the program modules and the most suitable machines
in the Grid candidate to execute them. It simplifies the cre-
ation of the XMLASSIST configuration file, giving users
a graphical view of the XML file produced by theASSIST
compilation phase, and permitting an easy identification of
the machines to be used for execution. Finally, the config-
uration file produced byAssistConf is used as input to the
assistruncommand, which drives the execution of theAS-
SIST program over the Grid.

1 Introduction

In the past, parallel applications were developed as
monolithic entities, usually coded in asingle executable.
Nowdays parallel/distributed applications tend to be more
and more multi-modular, written by several development
teams using different programming languages, using multi-
source heterogeneous data, mobile, and interactive. [8, 11].
These applications have amultidisciplinarynature, that is,
they are composed of several differentdisciplinary modules

coupled and coordinated in a single system.

A new application development style based on compo-
nents is thus becoming popular. According to this style,
programmers do not start from scratch, but build new ap-
plications by reusing existingoff the shelfcomponents and
applications. These components may be distributed across a
wide area network. A parallel/distributed application could
be seen as the composition of simpler components executed
concurrently under the control of a work-flow description.

In order to co-ordinate the execution of a paral-
lel/distributed application on heterogeneous systems, sev-
eral research efforts were conducted in the past. It is
worth mentioning one of them, theskeletal programming
model, which presents some interesting relations with the
component-based technology. A seminal work in this area
was conducted by Murray Cole [5]. A skeleton is basically a
high-order, pre-defined function modelling a complex com-
putational scheme, which makes all the details involved in
the parallel computation structure transparent to the pro-
grammer. A skeleton-based language is used to co-ordinate
the parallel activity of the processes defined using standard
imperative languages. Programmer are provided with a set
of skeletons that can be used to structure (compose) the par-
allel application. An important property of this approach
is that each skeleton could have an associatedperformance
modelindicating its run-time characteristics.

ASSIST (A Software development System based upon
Integrated Skeleton Technology) [16] is a new program-
ming environment for the development of parallel and dis-
tributed high-performance applications. It can be consid-
ered a research framework to study, experiment and develop
a set of programming issues for parallel and distributed
high-performance applications. From the point of view of
the programming model, parallel components are defined
by a proper merging of the features of the component-based
technology and of the skeletons technology. An application

is structured as a graph of sequential or parallel components
connected by typed streams according to a data-flow and/or
a nondeterministic style. Parallel components can utilize
external shared objects, which represent abstractions of sys-
tem resources, such as data sets, program codes, devices,
memory hierarchies, and so on, possibly accessed interac-
tively.

In order to optimize the mapping of a given parallel
application on a heterogeneous system, the performance
models can be useful for predicting the cost of a partic-
ular resource allocation strategy (mapping). A Grid [10]
can be seen as anextremeheterogeneous system, and con-
sequently, some research groups interested in skeletal pro-
gramming approach have recently decided to investigate on
the exploitation of this approach to design Grid-aware appli-
cations, introducing enhancements to overcome some limi-
tations of the classical skeletal approach. [13, 16].

In order to map application components onto a Grid, it
is necessary to verify the availability of enough resources
able to satisfy the application requirements. This process is
indicated in literature asresource discovering and configu-
ration [2] or, alsoresource searching and selection[12]. In
general, it is not an easy task. It requires several phases that
could be executed manually, by the application developer
(the Grid user), or automatically, by a specialized software
entity (e.g. aresource brokeror a resource selection ser-
vice). Typically, the resource searching and selection pro-
cess is accomplished accordingly to the following steps:

• The application developer describes the resource re-
quirements of his/her application, using aresource
specification language[6, 14].

• The description based upon the specificresource spec-
ification languageis thus sent to a Grid Informa-
tion Service (e.g., MDS [7]), which is responsible for
maintaining updated information about the current re-
sources available in the Grid.

• The Grid Information Service collects all available in-
formation, and send back them to the user/broker. In
case of a manual resource selection, those information
could be returned to the user through a GUI that helps
the user to select the resources.

In this paper we presentAssistConf, a graphical user
interface designed for the manual searching and selection
of suitable Grid resources candidate to execute anASSIST
application. It simplifies the creation of theASSIST config-
uration file (see Section 4) giving users a graphical view of
the XML file produced by theASSIST compilation phase,
and permitting an easy identification of the machines to be
used for the application execution. Finally, the configura-
tion file produced byAssistConf is used as input to the

assistruncommand, which drives the execution of theAS-
SIST program on the Grid.

This paper is organized as follows. Section 2 outlines the
main characteristics of theASSIST environment. Section
3 introduces theASSIST Run-time system and its config-
uration for Grid execution. Section 4 gives an overview of
AssistConf, a graphical user interface designed to config-
ure anASSIST program to run on a Grid platform. Finally,
Section 5 concludes the paper by discussing some future
works.

2 ASSIST

ASSIST is a new programming environment for the de-
velopment of parallel and distributed high-performance ap-
plications. The proposal originates from previous research
conducted in the structured skeleton–based, parallel pro-
gramming field [3, 4] and aims to combine in a unified
approach the interesting features ofskeletonprogramming
models [5, 9] and software component technology. The
main goals ofASSIST are allowing high-level programma-
bility and software productivity for complex multidisci-
plinary applications, and performance portability across dif-
ferent platforms, including homogenous parallel machines
and cluster/Beowulf systems, heterogeneous clusters and
network computers, and computational Grids.

Readers interested in details regarding the programming
model ofASSIST, and the constructs provided byASSIST-
CL, the coordination language used to define and glueAS-
SIST software components, can refer to [16]. For the pur-
poses of this paper, we can consider anASSIST program
as a graph, whose nodes are software components and the
arcs are abstract interfaces that support streams, i.e. or-
dered sequences, possibly of unlimited length, of typed val-
ues. Components can be parallel or sequential modules. A
sequential module is the simplest component expressed in
ASSIST. It can be coded with any sequential programming
language hosted by theASSIST-CL (currently C, C++, and
Fortran). It has an internal state, and is activated by the
input stream values according to a non-deterministic data-
flow behavior. A parallel component may be anASSIST
subgraph, e.g. an independently designedASSIST pro-
gram, or a parallel module expressed with aparmodcon-
struct, a sort of generic skeleton which can be programmed
in such a way to emulate the most common specific skele-
tons, but which is also able to easily express new forms of
parallelism (e.g. optimized forms of task + data parallelism,
nondeterminism, interactivity), as well as their variants and
personalizations [16].

In order to give just a flavor ofASSIST-CL syntax and
expressive power, let us consider a simple example of paral-
lel application composed by a pipelineP of three stagesC1,
C2, andC3. Suppose thatC1 andC3 are sequential mod-

C 1 C 3

Seq Seq

C 1 C 2 C 3

Seq Seq

C 2

(b)(a)

Figure 1. An example of ASSIST application
structured as a three stage pipeline where the
second stage is a parmod(a), or a farm of par-
mods (b).

ules, whileC2 performs a heavy data parallel task.C2 is
thus expressed by means of aparmodconstruct. The struc-
ture of this simple application is sketched in Figure 1.(a),
while itsASSIST-CL code is:

pipe main (argc, argv)
{

// global declaration of streams
stream int s12;
stream int [N1][N1] s23;

// definition of the composition graph
C1 (ouput_stream s12);
C2 (input_stream s12, output_stream s23);
C3 (input_stream s23);

}

C1 (output_stream s12 (int x))
$C{

< local declarations >
x = fun (status);
assist_out (s12, x);

}C$

parmod C2 (input_stream s12 (int y);
output_stream s23 (int [N1][N1] A))

{
// definition of the parallel module
}

C3 (input_stream s23 (int [N1][N1] B))
$C{

< local declarations >
consume(B);

}C$

In the code above we can note the global declaration of
the streams, and the definition of the composition graph.
Each component is defined separately and its implementa-
tion can easily be changed without affecting the other mod-
ules. Returning to the previous example, we can increase
the bandwidth of the second stage of the pipeline: 1) by
increasing the parallelism degree of theparmod, or, 2) by
replicating the stage through afarm construct. While the
first solution only affects the configuration phase of theAS-
SIST program (see Section 4), the second one (sketched in

Figure 1.(b)) requires to lightly modify the high-level struc-
ture of the application in the following way:

pipe main (argc, argv)
{

// global declaration of streams
stream int s12;
stream int [N1][N1] s23;

// definition of the composition graph
C1 (ouput_stream s12);
MY_FARM (input_stream s12, output_stream s23);
C3 (input_stream s23);

}

farm MY_FARM (input_stream s12 (int y);
output_stream s23 (int [N1][N1] A))

{
C2 (input_stream s12; output_stream s23))

}

The current implementation of theASSIST environ-
ment is based on a flexible abstract machine and run-
time support, which exploits the underlying mechanisms of
ACE [15] and Distributed Shared Memory libraries. The
compiler, realized according to the object-oriented technol-
ogy, currently makes use of a set of pragmas for the sake
of experimentation. The first version of the implementation
currently run on homogenous parallel machines and clusters
(Linux), and also contains basic interfaces for experiment-
ing ASSIST in heterogeneous Grids. Work is in progress
to define and to realize the next version ofASSIST, which
will progressively remove some constraints, and will allow
it to fully exploit heterogeneous large-scale platforms and
Grids.

3 The ASSIST RTS and its configuration for
Grid execution

ASSIST-CL is a coordination language aimed to in-
crease software productivity for complex multidisciplinary
applications. Among other innovative features,ASSIST-
CL permits programmers to declare specific forms of paral-
lelism (skeletons) that can be used to hierarchically com-
pose sequential/parallel components. The adoption of a
restricted number of well-known forms of parallelism al-
lows us to define accurate performance models for them,
and also to identify some component parameters that can be
tuned to improve performance. This also simplifies the de-
sign of a (semi) automatic configuration tool, able to map
the various components involved and tune their configura-
tion parameters for each possible platform. Consider, in
fact, that the target parallel architectures supported by the
ASSIST programming environment range from homoge-
neous/heterogeneous clusters of sequential/SMP worksta-
tions to computational Grids. Hence, in order to ensurecode
and performance portability, programs need to be reconfig-
ured on the basis of the specific features of each target archi-
tecture. For example, decisions like degree of parallelism of

data-parallel modules, number of replicated modules, map-
ping of components, etc. should be postponed till loading
time, when the features of the target architecture - e.g. num-
ber and type of processors available - are known.

The reconfiguration ofASSIST-CL programs is possible
because it is well supported by the CLAM (Coordination
Language Abstract Machine), the original run-time support
(RTS) of ASSIST-CL. To this end the CLAM is deployed
through a set of processes, named CLAM-loaders, each of
which usually runs on a distinct node of the chosen plat-
form. The CLAM-loaders permit the compiled modules,
which are generated by theASSIST compiler as dynamic
libraries (see Figure 2), to be loaded on the basis of anXML
configuration file. Therefore we can consider the CLAM-
loaders as a sort of containers for theASSIST-CL mod-
ules. Besides allowing the execution of the various modules
within internal threads, the CLAM-loaders implement addi-
tional services. For example, they are responsible for moni-
toring the program execution, and for dynamically reconfig-
uring the program in presence of load imbalance. CLAM-
loaders andASSIST modules are currently implemented on
top of the portable ACE layer, which exploits in a very effi-
cient way the thread and the TCP/IP socket libraries avail-
able on the OSs of the machines involved.

From this introductive description of the CLAM, it
should be clear that, in order to execute anASSIST-CL pro-
gram, it is needed to launch first the CLAM-loaders. One of
them will be elected master, thus becoming the coordinator
of the activities of all the other loaders. TheASSIST XML
configuration file will be passed to the master loader by the
assistrun command provided in theASSIST program-
ming environment. This configuration file will contain load-
ing information logically subdivided as follows:

• A static section that specifies the binary modules pro-
duced by the compiler for a givenASSIST program;

• A section that specifies the configuration of the pro-
gram, i.e. degrees of parallelism and replication (par-
mods and farms).

• A section that contains mapping/loading information,
i.e. mapping information about the CLAM-loaders,
and loading information about theASSIST module in-
stances (as described and configured in the previous
sections).

In order to build the two last two sections, theASSIST
programming environment provides a tool, calledAssist-
Conf. When we plan to exploit a single administrative
domain for executing our applications, e.g. if we use a
cluster located in our department, we could pre-launch the
CLAM-loaders on the various nodes, and then dynamically
choose how many loaders are involved in the execution of

ASSIST Compiler

ASSIST Program

Modules
Tree

Connections
Libraries
Binding

XML Configuration File
(to be completed) Mod1 Mod2

Figure 2. Overview of the ASSIST compilation
process.

a givenASSIST-CL program through the XML configura-
tion file. In this case,AssistConf will be simply responsi-
ble for configuring and mapping the modules on the chosen
loaders. Conversely, in a Grid environment the computa-
tional nodes available may belong to distinct administrative
domain and may change in the time. SoAssistConf has
the additional task of allowing users to select the Grid re-
sources that best match their requirements. Once selected
the machines and optimized the mapping of the modules,
theassistrun command will be responsible for contact-
ing the suitable Grid services in order to launch and co-
allocated the CLAM-loader, before passing them the XML
configuration file and compiled modules.

In the following we will discuss in more detail the con-
figuration of anASSIST-CL program, the relatedAssist-
Conf tool, as well as the extensions toAssistConf to permit
the brokering of the Grid computational resources needed
for the program execution.

Configuration file. To introduce the syntax and the se-
mantics of theASSIST XML configuration file, consider
Figure 2. The compiler produces the various modules, im-
plemented as dynamic libraries handled by theASSIST
loaders, and a specific section of theASSIST XML-based
configuration file, i.e. theStructure section.

This section is static, and contains information about the
software modules produced as dynamic libraries (Modules
element), i.e. names, pathnames, etc., and information on
the structure of theASSIST program (Tree element), i.e.
parallel constructs and their hierarchy. Moreover, in this
section the stream interconnections between modules are
specified (Connections element), the libraries used are iden-
tified (Libraries element), and, finally, the association be-
tween theASSIST modules and the corresponding libraries

Mod1 Mod2

assistrun

Staging
Loading

Run

assistconf
Modules Tree Connections

Libraries Binding

XML Configuration File
(to be completed)

Modules Tree Connections
Libraries Binding

Configuration
Mapping

XML Configuration File
(completed)

Description of the
target

architecture

Figure 3. Structure and interactions among
the configuration and mapping phases (As-
sistConf), and execution phases (assistrun).

are established (Bindings element).
The structure sectionmust be completed with further

two sections, theConfiguration sectionand Loading sec-
tion. The former will contain information about the repli-
cation degree of someASSIST modules (i.e. those in-
cluded in a farm construct), and the parallelism degree of
the parmod s. The latter section will contain information
about the nodes hosting theASSIST loaders, and the map-
ping of theASSIST module instances onto these loaders.

The whole structure of the XMLASSIST configuration
file is thus the following:

<?xml version="1.0" ?>
<!DOCTYPE assist_config SYSTEM "ASSIST.DTD">
<assist_config>

<structure > </structure >
<configuration > </configuration >
<loading > </loading >

</assist_config>

where the last two sections, configuration and loading ones,
have to be produced by theAssistConf tool, as illustrated
in Figure 3.

The complete XML configuration file will be then sup-
plied to theassistrun command, which will perform all
the needed steps to execute the program. On a Grid envi-
ronment like Globus, these steps should require:

• To generate the RSL-ground commands, needed to
launch theASSIST loaders on the Globus GRAMs of
the chosen nodes.

• To stage the libraries associated with the modules onto
the chosen nodes of the Grid.

assistconf-2

Modules Tree Connections
Libraries Binding

XML Configuration File
(to be completed)

Modules Tree Connections
Libraries Binding

Configuration
Mapping

XML Configuration File
(completed)

Description of the target
architecture

(e.g., dynamically
selected from the Grid IS)

+ Configuration
+ User requirements, such as per-module

computational power, memory, etc.

XML Configuration File
(semi complete)

Broker

Figure 4. Structure and interactions among
the configuration and mapping phases when
the enhanced version of AssistConf will be
adopted.

• To actually launch theASSIST loaders (this step in-
volves GRAM and DUROC services on Globus), and
pass them the XML configuration file through the mas-
ter loader.

Configuration tool. Figure 3 sketches a diagram that
shows the interactive process through which users can select
a set of Grid nodes (or pools of nodes), configure and map
theASSIST-CL modules, and, finally, run the program.As-
sistConf currently is a semi-automatic tool that facilitates
the user in producing the final XMLASSIST configuration
file through a user-friendly GUI. In the following section
both functionalities and implementation of the interactive
tool will be discussed in depth.

As future work, we plan to devise a enhanced version
of AssistConf (see Figure 4), which will support users in
configuringASSIST-CL programs in a higher level way.
Through this enhanced tool, users will only specify the
mapping requirements of the various components of their
program, by asking for machines with given characteristics
in terms of computational power, disk space, memory, etc.
A Grid broker will then determine the actual mapping and
produce the final XMLASSIST configuration, by choos-
ing the best Grid machine pools available on the basis on
information supplied by the Grid Information Service.

4 AssistConf

AssistConf is a GUI written in Java. The main aim of
the interface is to simplify the creation of the XMLASSIST
configuration file. This entails giving the user a graphical

(a) (b)

Figure 5. AssistConf windows. (a) Main window. A new project is created from the configuration file
generated by the ASSIST compiler. This file contains only the structure part of the configuration,
while the other two are built in a semi-automatic way using the AssistConf GUI. (b) Configuration
window. The parallel modules of the application can be configured in terms of the parallelism
degree of the parmods and the replication degree of the farm workers. Modifications are visualized
accordingly.

view of the XML file produced by theASSIST compilation
phase, and an easy identification of the machines to be used
for the application execution.

Figure 5.(a) depicts theAssistConf main window. A
message area is shown at the bottom left, in which errors
and information messages are displayed. TheProject and
Available Pools areas display, respectively, the files related
to the configuration under development and the machine
pools available to run the Grid program. In the currentAs-
sistConf version, the information describing the machine
pools are gathered by accessing amachine file, where the IP
addresses of the different resources are listed. Future imple-
mentations ofAssistConf will provide interaction with the
Grid Information Service (e.g. the Globus MDS) to obtain
information about available resources and their characteris-
tics.

In order to configure anASSIST-CL program, a project
has to be created, by opening the related XMLASSIST
configuration file. As already explained in Section 3, the
structure section of the configuration file is produced by the
compiler. We refer to this first version of the XML file, as
theASSISTConfiguration Source(.acs extension).

In Figure 5.(a) the file corresponding to theASSIST-CL
program of Figure 1 is shown (Example.acs). The XML tree
is displayed according to the specifications contained in the
associated DTD file. Note that only the structure section is
present at this level.

TheASSIST-CL program is composed of a pipe of three
stages:mod1 (sequential),mod2 (parallel) andmod3 (se-
quential). All the elements like connections, libraries and
bindings, which are contained in the structure section, are
represented, but none of them can be modified since this
section is static.

In order to add the other two sections of the configura-
tion file, a ”New mapping” has to be created . This is dis-
played in a new window only containing the configuration
section and a replication of thetreesection (i.e., a subsec-
tion of the structure section) showing theASSIST modules
and their nesting. As the parallel modules are configured
(Figure 5.(b)), the tree section is changed accordingly to re-
flect the number of instances of a replicated module or the
parallelism degree of aparmod .

The final step is to establish a mapping between the pro-
gram modules and the machines in the Grid. This task is
accomplished by activating the pool selection menu (Figure
6.(a)). If a pool is assigned to an intermediate node in the
tree, all the leaves will inherit the same pool.

Once all the modules have been assigned to the ma-
chines, the configuration is complete and we can gen-
erate the final configuration file, whose graphical repre-
sentation is given in Figure 6.(b). This file is called
ASSISTConfiguration Target(.act extension), and to-
gether with the corresponding.acs file, form an AS-
SISTConfiguration Project(.acp extension). More than

(a) (b)

Figure 6. AssistConf windows. (a) Mapping window. Machines can be assigned to the modules by
selecting among a set of available resources. (b) Once the parallelism degree and the mapping are
completed, the final configuration can be built. There can exist more than one mapping for the same
source, within the same project.

one.act file can be generated for the same.acs file, but
still within the same project, i.e. the same.acp file. This
corresponds to having more mappings for the same applica-
tion, which might be useful for evaluating different choices
for variables like the parallelism degree or the resources
used.

The configuration file produced byAssistConf (.act)
can be used as input to theassistruncommand, which will
drive the execution of theASSIST program on the Grid.

5 Conclusions

In this paper we have presentedAssistConf, a graph-
ical user interface designed for the manual searching and
selection of suitable Grid resources candidate to execute an
ASSIST application. This tool mainly aims at simplifying
the creation of theASSIST configuration file, giving users
a graphical view of the XML file produced by theASSIST
compilation phase, and permitting an easy identification of
the machines to be used for the application execution. Fi-
nally, the configuration file produced byAssistConf is used
as input to theassistruncommand, which drives the execu-
tion of theASSIST program on the Grid.AssistConf is
designed to be used as an independent tool to assist the user
to establish a mapping between theASSIST program mod-
ules and the most suitable machines in the Grid candidate
to execute them. In the future, it is our intention to fully
integrate it into theASSIST development environment.

In the currentAssistConf version, the information de-

scribing the machine pools are gathered by accessing a ma-
chine file, where the IP addresses of the different resources
are listed. The next version ofAssistConf will interact with
the Grid Information Service (e.g. the Globus MDS [7]) to
obtain information about the available resources and their
characteristics.

We are aware that the present version ofAssistConf just
represents a first step towards the design of an advanced
resource selection and configuration tool. In our vision,
the tool will have to support users in a higher level way:
users will have only to specify the mapping requirements of
the various components of their program, by asking for ma-
chines with given characteristics in terms of computational
power, disk space, memory, etc. A Gridbrokerwill then de-
termine the actual mapping and produce the final XMLAS-
SIST configuration file, by choosing the most suitable ma-
chines available in the Grid on the basis of information sup-
plied by the Grid Information Service. In order to achieve
this goal we are studying the feasibility of the integration
of AssistConf with the Grid Resource Broker (GRB) [1], a
tool for Grid resource discovery and selection developed at
the Department of Innovation Engineering at the University
of Lecce (Italy).

References

[1] G. Aloisio, M. Cafaro, I. Epicoco, and S. Fiore. Grid Re-
source Broker (GRB). Inhttp://sara.unile.it/grb/grb.html.

[2] Angulo, D. and Foster, I. and Liu, C. and Yang,
L. Design and Evaluation of a Resource Se-
lection Framework for Grid Applications. In
http://www.globus.org/research/papers.html, 2002.

[3] B. Bacci, M. Danelutto, S. Pelagatti, S. Orlando, and
M. Vanneschi. P3L: a Structured High-level Parallel Lan-
guage and its Structured Support.Concurrency: Practice
and Experience, 7(3), 1999.

[4] B. Bacci, M. Danelutto, S. Pelagatti, and M. Vanneschi.
SkIE : A heterogeneous environment for HPC applications.
Parallel Computing, 25, 1999.

[5] M. Cole. Algorithmic skeletons: structured management of
parallel computation. MIT Press, 1989.

[6] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Mar-
tin, W. Smith, and S. Tuecke. A Resource Manage-
ment Architecture for Metacomputing Systems. InProc.
IPPS/SPDP ’98 Workshop on Job Scheduling Strategies for
Parallel Processing, pages 62–82, 1998.

[7] Czajkowski, K. and Fitzgerald, S. and Foster, I. and Kessel-
man, C. Grid Information Services for Distributed Resource
Sharing. InProceedings of the Tenth IEEE International
Symposium on High-Performance Distributed Computing
(HPDC-10), IEEE Press, August 2001, 2001.

[8] F. Darema. Next Generation Software Research Direc-
tions. Inhttp://www.cise.nsf.gov/eia/NGS-slides/sld001.htm,
2001.

[9] J. Darlington, Y. Guo, H. W. To, and Y. Jing. Skeletons for
structured parallel composition. InProc. of the 15th ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 1995.

[10] C. K. e. I. Foster.The Grid: Blueprint for a future computing
infrastructure. Morgan Kaufmann, 1999.

[11] D. Laforenza. Grid Programming: Some Indications Where
We Are Headed.To be published on Parallel Computing,
North-Holland Elsevier, 2002.

[12] S. Melody, J. Schopf, and Z. X. Grid Searcher. In
http://people.cs.uchicago.edu/ hai/GridSearcher/overview.html,
2002.

[13] N. Furmento, A. Mayer, S. McGough, S. Newhouse, T.
Field, J. Darlington. An Integrated Grid Environment for
Component Applications. InProceedings Grid Computing
- Grid 2001, Second International Workshop, Denver 2001,
LNCS Vol. 2242.

[14] R. Raman, M. Livny, and M. Solomon. Matchmaking: Dis-
tributed Resource Management for High Throughput Com-
puting. In Proceedings of the Seventh IEEE International
Symposium on High Performance Distributed Computing,
July 28-31, 1998, Chicago, IL.

[15] D. C. Schmidt. The ADAPTIVE Communication Environ-
ment: Object-Oriented Network Programming Components
for Developing Client/Server Applications. In11th and 12th
Sun Users Group Conference, 1994.

[16] M. Vanneschi. Programming Model of ASSIST, an Envi-
ronment for Parallel and Distributed Portable Application.
To be published on Parallel Computing, North-Holland El-
sevier, 2002.

