A general algorithm to compute the steady-state solution of product-form cooperating Markov chains

Andrea Marin, Samuel Rota Bulò

Università Ca' Foscari di Venezia Dipartimento di Informatica Italy

2009

Presentation outline

Introduction

- Product-form models
- Sketch of the results
- RCAT by example

2 Algorithm definition

- Two agents: the simplest case
- Non-optimized algorithm

3 Examples

- Jackson queueing networks
- G-networks
- Other cases

4 Conclusion

Product-form models Sketch of the results RCAT by example

Markov process: steady state analysis

- Steady-state analysis: analysis of the system (if possible) when $t \to \infty$
- Γ: state space
- q_{ij} : transition rate from states *i* to *j*, $i \neq j$, $i, j \in \Gamma$. Let $\mathbf{Q} = [q_{ij}]$ with $q_{ii} = -\sum_{j \neq i} q_{ij}$
- $\pi(i)$: probability of observing state *i* when $t \to \infty$ (limiting distribution), $\pi = [\pi(i)]$

Theorem (Stationary distribution)

If the CTMC is ergodic the limiting distribution is unique and independent of the initial state. The stationary distribution is given by:

$$\mathbf{\pi}\mathbf{Q}=\mathbf{0} \wedge \mathbf{\pi}\mathbf{1}=1$$

Compositionality and steady state analysis: product-form

- Consider model S consisting of sub-models S_1, \ldots, S_N
- Let m = (m₁,..., m_N) be a state of model S and π(m) its steady state probability
- S is in product-form with respect to S_1, \ldots, S_N if:

$$\pi(m) \propto g_1(m_1) \cdot g_2(m_2) \cdots g_N(m_N)$$

where $g_i(m_i)$ is the steady state probability distribution of S_i appropriately parametrised

 The cardinality of the state space of S is proportional to the product of the state space cardinalities of its sub-models ⇒ product-form models can be studied more efficiently!

イロト 不得 トイヨト イヨト 二日

Product-form models Sketch of the results RCAT by example

Some problems...

- How to decide if a model yields a product-form solution?
 - list of instances: BCMP theorem, Coleman/Henderson Stochastic Petri Nets, G-networks...
 - general criteria: Markov implies Markov property, RCAT (and extensions),...
- How to find the correct parametrisation for the sub-models?
 - solving the linear system of traffic equations for BCMP/Jackson queueing networks
 - solving the non-linear traffic equations for G-networks
 - solving the rate-equations for RCAT

Product-form models Sketch of the results RCAT by example

Sketch of the results

We propose an algorithm that...

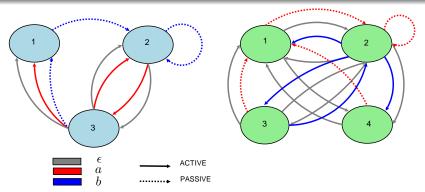
- decides if a model S has a product-form solution with respect to a set of sub-models S_1, \ldots, S_N
- derive the correct parametrisation for the sub-models
- compute the unnormalised steady-state solution

The algorithm is based on the Reversed Compound Agent Theorem (RCAT) [Harrison, 2003] and its extensions.

・ロッ ・雪 ・ ・ ヨ ・ ・

Product-form models Sketch of the results RCAT by example

Pairwise interacting agents



- PEPA-like cooperation with an active and a passive agent
- Active transitions have a rate
- Passive transitions have a unspecified rate
- Active/Passive transitions occur only simultaneously with the rate of the active ones

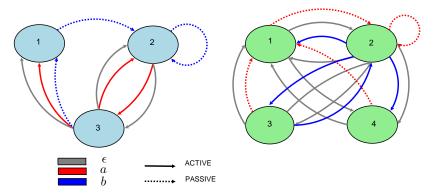
Andrea Marin, Samuel Rota Bulò

A general algorithm to compute the steady-state solution of pro

Introduction

Algorithm definition Examples Conclusion Product-form models Sketch of the results RCAT by example

RCAT conditions

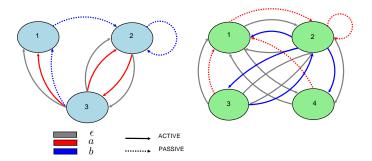


- Passive transitions enabled in every state
- Active transitions incoming in every state
- Same reversed rate for all active transitions

э

Product-form models Sketch of the results RCAT by example

RCAT parametrisation and solution



- Parametrisation: replace all the passive transitions with the reversed rate of the corresponding active transitions
- Solution: let g₁ and g₂ be the solution of the parametrised agents, then the solution π of the cooperating agent is in product-form:

 $\pi \propto g_1 \cdot g_2$

Two agents: the simplest case Non-optimized algorithm

Intuition of the iterative scheme

The algorithm steps:

- guess g_1 and g_2
- use g₁ to parametrise g₂
- use g₂ to parametrise g₁
- \bigcirc compute the new g_1 and g_2
- test RCAT conditions
 - Satisfied? \Rightarrow END
 - Not satisfied? \Rightarrow STEP 2
 - How do we compute the reversed rate to parametrise the other agent?
 - What if the model is *not* in product-form?
 - Does the iterative scheme always converge?

< 🗇 🕨

Two agents: the simplest case Non-optimized algorithm

The re-parametrisation phase

What do we have?

• An hypothetical steady-state distribution g_i , i = 1, 2

What do we need to compute?

- The reversed rates of all the active transitions
 - Let *j*, *k* be states of agent *i*
 - Assume an active transition from j to k with rate r
 - Its reversed rate is $g(j)/g(k) \cdot r$

What happens if the reversed rates are different?

- There could still be product-form (remember g_i is hypothetical!)
- We need to compute *one* rate to re-parametrise the other agent
- We use the mean of the computed reversed rates as the parameter

Two agents: the simplest case Non-optimized algorithm

Computing new g_i and convergence

Computing g_i and product-forms

- g_i are computed using the global balance equation system
- If g_i at step n are identical to g_i at step n-1
 - Constant reversed rates for active transitions \Rightarrow product-form solution found
 - $\bullet~$ Otherwise $\Rightarrow~$ no product-form found

Convergence

- Convergence has been proved for specific cases
- A maximum number of iterations is used to avoid infinite loops

・ロト ・得ト ・ヨト ・ヨト

Two agents: the simplest case Non-optimized algorithm

Algorithm definition: notation

- N: number of agents
- \mathcal{S}_k , $1 \leq k \leq N$: state space of agent k
- α , β , γ : states of an agent
- λ_k(a, α, β): in agent k, the rate of the active transition from state α to state β labelled by a
- g_k , $1 \le k \le N$: hypothetical stationary distribution of agent k
- n: number of iterations performed
- g_k^{prev} : stationary distribution computed at step n-1
- *M*: maximum number of iterations
- ϵ : tolerance

- ロ ト - (同 ト - (回 ト -) 回 -) - (回 ト -) - (\Pi -) - (\Pi

Two agents: the simplest case Non-optimized algorithm

Non-optimized algorithm

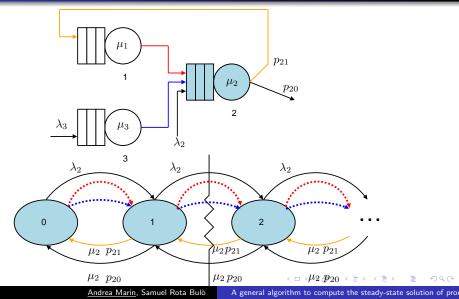
Randomly initialize g_k for all $k = 1, \ldots, N$ n = 0repeat for i, k = 1, ..., N do foreach $a \in (\mathcal{P}_i \cap \mathcal{A}_k)$ do $\Lambda \leftarrow \left\{ \lambda_k(\mathbf{a}, \alpha, \beta) \frac{\pi_k(\alpha)}{\pi_k(\beta)} : \alpha, \beta \in \mathcal{S}_k \right\}$ foreach $\alpha, \beta \in S_i$: $\lambda_i(a, \alpha, \beta) > 0$ do $\lambda_i(a, \alpha, \beta) \leftarrow \text{mean}(\Lambda)$ Update g_k for all $k = 1, \ldots, N$ $n \leftarrow n + 1$ until n > M or $\forall k = 1, \dots, N$. $\|g_k - g_k^{prev}\| < \epsilon$; if the reversed rates are not constant then fail: MARCAT product-form not identified return $\{g_k\}_{k=1,\ldots,N}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction Algorithm definition Examples

Jackson queueing networks G-networks Other cases

Modelling Jackson QNs



Jackson queueing networks G-networks Other cases

Application of the algorithm

- We use just two states 0 and 1
- Without loss of generality assume $g_i(0) = 1$
- Each iteration computes:

$$g_k(1)^{(n+1)} = rac{\sum_{\ell=1}^N x_{\ell k}^{(n)} + \gamma_k}{\mu_k}$$

where: $x_{\ell k}^{(n)} = g_\ell(1)^{(n)} \mu_\ell p_{\ell k}$

• Traffic equation system of the Jackson Theorem:

$$e_i = \gamma_i + \sum_{\ell=1}^{N} e_\ell p_{\ell i}$$

- The iteration scheme is the Jacobi algorithm applied to the traffic equations
 - the matrix of coefficient is irreducibly diagonally dominant ⇒ the scheme always converges

Introduction Jackson queueing network Algorithm definition G-networks Examples Other cases

G-networks: Modelling and algorithm application: results

- The modelling technique is analogous to that of Jackson QN
- The iteration scheme becomes:

$$g_k(1)^{(n+1)} = \frac{\gamma^+ + \sum_{\ell=1}^N x_{\ell k}^{+(n)}}{\mu_k + \gamma_k^- + \sum_{\ell=1}^N x_{\ell k}^{-(n)}},$$

where:

•
$$x_{\ell k}^{+(n)} = \pi_{\ell}(1)^{(n)} \mu_{\ell} p_{\ell k}^{+}$$

•
$$x_{\ell k}^{-(n)} = \pi_{\ell}(1)^{(n)} \mu_{\ell} p_{\ell k}^{-}$$

- γ_k^+ and γ_k^- : positive and negative arrival rates to G-queue k
- p⁺_{ℓk} (p⁻_{ℓk}): pr. of joining G-queue k as positive (negative) customer after being served by G-queue ℓ
- The scheme is identical to the well-know iterative scheme for the computation of the steady-state distribution of G-networks

A 3 b

Jackson queueing networks G-networks Other cases

Random instances

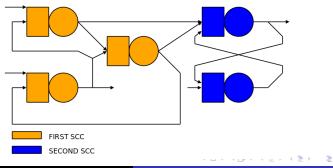
- We developed a generator of random instances of agents with finite state spaces whose cooperation is in product-form
- Tested over 100 agents with 100 states each
- The algorithm has always converged to the correct solution
- The convergence speed is fast (always less that 20 iterations)
- New positive tests have been done with product-form QN with blocking

・ロト ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

Optimizations

Provided optimizations:

- Active self-loop
 - The reversed rate of this transition is equal to its forward rate
- Parallel computation of g_k
- Compute the strong connected components \Rightarrow Use of Tarjan algorithm to define the order of solution



Andrea Marin, Samuel Rota Bulò A general algorithm to compute the steady-state solution of pro

Conclusions

Properties of the algorithm:

- Iterative algorithm to decide and compute the product-form solution of interacting agents
- Based on the Reversed Compound Agent Theorem
- It is not necessary to derive the traffic equations or to perform symbolic computations
- Complexity $O(INn^3)$ with:
 - I: number of iterations
 - N: number of agents
 - n: number of states of an agent
- Easy implementation
- Convergence proved only for special cases

4 B 6 4 B 6

Future works

- Extending the algorithm to deal with more complex models
 - e.g. G-networks with partial flushing (Fourneau [year])
- Proving the convergence for a larger model class
- Implementing the algorithm within a user-friendly tool
 - Work in progress...

Thanks for the attention

-