
Università Ca’ Foscari di Venezia

Dipartimento di Informatica
Dottorato di Ricerca in Informatica, 21o Ciclo

(A.A. 2005/2006 – 2007/2008)

Tesi di dottorato: TD-2009-2
Settore scientifico disciplinare: INF/01

On the relations among product-form
stochastic models

Andrea Marin
Matr. 955255

Tutore del dottorato

Simonetta Balsamo

Coordinatore del dottorato

Annalisa Bossi

January, 2009

Author’s Web Page: http://www.dsi.unive.it/~marin

Author’s e-mail: marin@dsi.unive.it

Author’s address:

Dipartimento di Informatica
Università Ca’ Foscari di Venezia
Via Torino, 155
30172 Venezia Mestre – Italia
tel. +39 041 2348411
fax. +39 041 2348419
web: http://www.dsi.unive.it

http://www.dsi.unive.it/~marin

To my family and my friends.
Alla mia famiglia ed ai miei amici.

Abstract

Product-form stochastic models are characterized by a Markovian stochastic process
that fulfills a set of properties that allows an efficient steady state analysis. Accord-
ing to this approach, the model is decomposed into several components. Each of
these components has an underlying stochastic process that is in general much sim-
pler than the joint one. The product-form property states that the steady state
probabilities of the joint process can be expressed as the normalized product of
the steady state proabilities of its interacting components. Product-form stochastic
models are widely used for performance evaluation purposes in the study of com-
munication protocols, software or hardware architectures. Product-form stochastic
models can be defined using several high-level formalisms. For example BCMP the-
orem provides a product-form solution for a class of Markovian queueing networks.
In this thesis we use two results, the M ⇒ M property and the Reversed Compound
Agent Theorem (RCAT) to explore the relations among several product-form model
classes belonging to different formalisms: queueing networks (QN), stochastic Petri
nets (SPN), generalized stochastic Petri nets (GSPN), Markovian Process Algebra
(MPA). We identify new classes of product-form GSPNs, and we prove that previous
results on product-form SPNs can be studied using RCAT. From a practical point of
view we show how to map multiclass queueing stations of BCMP types into GSPNs
with a finite structure maintaining a strong equivalence relation (in particular the
average performance indices and the product-form property are preserved). As a
consequence we are able to study hybrid models in product-form where their inter-
action and compositions are formally defined by GSPNs. An algorithm is defined
in order to translate BCMP QNs into GSPNs according to the previous theoretical
results. The algorithm can be easily extended to allow the modeler to specify new
stations using GSPNs.

Sommario

I modelli stocastici in forma prodotto sono caratterizzati da processi Markoviani che
godono di alcune proprietà che consentono un’analisi della distribuzione stazionaria
di stato efficiente. Questa tecnica prevede che si individuino alcune componenti del
modello, a ciascuna delle quali è associato un processo stocastico molto più semplice
di quello di partenza. La proprietà di forma prodotto stabilisce che la distribuzione
stazionaria di stato del processo congiunto può essere calcolata come normalizzazione
del prodotto delle distribuzioni stazionarie delle singole componenti opportunamente
riparametrizzate. I modelli stocastici in forma prodotto sono molto usati nell’ambito
della valutazione delle prestazioni dei sistemi, come ad esempio nello studio dei pro-
tocolli di comunicazione o delle architetture hardware o software. I modelli in forma
prodotto possono essere specificati usando diversi formalismi ad alto livello. Per es-
empio il teorema BCMP fornisce una soluzione in forma prodotto per una classe di
reti di code Markoviane. In questa tesi usiamo due risultati, la proprietà M ⇒ M e
il Reversed Compound Agent Theorem (RCAT) per esplorare le relazioni tra alcune
classi di modelli in forma prodotto: reti di code (QN), reti di Petri stocastiche (SPN),
reti di Petri stocastiche generalizzate (GSPN), ed algebre di processo Markoviane
(MPA). Inoltre identifichiamo nuove classi di GSPN in forma prodotto, e dimostri-
amo che precedenti risultati per SPN possono essere studiati mediante RCAT. Da un
punto di vista applicativo mostriamo come sia possibile associare ad ogni rete di code
multiclasse BCMP una GSPN con struttura finita che garantisca una forte relazione
di equivalenza. Di conseguenza siamo in grado di definire una tecnica di analisi di
modelli ibridi (cioé espressi mediante formalismi differenti) con forma prodotto per
i quali la composizione e l’interazione sono formalmente specificati mediante GSPN.
Infine definiamo un algoritmo in grado di trasformare una rete di code BCMP in una
GSPN sfruttando i precedenti risultati teorici. L’algoritmo è modulare ed è facil-
mente estendibile. Sotto un profilo teorico i nuovi risultati aiutano la comprensione
delle condizioni che caratterizzano i processi stocastici associati a modelli in forma
prodotto, aprendo la strada ad ulteriori progressi in questo importante ambito di
ricerca.

Acknowledgments

First of all I would like to thank my supervisor: Simonetta Balsamo. I am very
grateful to her for several reasons. First of all, she has suggested me to start this
experience and then she has supported and motivated me especially in some difficult
moments. Finally, she has taught me a lot and has given me several ideas about
possible topics of research in this area.

I thank my official referees, Ramon Puigjaner and Gianfranco Balbo, for their
valuable feedbacks and their constructive criticism in reviewing this Thesis.

Special thanks go to Peter Harrison, for the interesting discussions we had during
my visit in London. Also, I cannot forget the work done and the time spent with
Maria Grazia Vigliotti during my sojourn there.

Samuel Rota Bulò has been a great colleague as well as a good friend. I have
appreciated the time spent in room 15, and the scientific conversations with him.

Thanks to all my students and school colleagues that have always supported me
and appreciated (at least I hope) my work.

Finally, I would like to thank my family and my friends (especially Anna, Mas-
simo, Ivan, Mattia, Michele, Alessia, Gianni and Anna) that have been patient with
me and have trusted and supported me all along this experience. I think one day
they will eventually appreciate Petri Nets as I do, even if that day seems too far,
by now. In particular my father and my mother have always encouraged me even
in the worst moments.

During this last year I have lost too many people that I loved: Eugenio, Rinaldo
and Grazia. This thesis is also dedicated to them.

Contents

Preface ix

Introduction xi

I Stochastic models in product-form: formalisms and state
of the art 1

1 Stochastic models 3
1.1 Introduction . 3
1.2 Markovian stochastic models . 3
1.3 Product-form interacting Markov chains 5

1.3.1 Boucherie’s product-form . 6
1.3.2 Stochastic Automata Networks in product-form 10

1.4 Conclusions . 10

2 Queueing networks 13
2.1 Introduction . 13
2.2 Basic queueing systems . 16

2.2.1 Coxian distribution . 20
2.2.2 Queueing disciplines . 21

2.3 Queueing networks . 22
2.3.1 Model definition . 22
2.3.2 Markovian queueing networks 25
2.3.3 BCMP Product-form queueing networks 26
2.3.4 Characterization of BCMP-like queueing networks 33
2.3.5 Other non-BCMP product-forms 35

3 Stochastic models based on Petri nets 39
3.1 Introduction . 39
3.2 Basic Petri Nets (PNs) . 40

3.2.1 Petri net model definition . 40
3.2.2 Petri net analysis . 40

3.3 Generalized Stochastic Petri Nets . 43
3.3.1 (G)SPN analsys . 45

3.4 Product-form (G)SPN . 45
3.4.1 Coleman, Henderson et al. product-form SPNs 47

3.5 Conclusions . 49

ii Contents

4 Markovian Process Algebra 51
4.1 Introduction . 51
4.2 Basic process algebra . 51
4.3 Timed process algebra . 53
4.4 Performance Evaluation Process Algebra 54
4.5 PEPA models in product-form . 55

4.5.1 Reversible models. 56
4.5.2 Quasi-reversible models. 56
4.5.3 Coleman, Henderson et al. product-form 58
4.5.4 Boucherie’s product-form . 58
4.5.5 RCAT, ERCAT, MARCAT 59

4.6 Conclusions . 68

II Contributions 69

5 A new glance on product-form SPNs using RCAT results 71
5.1 Introduction . 71
5.2 The building block . 72

5.2.1 An introductory example . 72
5.2.2 Analysis of the building blocks 78
5.2.3 Comparison between Lemma 1 and Coleman, Henderson et

al. approach . 89
5.3 The composition of the building blocks 91

5.3.1 CHC-SPN . 92
5.3.2 Other compositions . 93
5.3.3 A first example . 94
5.3.4 A second example . 95
5.3.5 Modular and hierarchical composition of CHC-SPNs: another

example . 96
5.3.6 The algorithm to identify the building blocks in an SPN . . . 101

5.4 Conclusions . 101

6 Representing BCMP queueing centers by GSPN models 105
6.1 Introduction . 105

6.1.1 Motivations . 106
6.1.2 Comments to bibliography . 107
6.1.3 Contribution . 108

6.2 Representing BCMP stations by GSPN models 109
6.2.1 FCFS discipline . 109
6.2.2 LCFSPR discipline . 113
6.2.3 IS and PS disciplines . 117

6.3 Conclusions . 119

Contents iii

7 Composition of GSPN models equivalent to BCMP stations 121
7.1 Introduction . 121
7.2 M ⇒ M property on GSPN models 123

7.2.1 Composing GSPN models by M ⇒ M 125
7.2.2 Analysis of a hybrid model with an extended BCMP-like product-

form . 126
7.3 On the characterization of probabilistic queueing disciplines with a

single server . 128
7.4 RCAT composition . 130

7.4.1 A comparison between M ⇒ M and RCAT conditions 130
7.4.2 RCAT for GSPN models . 131
7.4.3 Theoretical results . 133
7.4.4 New product-form GSPN models with RCAT 136

7.5 A first example of hybrid modeling 140
7.6 An example of hybrid models in product-form with a G-queue 144

7.6.1 Description of a general G-Queue 145
7.6.2 The model description . 146
7.6.3 The model analysis . 147

7.7 An example of hybrid models with non-linear traffic equations 149
7.7.1 The model description . 150
7.7.2 The model analysis . 150

7.8 Conclusions . 151

8 An algorithm to transform BCMP QNs into GSPNs 153
8.1 Introduction . 153
8.2 Algorithm definition . 154
8.3 Supported extensions . 160
8.4 Example . 163
8.5 Conclusions . 163

Conclusions 167

A Proves of lemmas and theorems 173
A.1 Proof of Lemma 4 . 173
A.2 Proof of Theorem 5 . 177
A.3 Proof of Lemma 5 . 178
A.4 Proof of Lemma 6 . 180
A.5 Proof of Lemma 7 . 181
A.6 Proof of Theorem 7 . 182

B Solution of examples 187
B.1 Stochastic Petri net models of Chapter 5 187

B.1.1 Solution of model depicted in Figure 5.15 187

iv Contents

B.1.2 Solution of model depicted in Figure 5.16 188
B.2 Product-form GSPN models composition of Chapter 7 190

B.2.1 Analysis of the GSPN shown by Example 12 190

Bibliography 193

Index 203

List of Figures

1 A tandem of two FCFS queues with single server, and exponentially
distributed service time. xv

1.1 Example of CTMC . 8
1.2 Composed process with state space Γ. In Boucherie’s definition the

dotted lines are not present, however, as discussed in the conclusions,
for many practical cases they should be modeled. All the transition
rates are equal to v > 0. 9

2.1 A queueing system. 16
2.2 A queueing system with a Coxian server with L stages. 21
2.3 Example of multiclass and multiple chain queueing network. 24
2.4 Example of a class graph for a multiclass and multiple chain queueing

network. 25
2.5 Single class and multiple chain queueing network. 25
2.6 Relations between properties related to product-form for nonpriority

and work-conserving service centers. 35

4.1 Tandem of exponential queues. 61
4.2 Simple network of exponential queues with feedback. 63
4.3 Processes associated with the queueing system of Example 5. 63
4.4 Processes associated with the model of Example 6. 66

5.1 A basilar building block model (BBB). 73
5.2 Graphical description of P 1

n and P 2
n of BBB. 74

5.3 BBB after melting the input transitions. 76
5.4 Interactions of a BBB with another PEPA agent in order to model a

building block with 3 places. 81
5.5 Description of agent PN+1. 84
5.6 Description of agent PN+1 after replacing > with x. 85
5.7 Intuition of the possible transitions between two states in the CTMC

of S (2) and the way they are modeled in PEPA (1). 86
5.8 Schema of the proof of Lemma 1. 87
5.9 Example of incomplete building block. 90
5.10 Example of relations among transitions. 92
5.11 CHC-SPN of the example of Section 5.3.3. 94
5.12 Decomposition in building blocks of the CHC-SPN of the example

presented in Section 5.3.3. 94
5.13 CHC-SPN of the example of Section 5.3.4. 95

vi List of Figures

5.14 Decomposition in building blocks of the CHC-SPN of the example
presented in Section 5.3.4. 96

5.15 BLOCK1: CHC-SPN model with input/output transitions. Net and
building blocks. 99

5.16 BLOCK2: CHC-SPN model with input/output transitions. Net and
building blocks. 100

6.1 Venn diagrams illustrating relations between various product-form
solutions. 107

6.2 Graphical representation of GSPN-EXP model 111

6.3 Model used in Example 8 . 113

6.4 GSPN-COX for R = 2 classes, L1 = 3 and L2 = 2 stages. 115

6.5 PS and IS model example for two classes of customers, with L1 = 3
and L2 = 2 stages of service. 119

7.1 Part of the stochastic process of a 2 classes FCFS BCMP station. . . 124

7.2 Example of product-form GSPN obtained by hybrid modeling. 128

7.3 Relation between M ⇒ M models and RCAT models. 131

7.4 State transitions in the semi-Markov process and in the corresponding
CTMC for GSPN-EXP model of Example 10. Dotted line is used for
vanishing states. 133

7.5 Example of SPN not in product-form. 136

7.6 Representation of IDEAL model by cooperating processes. 137

7.7 Representation of model SIMPLE by cooperating processes. 138

7.8 Example of SPN in product-form. Model SIMPLE. 139

7.9 Example of GSPN in product-form under some conditions on the
transition rates. 141

7.10 High level interpretation of the model of Figure 7.9. 141

7.11 GSPN model of a communication channel with a 3 phases protocol.
Phase 1 is vulnerable to collisions . 143

7.12 Scheme of the interacting GSPN blocks for the model described in
Section 7.5 . 143

7.13 Description of the stochastic process associated with the communica-
tion channel. 144

7.14 Simple G-queue with positive and negative customers. 145

7.15 GSPN model of a simple G-queue with positive and negative customers.146

7.16 Hybrid model studied in Section 7.6 147

7.17 GSPN model equivalent to the hybrid model studied in Section 7.6 . 148

7.18 Hybrid model studied in Section 7.7 150

8.1 Modularity of station equivalent GSPN blocks 155

List of Figures vii

8.2 Modelling the QN probabilistic routing. In this example the output
vector of transition tZr,i is determined probabilistically and O0(t

Z
r,i, P

I
r,j) =

1, O0(t
Z
r,i, P

I
r,k) = 1 and d(tZr,i, 0) = p

(r)
ij , d(tZr,i, 1) = p

(r)
ik 157

8.3 (a) System modelled by a no-BCMP queueing network. (b) System
modelled by a product-form GSPN. 164

C.4 Relation between M ⇒ M models and RCAT models. 168
C.5 Relations among (G)SPNs product-form stochastic models. 169
C.6 Relations among (G)SPNs product-form stochastic models and RCAT.170

viii List of Figures

Preface

In this thesis we present some results previously published with Simonetta Balsamo
and some others not yet published and developed in cooperation with Simonetta
Balsamo and Peter Harrison. I want to thank my co-authors for the ideas and the
support provided for the definition of these results. In each of this works Andrea
Marin has given an original e concrete contribution.

This thesis consists of two parts. The first part introduces the formalisms used
in the following and the main results on their product-forms are presented. The
second part illustrates the contributions of this work.

Chapter 1 introduces the Markovian stochastic models. We formally define what
we mean for product-form models by giving a definition at the continuous time
Markov chain level. We also introduce some results on product-form solutions for
interacting Markov chains. Chapter 2 briefly recalls the Markovian queueing net-
work (QN) models and presents the main theorem on product-form QNs, i.e., BCMP
theorem. Moreover we illustrate the properties on the queueing model that imply
the BCMP product-form. These properties can be expressed in terms of a char-
acterization of the scheduling discipline or in terms of properties of the underlying
CTMC. Special attention is devoted to the M ⇒ M property. The review is based
on the published paper [12]. Chapter 3 introduces Stochastic Petri Nets and Gen-
eralized Stochastic Petri nets and illustrates the results on product-forms for these
formalisms. The last introductory part is Chapter 4 that briefly illustrates Marko-
vian process algebra and the main results for the product-forms. In this chapter
a special attention is devoted to the presentation of RCAT and ERCAT theorems
that are widely applied in the following chapters.

The second part of the thesis illustrates the original contributions. Chapter 5
presents a yet unpublished result obtained by a joint work with Peter Harrison.
A class of well-known SPNs in product-form is proven to be in product-form also
by RCAT. The consequences of this relation are twofold. First we define a new
approach to find SPN product-form solutions for a class of SPNs. Then we obtain
an improvement of the modularity of traditional product-form SPNs. For example,
we can study two product-form SPNs in isolation and then combine them obtaining
a new product-form model. The analysis of the latter model is based on the solutions
of its sub-models. We also prove that we can combine a product-form SPN belonging
to this class with other formalisms in product-form by RCAT (e.g. G-networks). In
this chapter we show several examples of analysis of product-form SPNs pointing out
the differences of the technique based on RCAT and the one based on the well-known
results. We also show some examples of SPN model compositions in product-form,
but we refer to Chapter 7 for an application within a hybrid formalism.

x Preface

In Chapter 6 we define a GSPN model corresponding to each BCMP station
queueing discipline. We define and prove a strong equivalence relation between the
GSPN models and the corresponding BCMP queueing stations. In this chapter we
assume the system in isolation, under class independent Poisson arrivals, while in
Chapter 7 we show that this equivalence holds also within product-form queueing
networks. The results presented in this chapter have been published in [15, 16].

Chapter 7 shows that the underlying idea of this thesis allows for the analysis
of product-form hybrid models. Basically, we compose models (even expressed in
different formalisms) if they fulfill the M ⇒ M property or they satisfy RCAT
conditions. In this chapter we show that the models defined in Chapter 3 satisfy
both M ⇒ M property and RCAT conditions (with some restrictions). We illustrate
several examples of hybrid modelling and their corresponding GSPN models. We
also provide a result on the relation between the fairness of the probabilistic queueing
disciplines with exponential servers without preemption and the M ⇒ M property.
In other words we prove that such a queueing discipline satisfies M ⇒ M property
only if every customer in the queue has the same probability of entering in service
after a job completion. Some of the results illustrated in this Chapter are published
in [15, 16] and other ones have been accepted for publication.

The last part showing original results is Chapter 8. Here we define an algorithm
that transforms a BCMP QN into a GSPN. The properties of the algorithm an its
computational complexity are studied. The contents of the chapter are based on the
published work [13].

For the sake of readability Appendix A provides the proves of most of the theo-
rems enunciated in Chapters 6 and 7. Appendix B shows some calculations on the
examples illustrated in Chapter 5.

Finally, we present the conclusions of the work.

Introduction

Stochastic models have been widely used to derive both qualitative and quantita-
tive properties of artificial and natural systems. In this thesis we mainly focus on
stochastic models for computer systems such as hardware or software architectures
or communication protocols. Stochastic models are based on the concept of stochas-
tic process. A stochastic process is a family of random variables Xt where t is a
parameter running over a suitable index set T , called time. The set of values that
can be assumed by Xt (its domain) is the state space of the stochastic process.
The wide application field of stochastic models derives from several reasons. First
of all, under appropriate assumptions, deterministic systems can be analyzed using
stochastic models. The main idea of this approach is that the probabilistic behavior
of the model can be used in order to make up for a lack of knowledge (see [116] for
a discussion of this topic). A second reason of the luck of stochastic model anal-
ysis is the recent theoretical advances in this filed joint with a high availability of
powerful computers (or networks of computers) that can perform fast and precise
calculations. From a theoretic point of view, Markov Processes play a pivotal role
in this framework (see Chapter 1 for a brief review). Andrey Markov (1856-1922)
introduced the concept of Markov Process, i.e., a stochastic process that yields the
Markov property. Informally, the Markov property states that, given the present
state of a model, future states are independent of the past states. In other words
the description of the present state catches all the information needed to predict
the future states of the stochastic process. A Markov process whose state space is
a discrete set is called Markov Chain. If the time set T is discrete we have a dis-
crete time Markov chain (DTMC) whereas if the time set T is continuous we have
a continuous time Markov chain (CTMC).

Other important stochastic processes that are strictly related to the Markov
processes are the semi-Markov processes and the Markov reward processes whose
analysis is based on the renewal theory. For a presentation of these processes see
[105]. The main strength of these processes is that the residence time in a state has
not to be exponentially distributed and, in case of Markov reward processes a set of
metrics can be associated with states or state transitions.

Although simple systems such as simple communication protocols can be de-
scribed in terms of CTMCs or DTMCs (see for example [37]), this can quickly
become a difficult task in case of complex systems with several interacting com-
ponents. Specifically, the computational complexity of solving a stochastic process
grows with the number of process states. This number can exponentially depend
on the number of components of the system modeled by the process. In order to
overcome this problem, a set of high level formalisms has been defined. Thanks to

xii Introduction

these formalisms the modeler can describe a complex system by a relatively com-
pact model. However, in order to perform a qualitative or quantitative analysis, in
general, one has to derive and analyze the stochastic process associated with the
high level model. Then the results obtained by this low level analysis have to be
interpreted in terms of the high level model components. A representative example
is the analysis of a queueing system [77, 38]. Queueing systems are used to represent
a system in which a finite or infinite set of customers compete for a set of resources.
Customers arrive to the queueing center according to a stochastic process, compete
for the resources according to a queueing discipline, and finally are served and the
service time is usually represented by a random variable. Customers can be all iden-
tical (single class queue) or clustered into classes (multiclass queue). The analysis
of a model expressed with this formalism just needs to specify the model parame-
ters (i.e. the arrival processes per class, the service time distribution, the number
of resources, the queueing discipline). This high level definition makes the model
more compact than the one given by directly specifying the stochastic process of the
system. However, the stochastic process underlying even a relatively simple model
can be very complex with a high number of states. Several exact results are known
for some types of high level models, especially in queueing theory [77].

In this thesis we focus on the following aspects:

• We just consider stochastic models whose stochastic processes are CTMCs.
This include a wide class of high level formalisms, such as stochastic Petri
nets [92], generalized stochastic Petri nets [89], Markovian queueing networks
[22, 74, 77, 12], Markovian Process Algebras [67, 20, 68].

• We focus on the analysis of the long-term behavior of the model. This means
that we are interested in studying the stochastic process of the model when
t → ∞. Under certain conditions some models exhibit a stationary behavior
when t → ∞, i.e., the probability of observing a given state becomes stable
and independent of the initial model state.

Dealing with models with large state spaces. In many practical cases a
system consists of several components that interact in some ways. A good modeling
technique is defining the sub-models of the system, each of which corresponds to a
system component. Then the modeler defines how the sub-models interact. Even
if this approach has many strengths, it puts in evidence one of the main limits
of stochastic modeling. In fact, even if we assume that each sub-model has its
own stochastic process, it is obvious that this stochastic process can depend on the
states of the other sub-models. Therefore the joint process has a potential number
of states given by the product of all the possible states of each stochastic process
generated by the sub-models. Let us call M(t) the state of the model at time t,
and M1(t), . . . ,MN(t) the state of the sub-models at the same time. In the trivial
case the sub-models are independent, therefore the probability of observing a joint

Introduction xiii

state m = (m1, . . . ,mN) at time t is simply given by Pr{M(t) = m} = Pr{(M1(t) =
m1} · · ·Pr{MN(t) = mN}. However, this case is not very interesting because the
sub-models could be studied in isolation. On the other side there are also examples
of models that consist of non-independent sub-models, but the following relation
holds:

t → ∞ Pr{M(t) = m} ∝ g1(m1) · · · gN(mN). (1)

In other words, the steady state probabilities of the joint process can be calculated
as a normalized product of the steady state probabilities of the sub-models with an
appropriate parameterization defined by function gi. We say that the models whose
steady state distributions can be expressed by (1) are models in product-form, or
with a product-form solution. Let us consider the Jackson queueing network model
class. Informally a Jackson queueing network consists of several queueing centers,
with negative exponential distributed service times, external arrivals according to
a Poisson process, and a probabilistic routing among the queueing centers. It has
been proved in [73] that this class of Markovian queueing networks is in product-
form, i.e., a pseudo arrival rate for each service center can be determined by the
analysis of the routing of the network, and then the steady state probabilities can
be calculated as the product of the steady state probabilities of each queueing center
parameterized with the pseudo arrival rate and considered in isolation.

Product-form models play an important role in stochastic modeling especially
when an exact analysis of the steady state is desired. This is due to at least two
reasons:

• In the general case, obtaining a steady state distribution given a CTMC of
n states requires O(n3) operations. It is clear that the analysis of a model
considering the sub-models is much more efficient.

• Some product-form models fulfill a set of interesting properties that allow the
definition of algorithms that can calculate the desired performance indices of
the model very efficiently. A number of these algorithms have been defined
for product-form queueing networks (see [12] for a review) and product-form
stochastic Petri nets ([39, 111]). Another property of product-form queueing
networks is known as the Norton’s theorem that allows for a hierarchical com-
position of product-form queueing networks that preserves the product-form
property.

Motivations. The work presented in this thesis aims to explore the relations
among the classes of product-form models defined in the literature. In fact, as al-
ready explained, although it is interesting to interpret the product-form conditions
at the high level formalism in which a model is defined, the product-form property is
related to the underlying CTMC. Let us make an example. One of the main results
for product-form queueing networks is the BCMP theorem [17]. The theorem states
a product-form solutions for queueing networks in which the queueing centers have

xiv Introduction

specific scheduling disciplines. It is worthwhile understanding how these disciplines
influence the CTMC of the model in order to satisfy the product-form properties.
Many authors worked in this direction producing several results [76, 94, 32, 98, 33].
More recently some new surprising results about product-forms and new formalisms
appeared in literature. For example in [63, 39] product-form conditions and solu-
tion have been defined for stochastic Petri nets, in [6] product-form is studied for
generalized stochastic Petri Nets, and in [70, 69, 110, 57, 59, 61, 62] product-form
is studied for PEPA models. Moreover, new results concerning the properties of
CTMCs in product-form have been recently published. For years the only well-
known product-forms were characterized by local balance, quasi reversibility and
linear traffic equations. These properties are described in Chapter 2. However,
the definition of product-form G-networks [50] showed an example in which even if
these conditions do not hold the CTMC is in product-form. The results presented
in [59, 61, 62] confirmed this idea and generalized it.

From a theoretical point of view, we try to interpret most of these results under
the viewpoint of a unique formalism, i.e., the generalized stochastic Petri nets. The
choice of this formalism is due to its high expressivity, rigorous semantic, and the
large availability of analysis and simulation tools. As a practical consequence, we
aim to define a theoretical framework for a hybrid formalism definition in which
product-forms can be identified.

Main contributions. In this thesis we mainly focus on the relations among the
product-form model classes identified by BCMP queueing networks [17], Coleman,
Henderson et al. stochastic Petri nets [63, 39]. In particular we consider the product-
form composition of models based on two results. The first one is the M ⇒ M prop-
erty defined by Muntz in [94] for the queueing networks. Informally, a multiclass
queueing center fulfills the M ⇒ M property if under class independent Poisson ar-
rivals, it exhibits class independent Poisson departures (see Chapter 2 for a review).
Moreover, in [94] the author proves that a network of queueing centers that fulfill the
M ⇒ M property, with probabilistic routing, open or closed, has a product-form so-
lution. Note that even if external arrivals to a network of queues occur according to a
Poisson process, it is not true that internal arrivals to the service centers are Poisson
processes if in the net has cycles. In order to apply this result to other formalisms
than queueing networks, we must give a correct and meaningful interpretation of
arrival process or departure process. In fact GSPNs do not implement the notion
of customers but the tokens that can represent either customers or resources. The
other result that we widely use in the thesis is reversed compound agent theorem
(RCAT) proved in [59]. Although this theorem is defined in terms of cooperation of
PEPA agents, it can be straightforwardly used to study other formalisms. Chapter
4 reviews this theorem and its extensions [61, 62]. Let us informally get the intuition
of RCAT theorem. As we have said before, two interacting processes are considered
in product-form if the steady state probabilities of the joint process can be expressed

Introduction xv

as product of the steady state probabilities of the basic processes appropriately pa-
rameterized. For instance, consider a tandem of exponential queues as shown by
Figure 1. It is known that the model is in product-form. However, if the first queue

POISSON
ARRIVALS

DEPARTURES

EXPONENTIAL FCFS QUEUES

Figure 1: A tandem of two FCFS queues with single server, and exponentially
distributed service time.

(the one with the external arrivals) can be studied in isolation because its stochastic
process is not influenced by the process of the second queue, this cannot be said for
the second queue. In fact, some transitions in the stochastic process of the second
queue considered in isolation have unknown rates, because they are synchronized
with the departures of the customers from the first queue. In this case, the param-
eterization of the second queue requires to determine these missing rates. RCAT
derives this parameterization by the analysis of the reversed processes in isolation.
In the specific case of the tandem queues, the missing parameter is the reversed rate
of the transitions corresponding to a job completion in the stochastic process of the
first queue. Burke’s theorem [28] states the departure process from the first queue
is a Poisson process with rate equals to the arrival process rate. This can be used
as a parameter for studying the second queue in isolation. Note that in the birth
and death process (see Chapter 1 for a brief review) of the first queue, the reversed
rate of the transitions corresponding to a job completion is exactly the arrival rate.

In this thesis we show and prove the following results:

• We show that the well-know class of product-form stochastic Petri nets defined
in [63, 39], with some restrictions, can be studied by RCAT theorem and its
extensions. On one hand this result establishes a clear relation between the
product-form for stochastic Petri nets and the one identified by RCAT. On the
other hand there are at least three practical consequences of this result. First,
the class of stochastic Petri nets in product-form by RCAT can be composed
with any other model satisfying the same theorem. This is a big step toward
a hybrid modeling formalism in which product-form solutions can be studied.
In fact, RCAT has been successfully used to study exponential queues [59],
BCMP queueing networks [58], networks with negative customers in product-
form (G-Networks) [60] and other models.

We show that the compositionality property of the stochastic Petri nets defined
by Coleman, Henderson et al., results really enhanced. In fact the composition
of two models obtained by RCAT can still be studied by RCAT.

Finally, we note that also the hierarchical modeling results enhanced by the
RCAT approach. In fact, one can build a model consisting of several sub-

xvi Introduction

models each of which satisfying RCAT conditions. Then the whole model
satisfies RCAT conditions itself.

Using RCAT, the technique to find the product-form solution is different from
the well-known one presented in [39]. Indeed, we start the net analysis by
verifying the structural conditions, and then we build a partition of the net
places in order to decompose it in several building blocks. The building blocks
have a straightforward solution by RCAT and then the whole net is studied
as composition of the building blocks.

• We define a set of GSPN models each of which corresponds to a multiclass
BCMP station type. Note that this is not a trivial operation because multiclass
queueing networks cannot be studied as state machines. In fact the queueing
disciplines influence the steady state probabilities and the conditions for the
product-form [17, 32]. Roughly speaking, this means that it is not sufficient
to count the number of customers in the station in order to have an equivalent
GSPN model. This problem has already been studied in [7] where GSPN
models whose stochastic processes are isomorphic to the correspondent BCMP
stations are defined. This ensures the equivalence but unluckily the models
have an infinite structure (for open systems) in order to represent the queueing
discipline. In our approach we relax the equivalence terms but we propose to
model BCMP station types with finite structured GSPN models. The defined
equivalence terms preserve the average performance indices of the models.

It is worthwhile noting that these GSPN models do not belong to any of the
well-known GSPN product-form classes.

• The next step studies how these models can be combined maintaining a product-
form solution. In order to achieve this we show that:

– The M ⇒ M property holds for the defined GSPN models.

– RCAT theorem conditions hold for the GSPN models.

Therefore we can use them in a wide class of models. The M ⇒ M property
allows one to compose these models with other ones for which the M ⇒ M
holds. We explain the exact terms of this composition in the following parts
of the thesis. Basically, these compositions of product-form models originate
a BCMP-like product-form, i.e., with a linear system of traffic equations and
the whole stochastic process is quasi-reversible. RCAT based compositions
allow for the hybrid modeling discussed above, i.e., we can compose the de-
fined GSPN models with other product-form models such as G-networks or
Coleman, Henderson et al. product-form stochastic Petri nets without batch
token movements and with state independent transition rates. In this context
we also show some examples of GSPN non product-form models that can be

Introduction xvii

approximated using RCAT by a product-form model. In fact, we take ad-
vantage of the fact that RCAT does not use the global balance equations to
decide whether the composition of two models is in product-form, but it re-
quires some conditions concerning the structures of the CTMCs. Therefore if
these structural conditions are not satisfied one can think to modify the model
behavior in order to meet RCAT requirements. In this way, the resulting mod-
ified model can be seen as a product-form approximation of the original one.
However, we will see that giving exact bounds for this approximation is not
an easy task.

• Finally, we define an algorithm that translates a BCMP queueing network into
an equivalent (in the sense specified above) GSPN model. The algorithm is
defined such that modularity is really enhanced. In particular we use interfaces
in order to identify the places of a GSPN model where external tokens arrive
to or where internal tokens depart from. This algorithm can be a base to
develop a tool that translates hybrid models in product-form into a GSPN in
product-form.

xviii Introduction

I
Stochastic models in product-form:

formalisms and state of the art

1
Stochastic models

We have knowledge of the past, but
we can’t control it. We can control
the future, but we have no
knowledge of it.

Claude Shannon

1.1 Introduction

In this chapter we present a brief introduction to stochastic models. A stochastic
model is characterized by a stochastic process. By studying this process the ana-
lyst can derive a set of model properties such as liveness, performance parameters
and model checking issues. In this chapter we mainly focus on Markov stochastic
processes.

A stochastic process is a set of random variables {X(t)|t ∈ T} defined over the
same probability space and indexed by the parameter t, called time. The process
random variables take values in set Γ, called state space of the process. Both set
T and state space Γ can be either discrete or continuous. The process is called
continuous-time or discrete-time if the time parameter t is continuous or discrete,
respectively. A discrete-time process is usually denoted by {Xn|n ∈ T}. If the state
space Γ is discrete then the process is called discrete-space or chain, otherwise the
process is called continuous-space. The probabilistic behavior of a stochastic process
is defined by the joint probability distribution function of the random variables X(ti)
for any set of times ti ∈ T, 1 ≤ i ≤ n, n ≥ 1, denoted by Pr{X(t1) ≤ x1; X(t2) ≤
x2; . . . ; X(tn) ≤ xn}, where xi ∈ Γ.

1.2 Markovian stochastic models

Hereafter we consider discrete-space Markov processes, also called Markov chains.
Let us define a discrete-time Markov chain. A discrete-time Markov process is a
process whose state at step n+1 only depends on the state probability at step n and

4 1. Stochastic models

is independent of the previous history. This is known as the Markov property. The
conditional probability distribution of the process satisfies the following condition:

Pr{Xn+1 = j|X0 = i0; X1 = i1; . . . ; Xn = in} = Pr{Xn+1 = j|Xn = in}, (1.1)

for all n > 0, and j, i0, i1, . . . , in ∈ Γ.
Similarly, a continuous-time process is said to be a Markov process if it satisfies the
following condition:

Pr{X(t) = j|X(t0) = i0; X(t1) = i1; . . . ; X(tn) = in} =

Pr{X(t) = j|X(tn) = in}, (1.2)

for all set of times t0 < t1 < . . . < tn < t, and n > 0, j, i0, i1, . . . , in ∈ Γ. Note that,
because of the Markov property, the residence time of the process in each state is
distributed according to either the geometric or the negative exponential distribution
respectively for discrete-time or continuous-time Markov processes. If the one-step
conditional probability on the right-hand side of formula (1.1) is independent of
time n, then the Markov chain is homogeneous. Then, we define the transition
probability from state i to state j as pij = Pr{Xn+1 = j|Xn = i}, and the matrix of
state transition probabilities P = [pij], where pij ∈ [0, 1],

∑
j pij = 1, ∀i, j ∈ Γ. The

stationary behavior of the Markov process can be evaluated if the process satisfies
some conditions. Informally, a Markov process is said to be irreducible if every state
can be reached from any other state. Each state can be transient or recurrent, and
it is said to be positive recurrent if the average return time to the state is finite.
An ergodic Markov chain is irreducible and formed by positively recurrent aperiodic
states. Let π = [π0π1π2 . . .] denote the stationary state probability vector, where
πj = Pr{X = j} is the stationary probability of state j ∈ Γ. Then for homogeneous
ergodic discrete-time Markov chains we can compute the stationary probabilities π
as follows [77]:

π = πP, (1.3)

with the normalizing condition
∑

j πj = 1. This is called system of global balance
equations.

Let us now consider a continuous-time Markov chain . The Markov chain is
homogeneous if the conditioned probability on the right-hand side of formula (1.2)
is independent of time tn, but only depends on the interval width (t− tn). In other
words we can write the state transition probability from state i to state j only
depending on the interval width s as follows:

pij(s) = Pr{X(tn + s) = j|X(tn) = i}, ∀i, j ∈ Γ,∀tn ≥ 0.

Hence, we have a width dependent state transition probability matrix P(s) =
[pij(s)]. Then we can define a rate transition probability matrix Q = [qij], i, j ∈ Γ,
also called process infinitesimal generator, as follows:

Q = lim
s→0

P(s) − I

s
.

1.3. Product-form interacting Markov chains 5

The stationary behavior of the continuous-time Markov chain can be evaluated for
homogeneous ergodic chain. The stationary state probabilities π = [π0π1π2 . . .],
where πj = Pr{X = j} for each state j ∈ Γ, can be computed by solving the
following system of global balance equations:

πQ = 0, (1.4)

with the normalizing condition
∑

j πj = 1.
For the special classes of birth and death processes it is possible to derive a

closed-form solution of the stationary state probability π defined by system (1.3)
for discrete-time and system (1.4) for continuous-time processes, respectively. A
birth and death Markov process has state space Γ = N and the only non-zero state
transitions are those from any state i to states i−1, i, i+1, ∀i ∈ Γr{0}, and only to
state 1 from state 0. Hence, the transition state probability matrix P for discrete-
time, or the transition rate matrix Q for continuous-time process, is tridiagonal.
Let us denote the rates of matrix Q for a continuous-time birth and death Markov
chain as follows: qi i+1 = λi, i ≥ 0 and qi i−1 = µi, i ≥ 1. Then the stationary state
probability π can be calculated as follows:

πi = π0

i−1∏
j=0

λj

µj+1

, (1.5)

for i ≥ 0, and where π0 is given by the normalizing condition, i.e.,

π0 =
[∞∑

i=0

i−1∏
j=0

λj

µj+1

]−1

.

This solution holds under the stability condition. A sufficient condition for the
stationary solution is that there exists a state k0 > 0 : λk < µk, ∀k > k0 [77]. Several
basic queueing systems can be analyzed by birth and death Markov processes.

Continuous Time Markov Chains (CTMC) have been widely used in the per-
formance evaluation field in order to derive several model properties (for example
[77, 76, 116, 45, 38]).

1.3 Product-form interacting Markov chains

Product-form is a property strictly related to the CTMC underlying a stochastic
model. Therefore, every product-form class can be seen in terms of interacting
Markov chains. However, we usually distinguish the product-form model classes
according to the formalism that is used to define the model. This is because one
tries to characterize a product-form model class in terms of structural conditions
or high-level concepts that are easier to understand by a modeler. For example, in
queueing theory it comes natural to express the product-form conditions in terms of

6 1. Stochastic models

the occupancy of the queueing station or its arrival process, and so on. In general,
these concepts cannot straightforwardly be used for different formalisms (what is
the number of customers of a given class in a Markov chain?). As a consequence,
in classifying a product-form model we consider the formalism under which the
conditions (and the solutions) are expressed. One of the aims of this thesis is to
investigate the relations among the CTMCs of these product-form classes.

In this section we review the product-form conditions for models expressed in
terms of interacting Markov chains. Let us formally introduce the problem. We
consider a set of N CTMCs with state spaces Γ1, . . . , ΓN . We can define an inter-
action among them such that the joint process is still a CTMC and its state space
Γ is Γ ⊆ Γ1 × . . . ΓN . Let πi(γi) be the steady state probability of state γi ∈ Γi

with 1 ≤ i ≤ N . Then we say that the CTMCs are in product-form if for all γ ∈ Γ,
where γ = (γ1, . . . , γN), we have that:

π(γ) =
1

G

N∏
i=1

πi(γi), (1.6)

where G is the normalizing constant.

1.3.1 Boucherie’s product-form

Boucherie’s product-form results are presented in [25]. The author introduces the
theory in the context of competing Markov chains and then he shows its application
to stochastic Petri nets as a generalization of Lazar-Robertazzi results [84]. We
briefly review Boucherie’s theory on competing Markov chains. Let us consider a
set of K competing CTMCs with spaces Γ1, . . . , ΓK and transition rates qk(γ, ε) with
γ, ε ∈ Γk. Let I be an index set. For each k, let Aki, i ∈ I, be a set of mutually
exclusive sets such that:

• Aki 6= ∅,

• Aki ⊂ Γk,

•
∪

i∈I Aki = Γk.

Suppose that the k-th CTMC uses the resource i ∈ I in the state γ, then according
to this notation we have that γ ∈ Aki. We say that CTMCs k1 and k2 compete over
resource i ∈ I if in the joint state space there is not any state in which k1 and k2

can simultaneously be in states γk1 and γk2 , where both these states use the resource
i ∈ I. In other words the set {(γk1 , γk2) : γk1 ∈ Ak1i, γk2 ∈ Ak2i} is empty. Let Cki

denote the set of CTMCs that compete with CTMC k on the resource i ∈ I.
The transition rates of the joint process with state space Γ =

∏K
k=1 Γk are defined

as follows:

q(γ, γ′) =
K∑

k=1

qk(γk, γk′)
K∏

r=1
r 6=k

1(γr = γr′)1(if γr ∈ Ari then k /∈ Cri), (1.7)

1.3. Product-form interacting Markov chains 7

where γ = (γ1, . . . , γK), γ′ = (γ′
1, . . . , γ

′
k) and 1(·) is the indicator function.

In this framework the CTMCs compete over a set of resources labelled by a set
I. In every joint state γ ∈ Γ there cannot be two CTMCs using the same shared
resource. So we can partition a state space Γk into I sets Aki such that ∪i∈IAki = Γk

and Aki 6= ∅. If CTMCs k1 and k2 compete on resource i then in the state space
Γ of the joint CTMC there cannot be a state γ where components γk1 ∈ Ak1i and
γk2 ∈ Ak2i.

Under these assumptions it can be proved [25] that the steady state probabilities
are in product-form. Note that condition (1.7) is such that:

• Given two adjacent states γ, γ′ ∈ Γ, then just a single CTMC k changes its
state, i.e., states γ and γ′ differ just by their k-th component which changes
from γk to γ′

k. The transition rate from γ to γ′ is determined only by the
transition rate between the states γk and γ′

k of the k-th CTMC.

• Suppose that CTMCs k and k′ conflict on resource i ∈ I. Then, if one of the
two CTMCs is in a state belonging to the set Aki (respectively Ak′i) then the
other CTMC cannot change its state at all. This probably is the main limit
of this product-form class.

Example 1 Let us consider two CTMCs with state spaces Γ1 = {a1, b1, c1} and
Γ2 = {a2, b2, c2}. The transition rate matrices Q1 and Q2 are:

Q1 = Q2 =

 0 v 0
0 0 v
v 0 0

 ,

with v a positive real constant. The state transition diagram is depicted in Figure
1.1 for i = 1, 2.

If we consider the two processes in isolation, their stationary probabilities are
πi(γi) = 1

3
for γi = ai, bi, ci and i = 1, 2. Let us now define the competition. Suppose

I = {1, 2} and Ak1 = {ak, ck}, Ak2 = {bk} and C12 = {2}, C22 = {1}, Ck1 = ∅, with
k = 1, 2. In Figure 1.1 we use white color to fill the states which use resource 1 and
grey for the state which uses resource 2. Note that competition is just over resource
2.

The joint process of Γ = Γ1 × Γ2 with the transition rates defined by Formula
(1.7) has 8 reachable states. We can conclude that the stationary probability of each
state is the same, i.e., 1

8
. Figure 1.2 shows the composed process S.

It is easy to verify that π(γ) = 1
8

for all γ satisfies the set of GBEs for the CTMC
on space Γ.

Boucherie’s product-form condition is very interesting for various reasons. First
of all, it gives the conditions directly on the Markov Chains so the result can be used
as framework for studying the product-form conditions for different stochastic model

8 1. Stochastic models

a

b

c

v

v

v

i

i

i

Figure 1.1: Example of CTMC

formalisms, such as stochastic process algebra and stochastic Petri nets (SPN). If we
apply Boucherie’s approach to SPNs, as pointed out in the original work [25], we note
a second strength of the result. In fact, if we consider Coleman et al. product-form
for SPNs [63, 39] the authors aim to give a stationary solution which is expressed
in terms of product of functions of the number of tokens in each place. Boucherie’s
framework, on the other hand, is more suitable for hierarchical modelling than that
presented in [63, 39]. In fact, the idea is that given a set of SPNs (let us call them
agent), with their underlying CTMCs, one can define a set of sufficient conditions
for the product-form solution on the interaction of the agents. However, given a
SPN, an automatic identification of Boucherie’s product-form is not an easy task.

It is worthwhile exploring the practical consequences of Boucherie’s conditions
for the product-form. In the following we comment them one by one:

• The conditions on the single CTMC. These are very general, indeed it is just
asked them to be ergodic and to have a stationary distribution.

• The conditions on the composed process state space. The exclusion mechanism
appears to be very flexible. Defining a partition on the state space is a really
general approach. In fact, several interacting systems can be represented by
this approach. In the original paper the author gives an example where he
shows how the exclusion mechanism can model the availability of multiple
resources.

• The conditions on the composed process transition rates. We think that this
is a key-condition for the product-form and we focus on its meaning. Suppose

1.3. Product-form interacting Markov chains 9

Figure 1.2: Composed process with state space Γ. In Boucherie’s definition the
dotted lines are not present, however, as discussed in the conclusions, for many
practical cases they should be modeled. All the transition rates are equal to v > 0.

that CTMCs k, k′ conflict on resource i. Then when one of the two CTMCs
is in a state belonging to the set Aki or Ak′i the other Markov chain cannot
change its state at all. The following example aims to illustrate by a practical
case of study the Bocuherie product-form requirements.

Example 2 Let us consider two identical processes which perform the following
tasks:

think︸ ︷︷ ︸
a

→ print︸ ︷︷ ︸
b

→ input data︸ ︷︷ ︸
c

→ think → · · ·

The printing state requires to use of the shared resource printer so there is a competi-
tion on that resource. This is basically the CTMC of Example 1 where it is assumed
that all the tasks have an exponential distributed duration with the same mean. The
point is that Boucherie’s framework requires that when a process is printing the other

10 1. Stochastic models

one is stopped, independently of the state it is in. There are no reasons, from a mod-
elling point of view, for stopping a process which is performing an input action when
the other process is printing. In Figure 1.2, by adding the dotted arcs, one obtains
the process how it should be from a modelling point of view. But the Boucherie’s
product-form is lost.

1.3.2 Stochastic Automata Networks in product-form

In this paragraph we briefly recall product-form stochastic automata networks. As
we are not using these models in the rest of this work, we just cite the main results
in this field.

Stochastic Automata Networks (SAN) are introduced in [100] to model dis-
tributed parallel algorithms. SANs use a very low level formalism in which every
component is an annotated Markov Chain, therefore all the well-known product-
forms can be mapped into this formalism. A SAN consists of a number of individual
stochastic automata that operate more or less independently one of each other [100].
Every automaton of the SAN is characterized by a state that changes on the time
t. The state of the SAN is given by the state of every stochastic automaton that it
consists of.

The automata of a SAN can interact in two ways:

1. The rate at which a transition occurs in an automaton can depend on the state
of a set of automata of the SAN.

2. A transition in one automaton can force a transition to occur in one ore more
other automata.

Note that it is possible to represent these interaction types by PEPA, so we cover
this topics in the following chapters.

SANs product-form conditions are studied for example in [47, 48] in the case of
interactions of type 1.

1.4 Conclusions

In this chapter we have recalled the main definitions of Markov Chains both in
discrete-time (DTMC) and in continuous-time (CTMC). Moreover, we have intro-
duced the concept of interacting Markov Chains and the definition of product-form.
It is worthwhile pointing out that the product-form is a property that is defined
on the CTMC underlying a model, whatever formalism is used to define it. How-
ever, working at the CTMCs level has some limitations. First of all the conditions
can be hard to be interpreted semantically. For example, if we consider a queueing
model (formally introduced in the next chapter) we expect that the conditions for
the product-form are expressed in terms of queueing theory concepts, such as cus-
tomers, arrival events, queueing disciplines and so on. Understanding a condition

1.4. Conclusions 11

on the CTMC at a higher level can be a real hard task for a modeler. However,
from a theoretical point of view, it can be useful to understand the product-form
conditions expressed for higher level formalisms in terms of properties of the associ-
ated CTMC. This analysis allows us to study the interaction of several product-form
model classes defined for different formalisms. In the following chapters we show
that, under appropriate conditions, product-form models expressed by different for-
malisms can be combined originating a hybrid modeling formalism that preserves
the product-form property of its components.

12 1. Stochastic models

2
Queueing networks

2.1 Introduction

Queueing network models have been extensively applied to represent and analyze
resource sharing systems, such as production, communication and computer sys-
tems. They have proved to be a powerful and versatile tool for system performance
evaluation and prediction. A queueing network model (QN) is a collection of ser-
vice centers representing the system resources that provide service to a collection
of customers that represent the users. Customers compete for the resource service
and they possibly wait to be served in the queue into the service centers, according
to the queueing discipline. The analysis of QNs consists in evaluating a set of per-
formance measures, such as resource utilization, throughput and customer response
time. The dynamic behavior of a QN can be described by a set of random variables
that define a stochastic process. Under some constraints on the QN, it is possible
to define an associated underlying stochastic Markov process, and to compute the
QN performance indices by its solution.

The popularity of QNs for system performance evaluation is due to a good bal-
ance between a relative high accuracy in the performance results and the efficiency
in model analysis and evaluation. In this framework, the class of product-form net-
works has played a fundamental role. Product-form QNs have a simple closed form
expression of the stationary state distribution that allow us to define efficient algo-
rithms to evaluate average performance measures with polynomial time complexity
in the number of model components.

QNs extend the basic queueing systems that are stochastic models first intro-
duced to represent the entire system by a single service center. Queueing systems
have been first applied to analyze congestion in telephonic systems and then to study
congestion in computer and communication systems [77, 53, 81, 118, 85, 74]. A QN
represents a congestion and resource sharing systems as a network of interacting
service centers whose analysis often provides quite accurate prediction of their per-
formance. Despite of several assumptions of the class of queueing networks, they
have been observed to be very robust models [115]. QNs can be analyzed by analyti-
cal methods or by simulation. Simulation is a general technique of wide application,
but its main drawback is the potential high development and computational cost

14 2. Queueing networks

to obtain accurate estimates. Moreover, interpreting simulation outcomes can be
quite difficult [82]. Analytical methods require the model to satisfy a set of assump-
tions and constraints and are based on a set of mathematical relationships that
characterize the system behavior.

Jackson [73] introduced product-form QNs for open exponential networks and
Gordon and Newell [54] for closed exponential networks. They introduce several as-
sumptions on the model characteristics and provide a simple closed-form expression
of the stationary state distribution and some average performance indices. This class
of models was then extended to include several interesting and useful characteristics
to represent more complex system. These features include different types of cus-
tomers of the networks, various queueing disciplines (i.e., the scheduling algorithms
of the waiting queues), a class of state-dependent service rates, a class of state-
dependent probabilistic routing among the service centers and some constraints on
the population of the subnetworks. The main result concerning product-form QNs
in known as the BCMP theorem and was presented by Baskett, Chandy, Muntz
and Palacios [17]. It defines the well-known class of BCMP QNs with product-
form solution for open, closed or mixed models with multiple classes of customers,
various service disciplines and service time distributions and some types of load-
dependent functions for the arrival process and the customers service time. The
stationary state distribution is expressed as the product of the distributions of the
single service centers with appropriate parameters and, for closed networks, with a
normalizing constant.

Various computational algorithms can be applied to analyze and to evaluate the
performance indices of product-form QNs. The relevance of these solution algo-
rithms is twofold. First, they provide a powerful tool in the efficient analysis of
large QN models, and the analyst can choose the appropriate and most convenient
algorithm depending on the type of model. Second, these algorithms provide a basis
for approximate solution methods of more general network models with and with-
out product-form. The most relevant solution algorithms for closed networks are
the Convolution Algorithm [29] and the Mean Value Analysis [103]. They provide
the evaluation of average performance indices with a polynomial space and time
computational complexity in the network dimension that is the number of service
centers and the network population. Product-form networks with multiple classes
of customers are more difficult to analyze. Various types of customers define the
customer classes in the network that are gathered into chains. Both Convolution
and MVA algorithms have been extended to multiclass networks [101, 107, 79, 26],
but their cost grows exponentially with the number of customer classes or chains.
Other algorithms for multiclass QNs have been proposed. The tree Convolution and
tree MVA algorithms for multiple chain networks are based on a tree data structure
to optimize the algorithm computation [80, 119, 72]. Other algorithms for multi-
ple chain QNs with several types of customers are Recursion by Chain Algorithm
(RECAL) [41, 42], Mean Value Analysis by Chain [40] and Distribution Analysis by
Chain (DAC) [44]. Their computational complexity is polynomial with the number

2.1. Introduction 15

of classes of customers, but exponential in the number of service centers.
The main computational algorithms for QNs have been integrated in various

software tools for performance modelling and analysis that include user friendly
interfaces based on different languages to take into account the particular field of
application, e.g., computer networks, computer systems. This allows not expert
users to apply efficient performance modelling techniques [85, 106, 118, 30]. More
recently, the solution algorithms for QNs have been integrated with model specifica-
tion techniques to provide tools for the combined functional and quantitative system
analysis [113].

Product-form networks fulfill various interesting properties. The insensitivity
property states that the analytical results, i.e., the stationary state distribution
and the average performance indices, depend on the service time requirements only
through their average. Similarly, the performance indices depend on the customers
routing only through the average visit ratio to each service center [17, 32, 33, 112,
123]. Another important property of product-form QN models is that aggregation
methods yield exact results. The aggregation theorem, introduced by Chandy, et
al. [31], allows for the replacement of a subnetwork with a single service center, so
that the new aggregated network has the same behavior of the original one in terms
of a set of performance indices. From the performance viewpoint, exact aggregation
allows us to apply the hierarchical system design process by relating the performance
indices of the models at different levels in the hierarchy [85]. In a bottom-up analysis
of systems represented by a succession of QNs exact aggregation defines the next
model. Similarly, in a hierarchical top-down design of system with given performance
requirements, the inverse process of disaggregation or development of the network
can be applied to define a more detailed model with the same performance indices
[10]. Aggregation is an efficient technique when applied to the analysis of nearly
complete decomposable systems. Informally, such a system can be decomposed into
subsystems whose internal interactions are much higher than the interactions among
the subsystems [43]. Exact aggregation for product-form QNs provides a basis for
approximate solution methods of more general non-product-form network models
[87].

More recently, further research has been devoted to the extension of the class
of product-form network models and to its characterization. Some interesting new
features have been defined such as the G-Networks, that are QNs with positive
and negative customers proposed by Gelenbe [50] that can be used to represent
special dynamic of actual systems. Some other more complex models include various
functions of state-dependent routing and several special cases of QNs with finite
capacity queues, finite population constraints and blocking [2, 8, 24, 55, 78, 117, 120].
Nelson in [96] discusses the mathematics leading to the product-form results and the
properties of the stochastic process underlying the network model. Some extensions
of product-form QN are presented in [120]. Product-form solution has been extended
to QNs with batch arrivals and batch services [64, 65] that are also related to discrete-
time QN models.

16 2. Queueing networks

Some extensions of non product-form QNs have been proposed to represent
special classes of systems and communication models, such as Layered Queueing
Networks and Extended QN to represent more complex system, e.g., with simul-
taneous resource possession, finite capacity queues and blocking, and fork and join
[81, 108, 3, 104, 99, 8].

We shall now provide an introduction to QN models applied to represent and
analyze resource sharing systems. In particular we consider the class of product-
form QNs, the main analytical methods to derive a significant set of performance
indices, some relevant QNs properties and their applications to system performance
evaluation.

2.2 Basic queueing systems

The simplest queueing network consists of a single service center that models the
entire system. Basic queueing systems have been defined in queueing theory and
applied to analyze congestion systems. The analysis of queueing systems relies on
the theory of stochastic processes [38, 77, 81, 108, 74, 118]. Under appropriate
independence and exponential assumptions on the model random variables, it is
possible to define a continuous-time Markov processes associated with the queueing
system. Then, queueing system analysis is usually based on the solution of the
underlying Markov process.

A simple queueing system or service center is illustrated in Figure 2.1. The
system models the flow of customers as they arrive, wait in the queue if the server
is busy serving another customer, receive service, and eventually leave the system.
For example, a uniprocessor computer system can be modeled by a simple queueing
system where the program to be executed are the customers, the processes ready
for execution are in the queue, the processor is the server whose service models
program execution. To describe the behavior of a queueing system in time, we have

Figure 2.1: A queueing system.

to specify five basic characteristics: 1) the arrival process, 2) the number of servers,
3) the service process, 4) the service or queueing discipline and 5) the system or
queue capacity.

1. The arrival process to a queueing system describes the behavior of customers
arrivals. We define the interarrival time as a random variable representing the
time between two consecutive arrivals. The mean arrival rate is the average

2.2. Basic queueing systems 17

number of arrivals per unit of time, and is denoted by λ. The Poisson process
is often assumed as the arrival process. This corresponds to an exponential
interarrival distribution.

2. The set of identical parallel servers can simultaneously service the customers.
Each server may correspond to a physically or logically separate service facility
of the system, with a common queue shared by all customers.

3. The service process describes the customer service. We define the service time
as a random variable representing the time spent for a customer service whose
mean is 1/µ, where µ can be interpreted as the mean service rate.

4. The queueing discipline describes the scheduling algorithm for the customers
in the queue. If a customer arrives at the system at a time the server(s) is
unavailable to provide service to it, it is forced to wait in the queue temporarily
until it can start receiving service. If there is more than one customer waiting
in the queue at a time the server becomes available, one of the customers in the
queue is selected to start receiving service. The customers’ selection for service
is referred to as the queueing discipline. Queueing discipline may depend on
the arrival time, the customer priority and the possible service already given
to the customer. Classical examples of queueing disciplines depending only
on the arrival time are First Come First Served (FCFS) and Last Come First
Served (LCFS). A queueing discipline is work-conserving if there is no artificial
creation or loss of work in the system.

5. Finally, the system capacity is the upper limit on the number of customers
(waiting for and receiving service) in the system. Most analytical studies
require the queue size to be infinite, i.e., large enough to accommodate all
arriving customers. However, systems have often finite resources imposing an
upper bound on the number of customers that can be waiting in the queue
simultaneously.

The Kendall’s notation A/B/X/Y /Z describes the queueing process of a single
queueing system where A indicates the arrival process, B the service process, X the
number of parallel servers, Y the system capacity, and Z the service discipline. The
simplified notation A/B/X describes a queueing system with infinite capacity and
FCFS queueing discipline. Arrival and service processes are denoted by symbols of
probability distributions, e.g., D for Deterministic, M for exponential, G for general
distribution. For example M/M/1 denotes the system with Poisson (Markov) arrival
process, exponential (Markov) service process and a single server and M/G/1 the
same system except for the service time that has a general or arbitrary distribution.

The analysis of a queueing system aims to evaluate a set of performance indices,
including the following ones:

• n: the number of customers in the system, i.e. in the queue and being served

18 2. Queueing networks

• w: the number of customers in the queue

• tr: the customer response time

• tw: the customer waiting time

• U : system utilization, that is the percentage of time the system is busy serving,

• X: throughput, i.e., the average number of customers served per unit of time.

Queueing system analysis usually evaluates the latter two average performance in-
dices and the probability distribution or the first moments of random variables n
and w, and possibly tr and tw.
Let s denote the number of customers in service and let ts denote the service time,
where E[ts] = 1/µ is the average service time. Then we can write n = w + s and
tr = tw + ts. Let N denote the average number of customers in the system and R
the mean response time, i.e., N = E[n] and R = E[tr]. Hence:

N = E[w] + E[s]

R = E[tw] + E[ts].

Queueing systems are analyzed by defining an associated discrete-space con-
tinuous-time stochastic process, whose state include the system population n. Under
independent and exponential assumptions we can define an underlying continuous-
time Markov chain whose stationary solution is given by Formula (1.4) [77]. Other
performance indices can be derived by the stationary state probability and the basic
relations, such as Little’s law. For some queueing systems, such as the M/M/1 and
M/M/m systems, the underlying Markov process is a birth and death Markov pro-
cess, which yields the simple closed-form solution of the stationary state probabilities
given by Formula (1.5). Hence, these queueing systems can be easily analyzed and
the average performance indices show simple analytical expressions.

M/M/1

The M/M/1 queueing system has Poisson independent arrivals, exponential service
time distribution, one server and FCFS discipline. Let λ denote the arrival rate, µ
the service rate and let ρ = λ/µ denote the traffic intensity. The system state is
defined by n, the customer population and the stationary state probability πn can
be computed by the underlying Markov process that is a birth and death process
with constant rates λ and µ. If the system satisfies the stability condition, from
Formula (1.5) we immediately obtain:

πn = ρn(1 − ρ) n ≥ 0. (2.1)

The M/M/1 is stable if the ρ < 1, i.e., if the arrival rate is less than the service
rate, λ < µ. Hence, by the state probability and by Little’s law we can derive

2.2. Basic queueing systems 19

other performance indices, such as the average population, the mean response time,
system throughput and utilization as follows:

N =
ρ

1 − ρ
(2.2)

R =
1/µ

1 − ρ
(2.3)

U = 1 − π0 = ρ (2.4)

X = λ. (2.5)

M/M/m

The M/M/m queueing system extends system M/M/1 to m servers under the same
exponential and independence assumption for the arrival and service processes, with
arrival rate λ and service rate µ for each independent server. Let us define ρ =
λ/(mµ). The system state is defined by the customer population as for the M/M/1
system and the associated Markov process is still a birth and death process with
constant birth rate λ and variable state-dependent death rate µn = min{n,m}µ for
state n ≥ 0. If the system satisfies the stability condition, that is if ρ < 1, then by
Formula (1.5) we obtain:

πn =

(mρ)n

n!
π0 if 1 ≤ n ≤ m

mmρn

m!
π0 if n > m

(2.6)

where:

π0 =
[m−1∑

k=0

(mρ)k

k!
+

(mρ)m

m!

1

1 − ρ

]−1

.

Hence we can derive other performance indices, such as the average population and
the mean response time as follows:

N = mρ + πm
ρ

(1 − ρ)2

R =
1

µ
+

πm

mµ(1 − ρ)2
.

M/M/∞

The M/M/∞ queueing system has Poisson independent arrivals with arrival rate λ
and an unlimited number of independent exponential servers, each with service rate
µ. As a consequence the customers never queue and we can immediately observe
that the mean response time is equal to the mean service time, i.e., R = 1/µ. Let
ρ = λ/µ. The Markov process associated with M/M/∞ is a birth and death process

20 2. Queueing networks

with constant birth rate λ and variable state-dependent death rate µn = nµ. The
system is always stable, and the stationary state probability is given by:

πn =
ρn

n!
e−ρ k ≥ 0, (2.7)

from which we obtain the average population N = ρ.

We can apply this type of analysis to various types of M/M/1 queueing sys-
tems by defining and solving the associated Markov chain such as for example the
M/M/1/B system with finite capacity B and the M/M/1//K system with finite
population K. For these and similar basic queuing systems we can derive closed
form expressions for the stationary state probability πn and other average perfor-
mance indices [38, 77].

2.2.1 Coxian distribution

Many results for single queueing systems can be obtained by assuming exponential
distributions for the service and the arrival times. However, for modeling purposes
this can be a constraint that should often be relaxed. We shall now introduce a class
of quite general distributions used in the analysis of QNs. Coxian distributions are
defined as a linear combination of exponential variables, and can be represented by
a network of exponential stages. Coxian distributions play an important role in QNs
for two reasons: first they are used to model the service time distributions for some
station types (from 2 to 4) in BCMP QNs [17], as we shall see in Section 2.3.3. A
second reason is that Coxian distribution has a rational Laplace transform and can
approximate any distribution arbitrarily closely [77].

Figure 2.2 illustrates a queueing system whose service time is modeled by a Cox-
ian distribution with L exponential stages. There can be at most one customer in
stages 1 to L at any time. Customers enter the service via stage 1. The service
time at node `, 1 ≤ ` ≤ L, is exponentially distributed with mean 1/µ`. A customer
completing its service at stage ` leaves the system with probability b` or proceeds
to stage ` + 1 with probability a`, (a` + b` = 1, 1 ≤ i ≤ L − 1). After stage L, the
customer leaves the system with probability 1 (bL = 1). This service distribution is
referred to as a Coxian distribution with L stages. This framework allows an arbi-
trary distribution that does not have the Markovian property to be approximated by
a Coxian distribution that has the Markovian property. For example, consider the
service process of Figure 2.2 with b` = 0, 1 ≤ ` ≤ L−1 and µ` = µ, 1 ≤ ` ≤ L. This
represents the Erlang distribution with L stages. Its coefficient of variation is equal
to 1/

√
λ and as L → ∞, it goes to zero approximating a deterministic distribution.

Coxian random variable distribution can be seen as a special case of Phase-type
distributions. Informally, given a CTMC with k + 1 states of which states 1, . . . , k

2.2. Basic queueing systems 21

Figure 2.2: A queueing system with a Coxian server with L stages.

are transient and state k + 1 is absorbing, a continuous phase-type distribution
can be defined as the random variable that gives the time until absorption in the
CTMC. Every phase-type distribution can be represented by a generalized stage-
type distribution, i.e., a series-parallel network of exponential stages [97].

2.2.2 Queueing disciplines

Queueing system behavior and performance indices depend on various system pa-
rameters and specifically on the scheduling or queueing discipline. Customer schedul-
ing may depend on the arrival time, like FCFS and LCFS discipline or may be in-
dependent of the time arrival and service demand, such as the Random scheduling.
Computer system processor scheduling often use Round-Robin discipline where each
customer is served for a fixed quantum of time δ. If we consider the quantum size
δ much smaller that the average service time then for δ → 0 we can define the Pro-
cessor Sharing (PS) discipline. In a system with PS discipline and service rate µ,
when there are n customers waiting in the queue, each customer receives the service
with rate µ/n.
The scheduling discipline where all the customers are immediately served by a free
server is called Infinite Server (IS). Examples of IS or delay service centers are ter-
minal components in timesharing computer systems. The queueing algorithm may
depend on the service time required by the customer and possibly the service al-
ready given to the customer. Examples are the Shortest Processing Time First, the
Shortest Remaining Processing Time First (SRPTF).
The algorithms may also depend on the customer priority that may be defined by
some abstract classification of the customers or may depend on the service time.
Priority discipline can be with or without preemption. The latter type applies pri-
ority scheduling when the server is assigned to a customer after an idle period or
at the service completion, and the service is never interrupted. Preemption priority
allows a customer with higher priority then the one currently in service to interrupt

22 2. Queueing networks

that service and to be served. Note that in this case the customers with low priority
do not affect the behavior of the customers with high priority.

In the following we mainly focus on the following disciplines FCFS, LCFSPR
(LCFS with preemptive resume, i.e., the work done for a preempted customer must
not be repeated), PS and IS. Queueing networks whose nodes have such queueing
disciplines can be efficiently analyzed under special conditions, as we describe in the
next Section.

2.3 Queueing networks

In this section we introduce QN models. First in Sections 2.3.1 and 2.3.2 we define
the model whose analysis is based on the solution of the associated Markov stochastic
process. Then in Section 2.3.3 we focus on the class of product-form QNs and we
review BCMP theorem. Section 2.3.3 discusses the characterization of product-form
QNs and reviews both BCMP extensions and non BCMP QNs.

2.3.1 Model definition

A queueing network (QN) is a collection of service centers (or stations or nodes) that
serve a set of customers. The customers move among the stations according to a
given routing. If the total number of customers, i.e., the population, in the network
is constant then the network is closed. If customers may arrive from (depart to)
places outside the network then the network is open. Informally, a QN is defined by
a set of M service centers Ω = {1, . . . ,M}, the set of customers and the network
topology.

Each service center is defined by:

• the number of servers. We usually suppose independent and identical servers;

• the service rate. Each server can serve a customer with a speed which can be
either constant or dependent on the station state.

• the queueing discipline. The customers in the service center wait to be served
according to the scheduling discipline, as introduced in Section 2.2.2.

Customers are described by:

• their total number for closed models,

• the arrival process to each service center for open models,

• the service demand to each service center. The service demand of the customer
is expressed in units of service. The service rate of each server is given by
units of service / units of time. Hence, we usually consider that the service
time combines these two parameters as follows: let α be the customer service
demand and β the server service rate, then the ratio α/β is the service time.

2.3. Queueing networks 23

The network topology models the customer behavior among the interconnected
service centers. We assume a non-deterministic behavior represented by the fol-
lowing probabilistic model. In a QN with M stations, when a customer completes
its service in station i it immediately exits the node and moves to station j with
probability pij, with 1 ≤ i, j ≤ M . For open networks, the customer may also exit
the QN from station i with probability pi0. Then the customer behavior in the QN
is represented by the routing probability matrix P = [pij], 1 ≤ i, j ≤ M , where∑M

j=1 pij = 1 for each station i.
A QN is well-formed if it has a well-defined long-term customer behavior, i.e.:

• a closed QN is well-formed if every station is reachable from any other with a
nonzero probability;

• for open QNs we can add a virtual station 0 that represents the external behav-
ior, that is it generates external arrivals and absorbs all departing customers,
so obtaining a closed QN. Thus an open QN is well-defined by referring to the
closed QN definition. Note that for open networks the well-formed property
does not imply that the network is stable but just that it has a well-defined
long-term customer behavior. Therefore, when we close an open network to
decide this property, we can assume a population of just one customer.

In simple queueing models we assume that all the customers are statistically iden-
tical, i.e., the service times and the routing probabilities are independent of the
customer identity. However, modelling real systems can require to identify different
categories of customers that define both the service time and the routing probabil-
ities. To this aim we introduce QNs with multiple types of customers, by defining
the concepts of class and chain. In the following we use classes in the global sense
(see for example [74, 17, 108, 81]) as opposed to the local sense (see for example
[102, 34]). A chain forms a permanent categorization of customers, i.e., a customer
belongs to the same chain during its whole activity in the network. A class is a
temporary classification of customers, i.e., a customer can switch from a class to
another (usually with a probabilistic behavior) during its activity in the network.
The customer service time in each station and the routing probabilities usually de-
pend on the class it belongs to. So we can have multiclass single chain QNs or
multiclass and multiple chain QNs. In the following R denotes the set of classes of
the QN, R the number of classes, C the set of chains and C the number of chains.
In a well-formed QN, classes can be partitioned into chains, such that there cannot
be a customer switch from classes belonging to different chains. The probabilistic
behavior of customers in a well-formed QN is represented by C routing probability
matrices P(c), one for each chain c. A customer that completes its service at station
i and class r, either leaves the system with probability p

(c)
ir,0 or immediately moves

to a station j in class s with probability p
(c)
ir,js, 1 ≤ i, j ≤ M , r, s ∈ R and r, s

belongs to the same chain c. For multiple chain QNs, we distinguish open chains,
i.e., if arrivals from and departures to the outside are allowed, and closed chains,

24 2. Queueing networks

i.e., when there is a finite number of customers. Let K(c) denote the population of
a closed chain c ∈ C and let p

(d)
0,ir > 0 denote the routing probability of an external

arrival to station i, class r of open chain d ∈ C. A QN is said to be open if all its
chains are open, closed if they are all closed, and mixed otherwise. We can apply
an algorithm [74] that checks whether a multiclass and multiple chain QN is well-
formed, given set Ω and the routing matrices, and it defines a partition of the set
E = {(i, r) : r ∈ R, 1 ≤ i ≤ M} into C ergodic chains. We summarize the notation
for QN classes and chains as follows:

• R is the set of classes and R = |R|

• Ri = {r : ∃j, s, c : p
(c)
js,ir > 0 ∨ p

(c)
0,ir > 0 r, s ∈ R, c ∈ C, 1 ≤ j ≤ M} is the

set of classes served by station i, so R =
∪M

i=1 Ri,

• Ec = {(i, r)|r ∈ Ri, 1 ≤ i ≤ M, class r belongs to chain c},

• R(c)
i = {r ∈ R, (i, r) ∈ Ec} is the set of the classes served by station i belonging

to chain c, 1 ≤ i ≤ M and 1 ≤ c ≤ C, so Ri =
∪C

c=1 R
(c)
i ,

• R(c) =
∪M

i=1 R
(c)
i is the set of all classes belonging to chain c. We use r(c) to

point out that a class r belongs to the set R(c).

Example. Figure 2.3 shows an example of a two node multiclass and multiple chain
QN. The QN has R = 3 classes and C = 2 chains. Chain 1 is open and formed by
classes 1 and 2, while chain 2 is closed. Figure 2.4 sketches how to identify chains
of the QN by the analysis of the strong connected components of a directed graph,
whose nodes denote the couples (station, class) and arrows are determined by the
QN routing matrix. Then we have R = {1, 2, 3}, R1 = {1, 2, 3}, R2 = {1, 3},
E1 = {(1, 1), (1, 2), (2, 1)}, E2 = {(1, 3), (2, 3)}, R(1)

1 = {1, 2}, R(1)
2 = {1}.

Figure 2.3: Example of multiclass and multiple chain queueing network.

A chain c, 1 ≤ c ≤ C, is said to be a single-class if it is has just one class, so
that there is not class switching inside the chain. In the QN of Figure 2.3, Chain
1 is not single class, while Chain 2 is single class. When all the chains of a QN
are single-class, then we say that the QN is single class and multiple chain instead
of multiple chain with a single class for chain. In this case, the notation can be

2.3. Queueing networks 25

Figure 2.4: Example of a class graph for a multiclass and multiple chain queueing
network.

simplified, e.g., an element of the probability routing matrix P(c), 1 ≤ c ≤ C, can
be written as p

(c)
ij = p

(c)
ir,jr, where r is the only class of chain c. p

(c)
ij represents the

probability for a chain c customer of going to station j after being served by station
i. Figure 2.5 illustrates and example of single class and multiple chain QN with two
chains and three stations.

Figure 2.5: Single class and multiple chain queueing network.

In the following we suppose that the QNs are well-formed and admit a station-
ary behavior, i.e., in the long-run no class can be permanently empty or have an
unlimited growth of the number of customers with non-null probabilities.

2.3.2 Markovian queueing networks

Consider a QN with M stations, Ω = {1, . . . ,M} and R classes. Let nir(t) be the
number of customers of class r at the station i at time t, ni(t) =

∑R
r=1 nir(t) the total

number of customers at station i at time t and ni(t) = (ni1(t), . . . , niR(t)). Let the
state of the QN at time t be n(t) = (n1(t), . . .nM(t)). If the stochastic process that
describes the evolution of the state n(t) of a QN is a Markov process, then we say that
the QN is Markovian. Hereafter we consider just Markovian QNs whose underlying

26 2. Queueing networks

stochastic processes are discrete-space time-homogeneous ergodic Markov chains. As
we are interested in studying the steady-state performance indices, we can ignore
the time parameter t in the state definition. A Markovian QN requires independence
and exponential assumptions of the random variables that represent the state. If
we consider independent Poisson arrivals for open chains and exponential service
time distributions whose rate can depend only on the state of the system then we
can define an associated Markov chain with state n. Let π(n) denote the stationary
probability of state n and let Q = [qn,n′] be the infinitesimal generator of the Markov
chain, where qn,n′ denotes the transition rate from state n to state n′. If the QN is
stable, the Markov chain has a steady-state solution. The steady state probabilities
π are defined as the normalized solution of the system of global balance equations
(1.4).

Other performance indices of the QN are derived from the stationary state dis-
tribution of the process. Unfortunately, the generality of this approach is limited by
its computational complexity. One can easily observe that the process state space
cardinality, i.e., the number of states and of global balance equations, often makes
the solution of the system intractable. More precisely, for an open network the pro-
cess state space is infinite and we can obtain an exact solution only in some special
cases, when the matrix Q shows a particular regular structure. For example some
QNs with special structure can be analyzed by matrix-geometric technique [97]. For
a closed network the process state space grows exponentially with the network pa-
rameters that are the number of service centers, customers and customers types. For
example, for a single class exponential QN with M service centers and K customers
the state space cardinality is

(
M+K−1

K

)
. Hence a direct solution of the QN by the

underlying Markov process becomes soon prohibitively expensive.
Note that Markovian QNs can be defined also by relaxing exponential conditions

for the time distribution. By using Coxian or Phase-type distributions and by a more
detailed and appropriate state definition, it is still possible to define the underlying
Markov chain. However, this further increases the state space complexity and its
cardinality.

In the next section we introduce the class of QNs with product-form that shows
a simple closed form of the stationary probability.

2.3.3 BCMP Product-form queueing networks

Product-form QNs provide precise and detailed results in terms of performance in-
dices such as queue length distribution, average response time, resource utilization
and throughput. These performance indices are evaluated for each component and
for the overall network. Product-form network analysis is based on a set of as-
sumptions on the system parameters that lead to a closed-form expression of the
stationary state distribution. Consider a single class and single chain QN with M
service centers. Let n = (n1, . . . , nM) be its state, and ni the number of customers at
station i, and finally n =

∑M
i=1 ni the network population for 1 ≤ i ≤ M . Product-

2.3. Queueing networks 27

form QNs show a closed-form of the joint queue length distribution π that is defined
by the associated Markov process, as follows:

π(n) =
1

G
d(n)

M∏
i=1

gi(ni), (2.8)

where G is a normalizing constant, function d is defined in terms of network pa-
rameters and gi is a function of ni and depends on the type of service center i,
1 ≤ i ≤ M . For open networks G = 1, whereas for closed networks d(n) = 1.
Product-form QNs have been first introduced by Jackson for open QNs in [73], and
by Gordon and Newell for closed QNs in [54]. Both these models require exponential
service time distributions, Poisson arrivals for Jackson networks, and consider only
single class and single chain QNs. BCMP theorem [17] extends these classes of QNs
to open, closed and mixed, multiclass and multiple chain QNs. It also considers
non-exponential service time distributions for certain scheduling disciplines.

Product-form QNs can be efficiently analyzed by algorithms with a polynomial
time computational complexity in the number of network components. This class of
models allows for a good balance between a relative high accuracy in the performance
results and the efficiency in model analysis and evaluation. Moreover, product-form
networks fulfill several interesting properties such as insensitivity and exact aggrega-
tion that greatly influenced the application of this class of models as a powerful tool
for performance evaluation. We shall now define the class of BCMP QNs, and then
we discuss some properties and possible characterizations of product-form QNs.

BCMP theorem [17] characterizes a wide class of QNs with product-form. Before
stating the main result of the theorem we introduce the hypothesis and the model
definition. In the following we refer to a QN which satisfies the following assumptions
as a BCMP QN. For the sake of clarity, we first present the BCMP theorem for
multiple chain, single class networks. In order to simplify the notation, we assume
that the class number and the chain number are the same, e.g., we can write c ∈ Ri to
identify a chain c served by node i. Then, we consider multiple chain and multiclass
networks.

Service center types.

The network consists of M service stations:

Ω = {1, . . . ,M}.

The number of classes and the number of chains are the same R = C and each chain
can be open or closed. We refer to the notation introduced in Section 2.3.1. BCMP
theorem considers four types of service centers:

Type 1: FCFS Service discipline and exponentially distributed chain-independent
service time.

28 2. Queueing networks

For types 2, 3 and 4 stations, the service time distributions have rational Laplace
transforms (see Section 2.2.1) and the average service rate can depend on the state
of each customer chain.

Type 2: PS Service discipline.

Type 3: IS service centers.

Type 4: LCFSPR Service discipline.

We first assume a constant service rate. Let µ
(c)
i denote the service rate of station

i for chain c customers, 1 ≤ i ≤ M and c ∈ C. For type 1 service centers µ
(c)
i = µi,

as the service time is chain independent.

State vector.

BCMP theorem gives a product-form solution for states with different levels of detail.
Let n = (n1, . . . ,nM) denote the network state, where:

• ni = (n
(1)
i , . . . , n

(C)
i) is the occupancy vector at station i, 1 ≤ i ≤ M ,

• ni =
∑C

c=1 n
(c)
i is the number or customers at station i, 1 ≤ i ≤ M ,

• n =
∑M

i=1 ni is the total number of customers in the network,

• n(c) =
∑M

i=1 n
(c)
i is the number of customers of chain c in the network, 1 ≤ c ≤

C. Note that n(c) = K(c) if c is a closed chain.

Arrivals to open chains.

For open chains, customers arrive to the network from an external source. There
are two possible state dependencies for the arrival process. In the first case the total
arrival process to the network is a Poisson process with parameter λ(n) where n is
the total number of customers in the network. Arrivals are distributed among the
classes according to the routing probabilities. Let p

(c)
0i denote the probability of an

external arrival to node i and open chain c, then by the decomposition property of
Poisson processes, the arrival process to station i and chain c is a Poisson process
with rate λ(n)p

(c)
0i , with

∑M
i=1

∑
c∈Ri

p
(c)
0i = 1. In the second case the arrival processes

to different open chains are independent Poisson processes whose rates depend on the
total number of customers of the associated chain, i.e., λc(n

(c)) where 1 ≤ c ≤ C and
c is an open chain. The arrival process to station j, 1 ≤ j ≤ M is a Poisson process
with rate λc(n

(c))p
(c)
0j . The routing probabilities satisfy the normalizing condition∑M

i=1 p
(c)
0i = 1. For a closed chain c, we set p

(c)
0i = 0 for every station i = 1, . . . ,M

and let K(c) denote the constant chain population, i.e., n(c) = K(c) for all states n.

2.3. Queueing networks 29

Traffic equations.

We first define the set of expected number of visits or (relative) throughput for each

node i and chain c, denoted by e
(c)
i . These values are obtained as the solution of the

following C systems of linear equations, called traffic equations:

e
(c)
j =

M∑
i=1

e
(c)
i p

(c)
i,j + p

(c)
0,j j = 1, . . . ,M 1 ≤ c ≤ C (2.9)

These systems uniquely define the solution e
(c)
j if chain c is open, while they are

not uniquely determined if chain c is closed. If chain c is open e
(c)
j represents the

expected number of visits (visit ratio) for a customer of chain c at station i. If chain

c is closed, then we replace one equation for a station i such that R(c)
i 6= ∅ with

e
(c)
i = 1, and we obtain a set of linear independent equations. Then the solution e

(c)
j

represents the relative visit ratio of a customer belonging to chain c to station j for
each visit to station i. Let us define the ρ

(c)
i = e

(c)
i /µ

(c)
i for each station i = 1, . . . ,M

and chain c ∈ R(c)
i , let ρ

(c)
i = 0 if c /∈ R(c)

i .

We now state the BCMP theorem:

Theorem 1 (BCMP theorem, single class, multiple chain [17]) Let Ω be a
BCMP QN under stability conditions. Then the following steady state probability
holds:

π(n) =
1

G
d(n)

M∏
i=1

gi(ni), (2.10)

where d(n) =
∏n−1

a=0 λ(a) if the arrival rate depends on the total number of customer

in the system, or d(n) =
∏C

c=0

∏n(c)−1
a=0 λc(a). Functions gi(ni) are determined as

follows:

• For type 1, type 2 and type 4 stations:

gi(ni) = ni!
[c∏

c=1

1

n
(c)
i !

(ρ
(c)
i)n

(c)
i

]
, (2.11)

considering µ
(c)
i = µi for type 1 stations.

• For type 3 stations:

gi(ni) =
C∏

c=1

1

n
(c)
i !

(ρ
(c)
i)n

(c)
i . (2.12)

30 2. Queueing networks

Sketch of the proof of BCMP theorem presented in [17]. The proof given
in [17] is based on a detailed definition of the network state and by substitution
of the product-form expression into the global balance equations of the Markov
continuous-time process underlying the QN. If i is a type 1 station then its state is
represented by vector bi = (bi1, . . . , bini

) where ni is the number of customers in the
station and bij is the number of the class of the j-th customer in the FCFS order. If
i is a type 2 or 3 station bi = (bi1, . . . ,biR) where bir is a vector whose components
represent the number of customers of class r at a certain stage of service. If i is a
type 4 station, its state is similar to the one introduced for type 1 stations but each
vector component always stores the customer service stage (note that the discipline
has resume feature). In order to prove the theorem it is shown that:

1. The stationary probability distribution for the detailed state (that we omit for
the sake of clarity) is correct by substitution on the global balance equations
system.

2. The stationary probability distribution for the state n defined above can be
obtained as marginal distribution of the aggregation of the detailed states.

Let us now consider stations with load-dependent service rates. BCMP theorem
identifies three kinds of state-dependent service rates:

Type A: The service rate of a customer at station i depends on the total number of
customers ni. Let xi(ni) be a positive function which gives the relative service
rate at station i, i.e., xi(1) = 1, such that the actual service rate for a class r
customer at station i is xi(ni)µir. Function xi is also called capacity function.
Then function gi defined by Equation (2.11) or (2.12) must be multiplied by
factor:

ni∏
a=1

1

xi(a)
.

Type B: The service rate of a class r customer at station i depends on n
(c)
i . De-

fine y
(c)
i (n

(c)
i) as a positive capacity function, similarly to xi definition in the

previous case. Then function gi definition must be multiplied by factor:

∏
c∈Ri

n
(c)
i∏

a=1

1

y
(c)
i (a)

.

Note that this state-dependent service rate violates the BCMP hypothesis for
type 1 stations, that is it applies only for types 2, 3 and 4.

Type C: The service rate of a customer at station i depends on the number of
customers in several stations. Let H ⊆ Ω be a subset of the station set, and

2.3. Queueing networks 31

nH =
∑

h∈H nh. Define zH(nH) to be a positive capacity function which rep-
resents the relative service rate when nH = 1. Then the product

∏
h∈H gi(ni)

in Equation (2.10) becomes:

[∏
h∈H

gi(ni)
] nH∏

a=1

1

zH(a)
.

Note that state-dependent service rates can be combined giving a great flexibility
to BCMP QN expressive power. For example, in order to model a PS (or LCFSPR)
with different mean service rates for class, with m constant rate servers, it suffices
to set xi(ni) = min{m, ni}/ni and y

(c)
i (n

(c)
i) = n

(c)
i .

BCMP theorem for multiclass and multiple chain QNs

We now state a more general form of the BCMP theorem, as presented in [17], for
QNs where a customer can move within a chain by class switching. In order to
represent class switching we have to modify the notation as follows:

• The routing matrices P(c) assume the general form p
(c)
ir,js for nodes i, j, classes

r and s in chain c as introduced in Section 2.3.1.

• Service rate at station i = 1, . . . ,M is relative to the class (for types 2, 3 and

4 stations), so we use µ
(c)
ir ,

• There are C independent traffic equation systems which define the (relative)

visit ratio for class and station, e
(c)
ir for i = 1, . . . ,M and r ∈ R(c)

i , 1 ≤ c ≤ C,
as follows:

e
(c)
jr =

M∑
i=1

∑
s∈R(c)

i

e
(c)
is p

(c)
is,jr + p

(c)
0,jr. (2.13)

Let us define ρ
(c)
ir = e

(c)
ir /µ

(c)
ir for station i, class r belonging to chain c.

• State n = (n1, . . . ,nM) components are the occupancy vectors for classes, i.e.,

ni = (n
(1)
i , . . . ,n

(C)
i) where n

(c)
i is a vector whose components n

(c)
ir represent

the number of customers of class r (belonging to chain c) at station i, for

r ∈ R(c)
i and 1 ≤ i ≤ M and 1 ≤ c ≤ C.

Then for a multiple chain and multiclass QN, Theorem 1 still holds by using the
following definitions of function gi:

gi(ni) = ni!
C∏

c=1

∏
r∈R(c)

i

1

n
(c)
ir !

(ρ
(c)
ir)n

(c)
ir , (2.14)

32 2. Queueing networks

for a service center i of type 1, 2 and 4, and:

gi(ni) =
C∏

c=1

∏
r∈R(c)

i

1

n
(c)
ir !

(ρ
(c)
ir)n

(c)
ir , (2.15)

for a type 3 service center i.
These QNs can have load-dependent service centers. The capacity function for

state-dependent service rates of type B can be reformulated considering the class
population instead of the chain population at the node, i.e., the capacity function
can be y

(c)
ir for station i, and r ∈ R(c)

i .

In order to evaluate the QN performance indices we can simplify the computation
of the BCMP product-form solution as follows:

Aggregation by chain. If Ω is a multiclass and multiple chain QN, under certain
assumptions we can compute the steady state probability on an aggregate
state. Consider an aggregated vector na where n

(c)
ai =

∑
r∈Ri

n
(c)
ir for i =

1, . . . ,M and c = 1, . . . , C. In the general case, as the service rate can depend
on the class of the customer, we can express the aggregated probability πa(na)
as sum of probabilities π(n) as follows:

πa(na) =
∑

n|
P

r∈R(c)
i

n
(c)
ir =n

(c)
ai

i=1,...,M∧c=1,...,C

π(n).

If for each station the service rate is load-independent or depends on the
network state according to type A, C or B (formulated on the chain population
and not the class population), then BCMP theorem for multiclass and multiple
chain QNs can be simplified to single class and multiple chain case. In fact
formulas (2.10), (2.11) and (2.12) hold by considering the (relative) visit ratio
at station i, 1 ≤ i ≤ M and chain c as the sum of the visit ratios for all the
classes belonging to the same chain as station i: e

(c)
i =

∑
r∈R(c)

i
e
(c)
ir , and the

service rate per chain is the weighted sum of the service rate of the classes
belonging to the same chain: µ

(c)
i =

∑
r∈R(c)

i
e
(c)
ir µ

(c)
ir /e

(c)
i .

Aggregation for open networks by node population. If all chains of the net-
work are open, arrival rates λ are constant and capacity functions xi(ni) are of
type A, then it is possible to simplify the steady state distribution expression
for the aggregated state n′ = (n1, . . . , nM) where ni is the total number of cus-

tomer at station i, ni =
∑C

c=1

∑
r∈R(c)

i
n

(c)
ir . In fact it is possible to study each

station in isolation considering ρi =
∑C

c=1

∑
r∈R(c)

i
λ ·ρ(c)

ir and capacity function

xi. These results provide a convenient way for normalizing probabilities and
checking if the stability condition are satisfied (i.e. ∀i = 1, . . . ,M : ρi < 1).

2.3. Queueing networks 33

2.3.4 Characterization of BCMP-like queueing networks

Product-form QNs allow for a derivation of a set of performance indices without
generating and solving the underlying Markov processes and the system of global
balance equations. The characterization of the classes of product-form QNs is an in-
teresting task. Under some assumptions (e.g., non-priority scheduling, infinite queue
capacity, non-blocking factors, state-independent routing probabilities), it is possi-
ble to give conditions on the service time distributions and on the station queueing
disciplines to determine whether a well-formed QN has a BCMP-like product-form
solution. We consider the following properties which are strictly related to product-
form: local balance, M =⇒ M , quasi-reversibility, station balance.

Local balance property.

This property states that the effective rate at which the system leaves state ξ due
to a service completion of a chain r customer at station i, equals the effective rate
at which the system enters state ξ due to an arrival of chain r customer to station i.
This result can be also generalized for multiclass and multiple chain networks. It can
be shown that, for some queueing disciplines, local balance holds even when service
time distributions are represented by a network of exponential stages [98, 32]. In
this case the state must include the stage at which a customer is being served. Note
that:

• If a steady state probability distribution π satisfies the local balance equations
(LBEs), then it satisfies also the global balance equations, but the opposite is
not true, i.e., LBEs are a sufficient condition for network solution.

• Solving LBEs is computationally more efficient than solving global balance
ones even if it still requires to handle the set of reachable states (which can be
a problem for open chains or networks). However if we need to prove that a
steady state formula is correct, it can be simpler to check if it verifies LBEs.

• The local balance is a property of a station embedded in a QN. The states we
are considering are still states of the network.

M =⇒ M property.

This property is introduced in [94] and it is defined for a single queueing system. An
open queueing system satisfies this property if under independent Poisson arrivals
for each class of customers, the departure processes are also independent Poisson
processes. Let us consider an isolated queueing station with R classes and a state
space Γ. Customers of class r arrive to the system according to independent Poisson
processes with rate λr. Let π(ξ) be the steady state probability of state ξ with ξ ∈ Γ,
let |ξ|r be the number of customers of class r in the station when the state is ξ. Define

34 2. Queueing networks

the set S+
r = {ξ′ : |ξ′|r = |ξ|r + 1}. Then the M =⇒ M property holds if:

∀ξ ∈ Γ
∑

ξ′∈S+
r

π(ξ′)qξ′ξ

π(ξ)
= λr, (2.16)

where qξ′ξ is the transition rate between state ξ′ and ξ. Note that:

• M =⇒ M property considers the station in isolation. Thus, it can be
used to decide whether a station with specific queueing discipline and service
time distribution, can be embedded in a product-form QN (see for example
[1, 86]). If each station of a QN satisfies the M =⇒ M property then it has
a product-form solution.

• If a network (a chain) is open and each of the station fulfills the M =⇒ M
properties, than the network itself satisfies the M =⇒ M property [94].

• In a QN with service centers with non-priority scheduling disciplines property
M =⇒ M holds for every station if and only if local balance holds [74, 22].

Quasi-reversibility property.

A queueing system exhibits the quasi-reversibility property if the queue length at
a given time t is independent of the arrival times of customers after t and of the
departure times of customer prior to t. It is possible to prove (e.g., in [76]) that a
QN whose stations are quasi-reversible has a product-form solution. Note that:

• Quasi-reversibility property is defined for isolated stations.

• It is easy to prove (see for example [74]) that all arrival streams to a quasi-
reversible system should be independent and Poisson, and all departure streams
should be independent and Poisson. In other words, a system is quasi-reversible
if and only if it exhibits the M =⇒ M property.

Station balance property.

This property is introduced in [32] and discussed in [98] and [33]. A scheduling
discipline satisfies the station balance property if the service rates at which the
jobs in a position of the queue are served are proportional to the probability that
a job enters that position. We call these kinds of scheduling disciplines symmetric
disciplines . Note that also this property is defined for an isolated station, and it
is a sufficient condition for product-form (e.g., FCFS does not fulfill the station
balance).

Figure 2.6 shows the relation between these properties:
It is worthwhile trying to characterize product-form QNs with higher level prop-

erties, e.g., properties of the scheduling discipline. We can summarize some obser-
vations:

2.3. Queueing networks 35

Figure 2.6: Relations between properties related to product-form for nonpriority
and work-conserving service centers.

• Every service center with: A) a queueing discipline which is work-conserving
and independent of the service time requirement of the customers, and B) an
exponentially distributed service time, fulfills local balance property.

• For symmetric disciplines the QN steady state probabilities only depend on the
mean of the service time distributions and on the values of their (relative) visit
ratio. This is know as the insensitivity property of product-form networks [32].
Moreover, we can say that the routing matrix influences the QN performance
parameters only for the computation of the visit ratios, i.e., two networks with
the same stations and different routing matrices are equivalent if they have
the same (relative) visit ratio for each station.

• The symmetric disciplines are the only ones that give product-form solutions
if the service time distribution is not exponential [33].

• A symmetric discipline starts serving a customer as soon as it enters in the
system, i.e., symmetric discipline are always preemptive discipline.

2.3.5 Other non-BCMP product-forms

Various extensions of the class of BCMP product-form networks have been proposed.
They include state-dependent routing [78, 117, 24], i.e., the definition of routing
probabilities are special functions that may depend on the state of the entire network
or of subnetworks and/or single service centers. This allows the formalism to model
systems with more complex features such as dynamic load balancing algorithms or
adaptive routing strategies. Such models usually assume some additional constraints
on the network parameters and a special structure of the routing state-dependent
functions. For example, Towsley [117] considered closed QNs where the routing for
some service centers may be a rational function of the queue length of the service
centers belonging to a downstream subnetwork with a particular topology, called
parallel subnetwork. Boucherie and VanDijk have proposed an extension to a more
complex state-dependent routing by considering a more detailed definition of routing

36 2. Queueing networks

functions dependent on the state of subnetworks called clusters and the state of
service centers [24]. The model assumes that the service centers are partitioned into
a set of subnetworks that are linked by a state-dependent routing. Then the routing
function between two service centers i and j that respectively belong to two disjoint
subnetworks I and J has the following expression: pi0(I)p′IJp0j(J), where pi0(I) and
p0j(J) are routing functions internal to subnetworks I and J , respectively, and p′IJ

denotes the routing between subnetworks. This model can be useful to represent
hierarchical and decomposable systems. Extensions of BCMP networks to include
different service disciplines have been derived. Le Boudec proved the product-form
solution for QNs with multiple-server nodes with concurrent class of customers that
allow to represent special systems [86].

Various special classes of non BCMP QNs have been proved to have product-form
solution under particular constraints. These QNs may represent some special system
characteristics, such as for example, finite capacity queues, population constraints
and positive and negative customers.

QNs with finite capacity queues, subnetwork population constraints and blocking
have product-form solution in some special cases [2, 8, 55, 120]. Various blocking
types that describe different behaviors of customer arrivals at full capacity service
centers and server activities in the network have been defined. For several special
combinations of network topology, types of service centers and blocking mechanisms
one can derive a product-form solution for the stationary state distribution. More-
over, one can derive various equivalence properties between product-form networks
with and without blocking and between networks with different blocking type, as
discussed in [8]

Another extension of QNs with product-form is the class of networks proposed
by Gelenbe [50] (G-networks) with positive and negative customers that can be
used to represent special system behaviors [51]. For example, negative customers
may represent commands to delete some transactions in databases or in a distributed
computer system due to inconsistency or data locking. A negative customer arriving
to a service center reduces the total queue length by one if the queue length is
positive and it has no effect otherwise. Negative customers do not receive service.
A customer moving between service centers can become either negative or remain
positive. Such a QN has product-form solution under exponential and independence
assumptions and with a Markovian routing and the solution is based on a set of non
linear traffic equations of the customers. G-networks also deal with multiclass of
customers [46]. Some further extensions have been introduced in order to extend the
modeling power of G-networks, such as the introduction of reset-customers [52], or
network state-dependent service rate and routing intensities, triggered batch signal
movement [49].

Product-form solution has been extended to QNs with batch arrivals and batch
services [64, 65] that are also related to discrete-time QN models. The model evo-
lution is described by a discrete-time Markov chain and assumes special expressions
for the probability of batch arrivals and departures and correlated batch routing.

2.3. Queueing networks 37

The product-form solution is based on a generalized expression of the traffic equa-
tions and the quasi-reversibility property of the network. The product-form solution
holds for continuous-time and discrete-time QNs.

38 2. Queueing networks

3
Stochastic models based on Petri

nets

Gonzo: Let’s synchronize our
watches.
Scooter: We don’t have any
watches.
Gonzo: That’s okay, I don’t know
what synchronize means anyway.

Jim Henson’s Muppet Babies

3.1 Introduction

In this chapter we introduce a very versatile stochastic modelling formalism, i.e.,
Generalized Stochastic Petri Nets (GSPNs). This formalism is based on Petri Nets
(PNs) firstly introduced by Carl Adam Petri in 1962. Petri nets are directed bi-
partite graphs consisting of places and transitions. Arcs connect the places to the
transitions and vice-versa. The state of the system is represented by a marking, i.e.,
a non-negative vector whose dimension is equal to the number of places of the net.
Basic Petri nets have been widely used in the modelling field because they combine
a great expressivity power with a set of formal methods of analysis. For example,
it is possible to decide if a deadlock can occur, or if the set of all possible states
is finite. A review of analysis methods available for basic Petri nets can be found
in [95]. Several extensions have been proposed for Petri nets. The introduction of
a special type of arc, the inhibitor arc, increases the expressive power of the for-
malism to be Turing-equivalent. In general, a Petri net model is non-deterministic.
Therefore, an immediate extension is the definition of a probabilistic Petri net, i.e.,
models that in case of non-determinism exhibits a probabilistic behavior. For per-
formance evaluation purposes the introduction of the time parameter is essential.
This extension introduces several semantic problems [74] whose solutions originate
different formalisms. In this context we focus only on Stochastic Petri Nets (SPNs)

40 3. Stochastic models based on Petri nets

as defined by Molloy in [92] and on Generalized Stochastic Petri Nets (GSPNs) as
defined in [36].

Section 3.2 introduces basic PN formalism and analysis. Section 3.3 introduces
Generalized Stochastic Petri nets formalism and defines SPN formalism as a special
case. Then the problems of the analysis are illustrated, with special attention for the
state space explosion problem. Section 3.4 illustrates the fundamental well-known
results about (G)SPN with product-form solution.

3.2 Basic Petri Nets (PNs)

In this section we briefly introduce the Petri net model class and cite some relevant
properties.

3.2.1 Petri net model definition

A Petri net is a tuple N = (P , T , I(·, ·), O(·, ·),m0) where:

• P = {P1, . . . , PM} is the set of M places,

• T = {t1, . . . , tN} is the set of N transitions,

• I(ti, Pj) : T × P → N is the input function, 1 ≤ i ≤ N , 1 ≤ j ≤ M ,

• O(ti, Pj) : T × P → N is the output function, 1 ≤ i ≤ N , 1 ≤ j ≤ M ,

• m0 ∈ NM represents the initial state of the GSPN, i.e., the number of tokens
in each place at the initial state.

For each transition ti let us define the input vector I(ti) and the output vector
O(ti) as follows: I(ti) = (i1, . . . , iM) where ij = I(ti, Pj), O(ti) = (o1, . . . , oM) where
oj = O(ti, Pj). We say that transition ta is enabled by marking m if mi ≥ I(ta, Pi) for
each i = 1, . . . ,M . Note that a marking can enable more than one transition. In this
case, if the firing of a transition disables the others, we say that the transitions are in
conflict, and the behavior of the net is not deterministic. When an enabled transition
fires it changes the state m of the net to m′ where m′ = m − I(ti) + O(ti). Given
the initial state m0 the set of all possible states of the model is called reachability
set and is denoted by RS(m0). The incidence matrix A of a PN is a N ×M matrix
whose elements are defined as aij = O(ti, Pj) − I(ti, Pj).

3.2.2 Petri net analysis

Describing a system as a Petri net allows for a formal analysis of its behavioral
properties. We can classify PN properties in two classes:

3.2. Basic Petri Nets (PNs) 41

• Marking dependent properties, or behavioral properties, i.e., those properties
that depend on the initial marking.

• Marking independent properties, or structural properties, which only depend
on the structure, i.e., the combination of places and transitions of the net.

Behavioral properties

A fundamental behavioral property of a system is reachability: given a marking
m, determine whether m ∈ RS(m0), i.e., check whether m is reachable via a firing
sequence from the initial marking. A related problem is coverability: given a marking
m determine if there exists a reachable marking m′ ∈ RS(m0) such that m ≤ m′;
in other words, check whether a marking is reachable such that each place contains
at least as many tokens as in m. In general, the problem of deciding if a state is
part of the reachability set of a net is EXPSPACE.

The net PN is said to be bounded if, in each place during the evolution of the
net, the number of tokens will never exceed a finite number k, formally, if for all
m ∈ RS(m0) and Pi ∈ P , there exists k ∈ N such that mi ≤ k, where mi denotes
the i-th component of the marking vector m. Net PN is called live if, starting from
any reachable marking, any transition in the net can be fired, possibly after some
further firings. Formally, for all m ∈ RS(m0) and ti ∈ T , there exists m′ ∈ RS(m)
such that ti is enabled at m′. A net has a deadlock (or dead state) if it is possible
to reach a marking in which no transition is enabled.

The reachability graph of net PN with initial state m0 is a graph whose vertices
are the elements of the reachability set RS(m0). If there is a transition t that changes

the marking from m to m′ (m
t−→ m′) then we have an arc in the reachability graph

from m to m′. As the reachability graph can be infinite, it is often useful to consider
the coverability tree. Roughly speaking, this is a tree where nodes are labelled by
markings and a node labelled by m has a child labelled by m′ for any possible

firing m
t−→ m′. In order to keep the tree finite, markings can use the symbol ω to

represent an unbounded number of tokens (infinity).

However, the coverability tree contains less information than the reachability
graph, therefore its analysis may only provide bounds, rather than exact results.

The state space explosion is a problem originated by the fact that even a struc-
turally small PN can have a reachability set with a high cardinality. In this case
the decision of properties based on the reachability graph or the coverability tree
becomes computationally unfeasible.

Structural properties

The term structural (or static) analysis of the net, usually refers to an analysis based
on the structure, rather than on the behavior of a net, which does not require the

42 3. Stochastic models based on Petri nets

construction of the reachability set. Structural properties only depend on the net
topology and they can be generally studied through the incidence matrix of the net.

Let PN be a Petri net. Roughly speaking, a T-invariant (transition invariant)
of PN is an M -dimensional vector in which each component represents the number
of times that a transition should fire to take the net from a state m back to state
m itself. Let us formally define T-invariant X = (x1, . . . , xN):

Definition 1 (T-Invariant) A T-invariant of a PN is a vector X that satisfies:

AT · X = 0, X 6= 0 xi ∈ N (3.1)

where AT denotes the transposed matrix, · the ordinary multiplication of matrices,
and xi the i-th component of the T-invariant.

Note that the existence of a T-invariant just means that the system can potentially
cycle on m. However, starting from a generic state, we are not sure that there
will actually exist a firing sequence that allows the net to cycle. The support of a
T-invariant X is the set of transitions corresponding to non-zero entries of X and is
denoted by ||X||. A T-invariant X is minimal if there is not any other T-invariant
X ′ such that x′

i ≤ xi for all i = 1, . . . , N . A support is minimal if no proper non-
empty subset of the support is also a support of a T-invariant. The minimal support
T-invariant is the unique minimal T-invariant corresponding to a minimal support.

Definition 2 (P-invariant or S-invariant) A P-invariant or S-invariant (place
invariant) is a M dimensional vector which can be calculated as a solution of the
following equation:

A · Y = 0 (3.2)

If a P-invariant Y = (y1, . . . , yM) with all positive components exists, then the net
is called conservative since the weighted sum of the tokens remains constant during
the evolution of the net, i.e., it is constant for each marking of its reachability set:

m ∈ RS(m0) ⇒
M∑
i=1

yimi = k,

where k is a constant.
The set of places corresponding to non-zero entries in a S-invariant Y is called

support of the S-invariant. A support is minimal if no proper non-empty subset
of the support is also a support. An S-invariant Y is called minimal if there is no
other S-invariant Y∗ such that y∗

i < yi for all places Pi ∈ P. For each minimal
support of an invariant there exists a unique minimal S-invariant called minimal
support S-invariant.

Another important concept on PNs is the sufficient place sets.

3.3. Generalized Stochastic Petri Nets 43

Definition 3 (Sufficient place set) A set of places Q ⊂ P is a sufficient place
set if the markings of the places in Q are sufficient to define the marking of the
whole SPN.

A relevant role in the structural analysis of a Petri net is played also by traps
and siphons. A trap S is a subset of places, S ⊆ P , such that for any transition
t ∈ T , O(t, P)I(p, t) ≥ 0. For Petri nets with unary weights only, this P ∈ S means
that the transitions consuming tokens in S are a subset of those producing tokens
in S. As a consequence the overall number of tokens in a trap can only increase,
and if it is initially marked (each P in S contains at least one token) then it will be
marked in any reachable marking. Dually, a siphon S is a subset of places S ⊆ P
such that for any transition t ∈ T , I(t, P)O(t, P) ≥ 0, with P ∈ S.

If a siphon is token free under some marking, then it will remain token free in all
successor markings. Besides having an interest in themselves, structural properties
can be helpful in the behavioral analysis of a net. For instance, a necessary condition
for a marking m to be reachable is that the equation

AT · X + m0 = m (3.3)

admits a positive solution. Structural boundedness, i.e., boundedness with respect
to any possible initial marking, can be characterized in terms of the existence of an
m-vector of positive integers such that A ·Y ≤ 0. For some subclasses of Petri nets,
behavioral properties can be characterized in purely structural terms. For instance,
Condition (3.3) becomes also sufficient for reachability when dealing with acyclic
net.

3.3 Generalized Stochastic Petri Nets

Basic PN is a non-deterministic formalism because when two or more transitions
are enabled it is not specified which one has to fire. Stochastic Petri Nets (SPNs)
associate a negative exponentially distributed random time with every transition.
Therefore if more than one transition is enabled, the one with the lowest associated
random time fires. When we introduce the time factor in SPNs we should discuss
the firing semantic. In this work we just say we refer to the atomic firing semantic
(see [74, 4] for a discussion on other semantics), i.e., the tokens are instantaneously
removed from the input places and put into the output places when the transition
fires.

SPNs are very important for some reasons:

• Their reachability set coincides with the one of the associated PN. Therefore
all the analysis discussed in Section 3.2 can be applied.

• It can be shown that the stochastic process associated with the marking
changes is a CTMC. The intuition is that the sojourn time in a marking is

44 3. Stochastic models based on Petri nets

given by the minimum of a set of negative exponential random variables, that
is again a negative exponential random variable.

In this section we present the formalism for Generalized Stochastic Petri Nets.
This formalism is a generalization of SPNs that admits immediate transitions, in-
hibitor arcs and transition priorities.

Definition 4 A GSPN is a tuple defined as:

GSPN = (P , T , I(·, ·), O(·, ·), H(·, ·), Π(·), w(·, ·),m0)

where:

• P = {P1, . . . , PM} is the set of M places,

• T = {t1, . . . , tN} is the set of N transitions (both immediate and timed),

• I(ti, Pj) : T × P → N is the input function, 1 ≤ i ≤ N , 1 ≤ j ≤ M ,

• O(ti, Pj) : T × P → N is the output function, 1 ≤ i ≤ N , 1 ≤ j ≤ M ,

• H(ti, Pj) : T × P → N is the inhibition function, 1 ≤ i ≤ N , 1 ≤ j ≤ M ,

• Π(ti) : T → N is a function that specifies the priority of transition ti, 1 ≤ i ≤
N ,

• m ∈ NM denotes a marking or state of the net, where mi represents the number
of tokens in place Pi, 1 ≤ i ≤ N ,

• w(ti,m) : T × NM → R is the function which specifies for each timed transi-
tion ti and each marking m a state dependent firing rate, and for immediate
transitions a state dependent weight,

• m0 ∈ NM represents the initial state of the GSPN, i.e. the number of tokens
in each place at the initial state.

Analogously to PNs, for each transition ti let us define the input vector I(ti), the out-
put vector O(ti) and the inhibition vector H(ti) as follows: I(ti) = (i1, . . . , iM) where
ij = I(ti, Pj), O(ti) = (o1, . . . , oM) where oj = O(ti, Pj) and H(ti) = (h1, . . . , hM)
where hj = H(ti, Pj). Function Π(ti) associates a priority to transition ti. If
Π(ti) = 0 then ti is a timed transition, i.e., it fires after an exponentially dis-
tributed firing time with mean 1/w(ti,m), where m is the marking of the net. If
Π(ti) > 0 then ti is an immediate transition and its firing time is zero. We say
that transition ta is enabled by marking m if mi ≥ I(ta, Pi) and mi < H(ta, Pi)
for each i = 1, . . . ,M and no other transition of higher priority is enabled. In the
following we consider just two priority levels, 0 (timed transitions) and 1 (imme-
diate transitions). Hence, when an immediate transition is enabled all the timed

3.4. Product-form (G)SPN 45

ones are disabled. The firing of transition ti changes the state of the net from m to
m − I(ti) + O(ti). The reachability set RS(m0) of the net is defined as the set of
all markings that can be reached in zero or more firings from m0. Note that it is
not the case that the reachability set of a GSPN is equal to the reachability set of
the corresponding PN. We say that marking m is tangible if it enables only timed
transitions and it is vanishing otherwise. For a vanishing marking m let Tα be the
set of enabled immediate transitions. Then the firing probability for any transition
ti ∈ Tα and any state m is denoted by p(ti,m) and is defined as follows:

p(ti,m) =
w(ti,m)∑

tj∈Tα
w(tj,m)

. (3.4)

As for SPNs, given a tangible marking m the transition with the lowest associated
stochastic time fires. Sometimes it can be useful to associate a probabilistic output
vector to a transition. In this case we denote a possible output vector of transition ti
by Oj(ti), and its probability by di,j where

∑
j di,j = 1. Note that this is not a real

extension to the model definition. In fact, the probabilistic behavior of a transition
firing can be obtained by the use of immediate transitions in a trivial way.

A GSPN is represented by a graph with the following conventions: timed transi-
tions are white filled boxes, immediate transitions are thin black filled boxes, places
are circles, if I(ti, Pj) > 0 we draw an arrow from Pj to ti labelled with I(ti, Pj), if
O(ti, Pj) > 0 we draw an arrow from ti to Pj labelled with O(ti, Pj), if H(ti, Pj) > 0
we draw an circle ending line from Pj to ti labelled with the value of H(ti, Pj), the
marking m is represented by a set of mj filled circles representing the tokens in place
Pj for each j = 1, . . . ,M . We omit the arc labels if they are equal to 1.

3.3.1 (G)SPN analsys

GSPN analysis consists in finding the steady state probability for each tangible
marking of the reachability set. The stochastic process associated with a GSPN
model is a semi-Markov process. Indeed, the residence time in a general state
can be either exponentially distributed (tangible states) or deterministically zero
(vanishing states). However, it is possible to eliminate the vanishing states with
efficient algorithms (see for example [89]) and therefore one has to study a CTMC.
In the following we will straightforwardly refer to the CTMC associated with a
GSPN model.

In the CTMC associated with a GSPN the state sojourn times are computed
from the mean transition delays of the net.

3.4 Product-form (G)SPN

The analysis of a CTMC associated with a GSPN or a SPN can be very hard
because of the state space explosion problem. As illustrated for queueing networks

46 3. Stochastic models based on Petri nets

(see Section 2.3.3) and for competing and cooperating Markov chains (see Section
1.3), several research efforts have been devoted to identify conditions for product-
form (G)SPNs. We can summarize these results by identifying three classes of
product-form models:

Boucherie’s class Its definition is based on Boucherie’s product-form for compet-
ing Markov chains [25] presented in Section 1.3.1. In the same paper [25] the
author shows the application to SPN product-form of the theory of competing
Markov chains in product-form. The main idea is to consider the stochastic
processes generated by a set of SPN models as the competing Markov chains,
and modelling the blocking mechanism required by the product-form condi-
tions by opportune places and arcs. Informally, the presence of a token in a
place associated with a resource represents the fact that the resource is avail-
able at a given time. When one of the SPNs uses the resource then it removes
the token from that place. The modeler has to pay attention to introduce op-
portune arcs in order to model the blocking mechanism illustrated in Section
1.3.1 that can result not natural.

Coleman, Henderson et al. class This product-form has been introduced for
SPNs in [63, 39]. Some results in this thesis are strictly related to this model
class, therefore we review it later in this chapter. The main idea is that SPN
models in this product-form have a stationary distribution that can be ex-
pressed as normalized product of functions dependending on the number of
tokens in each place. Note that the approach is different from the previous
case. We can say that Coleman, Henderson et al. product-form conditions
depend on the whole net configuration (structure and rates) so it does not
allow for a hierarchical approach to the model definitions. In our opinion, the
main drawbacks of this product-form are three. The first concerns with the al-
gorithms defined for determining the normalization constant. In [39] and [111]
a convolution and a MVA algorithm are presented, however, testing the condi-
tions for their application requires the generation of the reachability set of the
model. The second limitation is that the approach is not hierarchical neither
compositional. For example, adding a new place to the net structure with
some connection arcs requires to re-analyze the whole net. The third problem
is related to an interpretation of a condition for the product-form. As we illus-
trate in the following sections, one of the conditions requires to check the rank
of a matrix that depends both on the net structure and on the transition rates.
The fact that the product-form depends on the transition rates should not be
surprising: BCMP theorem [17] requires that the transition rates correspond-
ing to the customer departures form an FCFS queueing station must be class
independent, i.e, they must have the same rate. However, in the BCMP case
we have a strong intuition of the meaning of this condition, while the same
cannot be said for the SPN product-form. In Chapter 5 we try to analyze this
condition deeper and to overcome the problem of compositionality.

3.4. Product-form (G)SPN 47

Balbo et al. class This class of product-form models deals with GSPN, i.e., it
considers the presence of immediate transitions in the net structure. It is
defined in [6] where the authors introduce a set of conditions for the application
of an algorithm that reduces the GSPN to a SPN in Coleman, Henderson et
al. product-form.

3.4.1 Coleman, Henderson et al. product-form SPNs

In this part of the section we review the main results for product-form SPNs [63, 39].
These results are used in Chapter 5 to show the relations between this class of
product-form models and the one given by ERCAT [59, 61] that will be reviewed in
the next chapter. Moreover, we show that we can enhance the compositionality of
this approach by the analysis of the reversed Markov process.

For the sake of clarity we introduce the theorem in two phases. First we introduce
the conditions and then we illustrate the main theorem.

COND1: Conditions for Coleman, Henderson et al. product-form.

• The theorem is given for SPNs (without immediate transitions and inhibitor
arcs), it deals with probabilistic transition output vectors, and state dependent
firing rates. As transitions are all timed we assume all along this section
Π(ti) = 0 for all ti ∈ T and, as there are not inhibitor arcs, we assume
H(ti, Pj) = 0 for all ti ∈ T , Pj ∈ P .

• The firing rate of a transition must be in the following form:

w(ti,m) =
ψ(m − I(ti))χi

φ(m)
, (3.5)

where χi is a non-negative constant that depends just on transition ti, function
ψ is a non-negative function, and function φ is a positive function. ψ and φ
play the role of potential functions. They can model a wide class of load-
dependent firing rates (for a deep analysis see [63]). We say that transition
ti ∈ T is enabled if and only if ψ(m − I(ti)) > 0.

• There cannot be two transitions with the same input vector. Often we can
transform a SPN that does not satisfy this condition into one that satisfies
it by fusing the transitions with the same input vector in one transition and
using probabilistic output vectors. However, as pointed out in [63], this cannot
be done if the transitions with the same input vector depend on the state of
the net in different ways (because function ψ and φ depend only on the state
of the net and the transition input vector).

• Let Bi be the number of output vectors of transition ti, then we have that∑Bi

j=1 di,j = 1. For each transition ti ∈ T and Oj(ti), 1 ≤ j ≤ Bi, there must

48 3. Stochastic models based on Petri nets

exist exactly one transition ts ∈ T such that Oj(ti) = I(ts). We write Ej(ti) to
denote ts, and p(ti, ts) to denote the output vector probability di,j. Vice versa,
for every transition ts we have at least one output vector j of a transition
ti ∈ T such that I(ts) = Oj(ti) for 1 ≤ j ≤ Bi.

• The following system of traffic equations must have a solution f = (f1, . . . , fN)
with N = |T |:

χifi =
∑

s

χsfsp(ti, ts) 1 ≤ i, s ≤ N (3.6)

under the condition fi > 0 for all ti ∈ T . Note that it is possible to prove
that if f and f ′ are solutions of system (3.6) then there exists k > 0 such that
f = kf ′, i.e., the solutions differ for a constant.

Before stating the main theorem we still need some more notions. Let us define
vector C as follows:

C =

log
(

f1

fE1(t1)

)
...

log
(

f1

fEB1
(t1)

)
...

log
(

fN

fE1(tN)

)
...

log
(

fN

fEBN
(tN)

)

. (3.7)

Note that vector C is independent of the particular solution f of system (3.6) because
all the solutions differ for a positive constant.

The main theorem. Now we can state the main theorem. Recall that M = |P|,
N = |T | and φ is the function that appears in the firing rate definition (3.5).

Theorem 2 (Coleman, Henderson et al. product-form [63, 39]) Let S be a
SPN that satisfies structural conditions COND1 and with incidence matrix A. Then
S has the following product-form solution:

π(m) = φ(m)
M∏
i=1

ymi
i , (3.8)

if and only if:

rank(A) = rank([A;C]), (3.9)

3.5. Conclusions 49

where [A;C] denotes the matrix obtained by augmenting incidence matrix A of col-
umn C. In this case we can obtain yi for i = 1, . . . ,M by solving the system:

−A

 log(y1)
...

log(yM)

 = C. (3.10)

In [63, 39, 56] some examples of Coleman, Henderson et al. analysis can be
found. In Chapter 5 we review most of these examples by applying our technique.

The normalizing constant. It is out of the scope of this work presenting and
analyzing the algorithms defined for the computation of the normalizing constant.
However, we think that it is useful to review the conditions for the application of
those algorithms. The first algorithm for normalizing the probabilities of product-
form SPNs is presented in [39] and is a convolution algorithm. In [111] a Mean Value
Analysis algorithm (MVA) is presented. In both these cases the algorithm can be
used for the computation of the normalizing constant only for a subset of the class
of Coleman, Henderson et al. product-form SPNs. The first assumption concerns
function φ(m) definition that has to be in the form:

φ(m) =
M∏
i=1

φi(mi).

In this case the steady state probabilities can be expressed as:

π(m) = K

M∏
i=1

[
φi(mi)y

mi
i

]
.

This condition is simple to decide.
The second condition is harder to check because it predicates on the reachability

set of the SPN. Given the initial state m0, and a let Y be a S-invariant then a state
m has to be reachable if and only if Ym = Ym0. In general, in order to check this
condition, the state space of the SPN must be generated. For some classes of SPNs
it trivially holds: this happens for marked graphs (SPNs in which every place has at
most one incoming and one outgoing arc) and state machines (SPNs in which every
transition has at most one incoming and one outgoing arc).

3.5 Conclusions

In this chapter we have reviewed the main results on product-form SPNs and GSPNs.
We have mainly focused on those results that we are going to use in the following of
this thesis, i.e., the product-form SPN class defined in [63, 39]. We think it is worth-
while to point out the different approaches that arise from Boucherie’s product-form

50 3. Stochastic models based on Petri nets

and Coleman, Henderson et al. one. In the former case the modeler defines a set
of SPN sub-models with known steady state probability distributions. Then these
sub-models can be composed in a way so that the resulting model exhibits a steady
state solution in product-form. In the latter product-form class the modeler defines
the whole SPN and the theorem states the conditions under which the steady state
probabilities can be expressed as product of functions depending on the number of
tokens in each place. Boucherie’s product-form appears to have a strong composi-
tional property, while Coleman, Henderson et al. class is monolithic. In fact, in the
latter case, adding an arc or a simple place to the net requires a new analysis and
the product-form could be lost. Moreover, the problem of giving an interpretation
of the rank condition (3.9) from a modeling point of view is still open. A deep
discussion about this is one of the main topics of the following chapters.

4
Markovian Process Algebra

4.1 Introduction

In this chapter we briefly introduce the process algebra and review some relevant
properties. Process algebra has been widely used as modeling formalism for perform-
ing functional analysis of concurrent systems. In the field of performance evaluation
several extensions have been proposed in order to be able to model the temporal be-
havior of systems. The main strength of this formalism is the combination of a well-
defined semantic model and compositionality. We mainly focus on the Performance
Evaluation Process Algebra (PEPA). A model defined in PEPA has an underlying
CTMC that can be algorithmically derived. Product-forms have been studied also
for PEPA models. Many results defined for queueing networks and stochastic Petri
nets have been reformulated using this formalism. However, we think that the most
innovative results are the RCAT, ERCAT and MARCAT theorems that are recalled
here in the following sections.

The chapter is structured as follows: Section 4.2 introduces the standard process
algebra, Section 4.3 introduces some timed extensions with special attention devoted
to PEPA, Section 4.5 illustrates the main well-known results about product-form
PEPA models.

4.2 Basic process algebra

Process algebras are abstract languages that have been widely used for the design
and specification of concurrent systems. The most used process algebras are:

• Calculus of Communicating Systems (CCS) defined by Milner in [91].

• Communication Sequential Processes (CSP) defined by Hoare in [71].

Process algebra models (either CCS and CSP) have been used to establish the correct
behavior of concurrent systems. In fact, several qualitative properties can be derived
such as the freedom from deadlock.

A process algebra model consists of a collection of agents that can perform
some atomic actions. The actions can represent sequential behaviors of the agents,

52 4. Markovian Process Algebra

communications or synchronizations among them. The major distinction between
CCS and CSP is on the definition of the communication actions. It is out of the
scope of this thesis presenting a formal review of CCS or CSP syntax and semantic,
however, we informally introduce the basic notions of the calculus and then describe
the communication techniques defined for CCS and CSP. An agent P is defined
according to the following syntax:

P ::= 0

| a.S

| S + Q

| S||Q
| S r M

| S[a1/a0, . . .]

| 0

where S and Q are agents, a and ai denote a label, M is a set of labels. The prefix
operator (a.S) models an agent that after performing action a behaves like S. Using
the choice operator (S + Q) we model that the agent behaves as S or Q. In the
parallel composition (S||Q) S and Q proceed in parallel (possibly communicating).
The restriction (S r M) hides the set of labels M of S from outside agents. The
relabelling (S[a1/a0, ...]) replaces in S the label a0 by a1, more than one replacement
can be specified. Finally, the null agent (0) is the agent that cannot act and basically
can be thought as a deadlock.

In CCS the communication is defined between two agents. Suppose that an agent
performs an action a, then the communication occurs when the other agent performs
a complementary action a. The resulting communication action has the special label
τ that denotes an internal action invisible to the environment. In CSP there is not
the concept of complementary action. Basically, the synchronization occurs between
two agents that perform an action with the same label. Note that the joint action
remains visible to the environment, therefore other concurrent processes can reuse
it to communicate. This leads to a multiway synchronization.

Most of Stochastic Process Algebras (SPAs) use a communication definition that
is similar to that defined in CSP.

For both CCS and CSP a structured operational semantic has been defined. This
is based on a labelled transition system. This makes possible the construction of a
derivative graph, namely a graph in which the vertices are the language terms and
the arcs are the transitions.

Bisimulation is a binary equivalence relation that can be applied to process
algebra models. Roughly speaking, two systems are bisimilar if they match each
other’s moves. In the bisimulation style of equivalence an agent is characterized
by its actions and, in general, the analysis of the derivative graphs is required. If
the internal actions are considered observable then we have a strong equivalence,
otherwise we have a weak equivalence.

4.3. Timed process algebra 53

Both CCS and CSP allow one to derive several qualitative properties of the
modelled systems. In order to perform quantitative analysis several timed extensions
of these formalisms have been introduced.

4.3 Timed process algebra

As in classical process algebras time is abstracted away it is not possible to derive
performance measures of the models. The formalism extensions that we present in
this section aim to introduce the timing characteristics and/or the probabilities of
different behaviors in the model description. Without this quantified information
it is not possible to derive quantitative measures such as expected response time
or throughput. In the last years several extensions to process algebras have been
defined in order to deal with quantitative analysis. We can identify three classes of
extensions:

• Timed process algebras. The main idea under this extension is to add a du-
ration to every action of a process algebra, i.e., the operator α.P becomes
(α, t).P where t denotes the time required for action α. These extensions have
been proposed for different languages: ACP, CSP, CCS and LOTOS [66].

• Probabilistic process algebras. In this case the main idea consists in defining
a new semantic for the choice operator. Informally, S = P + Q in a stan-
dard process algebra means that process S can behave either as P or Q. In
probabilistic process algebras this non-determinism becomes a probabilistic
choice. Also in this case the probabilistic extension has been introduced for
ACP, CCS, CSP and LOTOS [66].

• Stochastic process algebras. In this case an action requires a random time to
be performed. Timed processes and performance analysis (TIPP) is a stochas-
tic process algebra that extends CSP [67]. Action durations are modelled
by exponential random variables, therefore the underlying stochastic process
is a Markov process. Another process algebra based on a CSP extension is
Performance evaluation process algebra (PEPA) defined by Hillston in [68].
Also in this case the action duration are exponentially distributed. Extended
Markovian Process Algebra (EMPA) has been introduced by Bernardo et al.
in [20] and provides constructs to represent immediate transitions and non-
determinism. A complete definition of EMPA semantic can be found in [21].

Adding temporal information to a Process algebra influences the following anal-
ysis [66]

• functional behavior (e.g. liveness or deadlocks),

• temporal behavior (e.g. throughput, waiting times, reliability),

54 4. Markovian Process Algebra

• combined properties (e.g. probability of timeout).

We focus on Performance Evaluation Process Algebra (PEPA) that is a Marko-
vian Process Algebra (MPA). It extends the classic process algebras because in
PEPA every action has a duration that is modelled by an exponentially distributed
random variable. The goal of the formalism definition is being able to obtain a
Continuous Time Markov Chain (CTMC) given any PEPA model. A PEPA model
consists of a set of components that can interact according to a small number of
combinators: prefix, choice, parallel composition and abstraction. We briefly recall
this formal model description in Section 4.4. Thanks to the great flexibility of this
formalism and the available software tools, PEPA has recently become quite popu-
lar in the performance analysis field. However, even a system consisting of simple
interacting components may generate a very large CTMC and the exact analysis
of the system performance by PEPA can soon become unfeasible. For this reason
recently many research efforts have been devoted to study product-forms for PEPA
that could possibly allow for more efficient solution algorithms [70, 57, 110, 59, 61].
Roughly speaking, a product-form model has a steady-state distribution that can be
calculated by product of the steady state distributions of its components, even if the
components are not stochastically independent. Note that defining efficient solution
algorithms for product-models can be a non-trivial task. For example, if the CTMC
has a finite number of states, the product-form solution has to be normalized that,
in its basic definition, requires to compute a summation over all the possible system
states of the process. Therefore, this is computationally expensive and can cause
numerical stability problems.

4.4 Performance Evaluation Process Algebra

In this section we introduce PEPA formalism and we recall the associated nota-
tion. PEPA models are based on the description of component interactions. Each
component has an associated set of actions. Let Act be the set of all actions, then
a ∈ Act is a pair (α, r) where α ∈ A is the type of the action (and A the set of
action types) and r ∈ R+ is the parameter of the negative exponential distribution.
In the following we briefly recall the PEPA operational semantic presented in details
in [68]. The prefix combinator models the sequential behavior, i.e., the component
(α, r).P carries out the activity (α, r) in ∆t time and then behaves as component P .
∆t is an exponentially distributed random variable with parameter r. The choice
combinator +, i.e. P + Q, models a component that behaves as component P or as
component Q. When a component can perform an activity (α, r) we say that the
activity with type α is enabled. Let us denote all the activities enabled in P by
Act(P). Then Act(P +Q) = Act(P)]Act(Q), where] denotes the multiset union.
The first completed activity determines if the component behaves as P ′ or Q′, where
P ′ is the component which results from P completing the activity, and similarly Q′.
The cooperation combinator models the synchronization and the cooperation among

4.5. PEPA models in product-form 55

components. We use the following notation: P BC
L

Q where L is a set of action types.
All the activities in P and Q whose type is not in L are called individual and are
not affected by the operator. On the other hand, the shared activities can be car-
ried on only when they are enabled in both the components P and Q. This can
cause a component to block waiting for the other. When the activity is enabled in
both the components it is carried on with the rate of the slowest. This ensures that
P BC

L
Q has an exponentially distributed state resident time. One of the activities

contributing to the cooperation can be passive, i.e., it has an unspecified rate (α,>).
In this case the other activity determines the rate of the cooperation. If L = ∅ the
components carry on their activities independently. We call this case pure parallel
combinator and we denote it by P ||Q. The last combinator is the abstraction. We
use the syntax P/L where P is a component and L a set of types. All the activities
in P with type in L cannot be carried out in cooperation with other components,
that is they are hidden and assume the unknown type τ . However, they still require
a time to be completed. The hidden activities can be thought as internal processes
of the component.

PEPA models analysis. In this paragraph we outline the steps needed to study
a PEPA model. In order to obtain the performance measures of the system modelled
by PEPA formalism, one needs to build the associated CTMC. The first step is to
build the derivation graph of the model according to any of the algorithms available
for the process algebra. The derivation graph describes all the possible evolutions of
each component of the model. Noting that every transition of the derivation graph
is associated with one or more exponentially distributed random times, it is easy to
see how it can be mapped into a CTMC. Therefore, once the CTMC is defined one
can derive its steady-state solution by exact or approximate techniques. Similarly
to other formalisms, the main problem of this approach is that the number of the
CTMC states tends to grow exponentially with the complexity of the model, hence
its analysis can soon become unfeasible.

4.5 PEPA models in product-form

We can reformulate the product-form property in PEPA context as follows. Suppose
P and Q are two interacting components, then we say that their stationary proba-
bility distribution is in product-form if it can be expressed as product of functions
that that depend on the state of P or on the state of Q.

The investigation of product-form solutions for PEPA models can be classified
as follows:

• Models with a reversible CTMC.

• Models with a quasi-reversible CTMC.

56 4. Markovian Process Algebra

• Models based on the Boucherie’s product-form [25].

• Models based on the Coleman, Henderson et. al. product-form [63, 39].

• Models based on RCAT theorem and extensions [59, 61]

In the following we briefly describe the former models and will spend more time
for the latter one.

4.5.1 Reversible models.

The first product-form we illustrate is based on the reversibility of the associated
CTMC. In [69] the authors give syntactical conditions which ensure that a PEPA
model has a product-form solution. The basic idea is to use complementary types of
activities, say α and −α, that is, if it is possible to leave a state due to an activity of
type α then in the arrival state there must be an activity of type −α which allows
the system to get back to the previous state. α and −α forms a reverse pair. Clearly
these conditions are quite strict. As quasi-reversible models are based on the same
idea, we review it in the following paragraph.

4.5.2 Quasi-reversible models.

Quasi-reversible PEPA models are studied in [57]. This approach consists of two
steps:

• The authors call QR-component a PEPA component whose CTMC is quasi-
reversible. Then they introduce a subset of QR-components called input/output
components that can be recognized syntactically. Informally we can say that
input/output components play the same role of queueing stations in a product-
form queueing network. It is important to note that the syntactical conditions
are very useful in practice. In fact it is possible to check if a PEPA component
is an input/output component without generating its derivation graph and
CTMC.

• Then more complex components are studied as combinations of QR-components.
Therefore the authors give a set of sufficient syntactical conditions on the co-
operation operator that ensure that the Markov chain of the whole process is
still quasi-reversible. They distinguish between closed interactions and open
interactions, which can informally be associated with closed and open queueing
networks, respectively. Note that these results are valid for QR-components
class of models and not only for input/output model class.

It is worthwhile noting that, as the authors point out, the QR-component set is larger
than the input/output component set. Let us review how input/output components
are defined. A PEPA component P enables a reverse pair (α,−α) if (α, r) is an

4.5. PEPA models in product-form 57

enabled activity in P and for every derivate component P ′ such that P
(α,r)→ P ′ there

exists (−α, s) such that P ′ (−α,s)→ P , where r and s are positive real numbers or >. If
a PEPA component mimes a queueing network, we can think that the reverse pair
can be associated with the arrival and completion events.

A PEPA component is an input/output component if it enables only two activ-
ities: the passive (α,>) and the active (−α, r) where r ∈ R+ which forms a reverse
pair.

Example 3 (Modelling M/M/1/FCFS stations) In this example we model a
queueing center with FCFS discipline by input/output PEPA models. We proceed
by steps: first we consider a single class queueing center, then a multiclass one as
defined in BCMP theorem [17]. It is well-know that the CTMC associated with a
BCMP QN is quasi-reversible [75] hence we can try to model BCMP networks by
QR-components. Before giving the PEPA component definition, we want to point out
that for multiclass queueing stations the queueing discipline influences the stationary
distributions and hence the performance indices [32, 33, 98].

• Single class queue. This case is trivial. In fact by the insensitivity property [74]
we can represent the state of the system with the number of customers in queue
or being served at a given time. Let λ be the arrival rate and µ the service
rate of the M/M/1/FCFS queue, with λ, µ ∈ R+. Le us assume the system
to be in a generic state different from the initial one, i.e., the empty station.
We have to consider two possible events: a customer arrival, and a service
completion. These two events form a reverse pair in the PEPA component.
Let P0 be the initial component, then:

P0
def
= (arrive,>).P1

Pn
def
= (arrive,>).Pn+1 + (serve, µ).Pn−1

If we want the arrival process to be a Poisson process with rate λ then we
can define an arrival component A

def
= (arrive, λ).A and the cooperation as

S
def
= P0 BC

arrive
A. It is trivial to prove that Pn is an input/output component,

thus it can be syntactically recognized as a QR-component. It is worthwhile
noting that we have been able to define an input/output component because the
state of this queueing system can be defined as the total number of customers
that are present regardless to their arrival order. The equivalence can be stated
for the steady state probabilities of observing a given number of customers in
the station and is based on the idea that all the customers are identical. If one
is interested in the response time distribution such implicit representation of
the FCFS discipline is not appropriate.

• Multiple class queue. In this case the state of the system cannot be represented
just by the number of customers for each class because the arrival order must

58 4. Markovian Process Algebra

be considered. In fact the customers are not all identical. In this case we do
not have an input/output component and the motivation is simple. Consider a
generic component Qn = Q(n1,n′) modelling a station with R classes and FCFS
discipline. n is a vector such that ni is the class of the i-th oldest customer
present in the station, where 1 ≤ ni ≤ R. The service completion event takes
the PEPA component to Qn′ but it can be the case that the state Qn cannot be
reached by the state Qn′ because of a customer arrival.

Therefore, even if BCMP QNs can certainly be modeled by QR-components, to
the best of our knowledge they have not been modelled by input/output compo-
nents yet. As a consequence their product-form solution cannot be decided by
a syntactical (structural) analysis.

It should be clear that every Jackson [73] and Gordon-Newell [54] queueing net-
work can be modelled by a set of input/output components because these networks
require all the customers to be statistically identical.

4.5.3 Coleman, Henderson et al. product-form

Coleman, Henderson et. al. have studied a product-form for Stochastic Petri Nets in
[63, 39] which is based on the definition of a routing process on the CTMC associated
with the model. In [110] the author applies this idea to obtain a class of product-
form PEPA models. In this case, the conditions for product-form require to solve a
linear system of equations. We point out some aspects of this technique:

• It can be used to model Jackson and Gordon-Newell queueing networks.

• From a modelling point of view, it is not clear the meaning of the conditions
based on the existence of the solution of a linear system derived from the
syntactic structure and rates of the model.

4.5.4 Boucherie’s product-form

Another product-form class, which can be easily re-formulated in terms of PEPA
conditions is the Boucherie’s product-form. Also in this case it has been initially
defined for Stochastic Petri Nets [25]. As it is not the topic of this thesis we cite
it informally. Roughly speaking, the condition for the product-form requires that if
two agents compete for the same resource, i.e., they must synchronize on it, when
one agent is in a state which requires that resource the other agent is blocked, i.e.,
cannot change its state.

4.5. PEPA models in product-form 59

4.5.5 RCAT, ERCAT, MARCAT

Probably the most interesting result for MPA product-forms is the Reversed Com-
pound Agent Theorem (RCAT) [59] and its extension [61, 58]. The importance of
this theorem is twofold. From a theoretical point of view, it has been shown that it
includes other product-form model classes such as Boucherie’s one [61], G-Networks
[59, 60], Jackson product-form QNs [59]. Moreover, as original contribution we show
in Chapter 5 of this thesis that it includes also Coleman, Henderson et al. product-
form. Let us introduce now the main theorems used in the following. Roughly
speaking, RCAT derives the steady state probabilities of two interacting compo-
nents, say P and Q, by the analysis of the reversed processes of two components R
and S obtained by replacing in P and Q the occurrence of the passive action type
transitions with rates that can be algorithmically calculated. As first let us define
how a PEPA component can be reversed structurally.

We consider just the cooperation and the prefix combinators. Reversing the
arrows in the CTMC of a PEPA model is trivial. In fact, it suffices to reverse the
derivation as follows:

A
def
= (α, λ).P =⇒ P

def
= (α, λ).A

A
def
= Q BC

L
R =⇒ A

def
= Q BC

L
R,

where A, P , Q, R represent the reversed agents, λ the rate of the reverse action
(usually to be determined), L is the set of action types involved in the synchroniza-
tion, and L = {α|α ∈ L} is the set of action types involved in the synchronization
of the reversed components. Of course, the problem consists in finding the rates
of the reversed actions. Consider a simple agent, i.e., an agent without coopera-
tion. Determining the rates of the reversed process of a single agent has the same
complexity of finding its steady state probability distribution. From the reversed
CTMC it is straightforward deriving the reversed action rates paying attention to
the case of multiple actions of a component having the same derivate. In this case,
the total reverse rate is distributed amongst the reversed arcs in proportion to the
corresponding forward transition rates.

As this situation will often occur in the following chapters, we show an example
and then give the general formula. Suppose that an agent P is defined by the
following rules:

...

P
def
= (α, λ1).P

′ + (β, λ2).P
′

...

In PEPA this is a common situation. In fact, even if both action types α and
β cause a transition from P to P ′, in cooperation with another agent they can
synchronize with different actions. Consider for example the following definition:

60 4. Markovian Process Algebra

Q
def
= (α,>).Q + (β,>).Q′ and the cooperation S

def
= P BC

α,β
Q. If Q synchronizes on

action type α then we have a transition from (P ; Q) to (P ′, Q), if Q synchronizes
with β then we have a transition from (P ; Q) to (P ′, Q′).

However, if we study the CTMC CP of P in isolation following the rules defined
in [68] we have a transition from P to P ′ with rate λ1 + λ2. Suppose that we can
reverse CP and let λ be the rate of the reversed transition from P ′ to P . In order to
obtain the definition of the reversed agent we have to determine λ1 and λ2. As they
are proportional to the forward rates, we have: λ1 = λλ1/(λ1 +λ2) and similarly for
λ2.

In general we use the following definition:

Definition 5 (Reversed actions of multiple actions [59]) The reversed actions
of multiple actions (ai, λi) for 1 ≤ i ≤ n that an agent P can perform, which lead to
the same derivate Q, are respectively:

(ai, (λi/λ)λ),

where λ is the sum of the forward rates λ =
∑n

i=1 λi and λ is the reversed rate of
the (composite) transition in the CTMC with rate λ corresponding to all the arcs
between P and Q.

Finally, we recall that RCAT-based theorems only deal with cooperations where
an action is active (i.e. with a specified rate) and the other is passive (>).

Let us consider a cooperation A
def
= P BC

L
Q. Let PP (L) denote the set of action

types of L passive with respect to P and AP (L) the set of action types of L active
with respect to P . Hence, PP (L) ∪ AP (L) = PQ(L) ∪ AQ(L) = L. An action type
a is enabled in a component if it can carry out an activity with type a.

Theorem 3 (RCAT [59]) Let us assume that P BC
L

Q has an irreducible deriva-
tion graph. If the following conditions hold:

1. every passive action in PP (L) or PQ(L) is always enabled in P or in Q (i.e.
enabled in all the states of the transition graph),

2. every reversed action of an active action type in AP (L) or AQ(L) is always
enabled in P or Q,

3. every occurrence of a reversed action of an active action type in AP (L) (AQ(L))
has the same rate in P (Q),

then the reversed agent P BC
L

Q has the following derivation graph:

R{(α, pα) ← (α,>)|α ∈ AP (L)} BC
L

S{(α, qα) ← (α,>)|α ∈ AQ(L)},

where:

4.5. PEPA models in product-form 61

• the arrow ← stands for a syntactical substitution of the left hand side part with
the right hand side part in the component definition

• R = P{>a ← xα|α ∈ PP (L)} and S = Q{>a ← xα|α ∈ PQ(L)} where {xα}
are the solutions (for >α) of the equations:

>α = qα α ∈ PP (L) (4.1)

>α = pα α ∈ PQ(L) (4.2)

and pα and qα are the symbolic rates of action type α in P and Q.

For comments and examples of applications of this theorem we refer the original
paper [59], in this section we just show some simple applications. It can be worth-
while recalling that even if RCAT does not explicitally state that P BCQ is in
product-form, this can be easily derived by the reversed process definition [59].

Example 4 (Simple tandem of exponential queues) This is a very simple ex-
ample that introduces the RCAT approach. We consider two exponential queues P
and Q with service rates µ1 and µ2. Customers arrive to queue P according to a
Poisson process with rate λ. After being served, the customers leave queue P and
enter queue Q. After being served by Q the customers leave the system. The model
is depicted in Figure 4.1. We can describe this model S by the following PEPA

Figure 4.1: Tandem of exponential queues.

definitions:

P0
def
= (a, λ).P1

Pn
def
= (a, λ).Pn+1 + (ep, µ1).Pn−1 for n > 0

Q0
def
= (ep,>).Q1

Qn
def
= (ep,>).Qn+1 + (eq, µ2).Qn−1 for n > 0

S
def
= P0 BC

ep
Q0,

Let us assume that the system is stable. We can immediately check RCAT structural
conditions. In fact the synchronization occurs on action type ep that is passive
and always enabled in Q, i.e., in each state of the derivation graph of Q there is

62 4. Markovian Process Algebra

an outgoing transition labeled by ep. Moreover, every instance of P can be reached
through an active transition of type ep (i.e. the reversed action type ep corresponding
to ep is always enabled in P). We have to determine a solution for xep. As the
CTMC of P is a birth and death process we straightforwardly obtain xep = λ and
it is constant. Hence the model is in product-form. The steady state solution for
P , i.e., the probability of observing the component Pn is πP (n) ∝ (λ/µ1)

n. In Q
we replace the unknown rate > of the passive action ep with the reversed rate of the
corresponding active action in P , i.e. λ, obtaining again a birth and death process.
Therefore the steady state solution is:

π(n,m) ∝ πP (n)πQ(m) = (λ/µ1)
n(λ/µ2)

m.

Note 1 It is worthwhile pointing out an important aspect of the application of RCAT
for the analysis of non-PEPA models. Let us consider the tandem of exponential
queues of Example 4. We could model the same process using the following PEPA
definitions:

P0
def
= (a, λ).P1

Pn
def
= (a, λ).Pn+1 + (ep,>).Pn−1 for n > 0

Q0
def
= (ep, µ1).Q1

Qn
def
= (ep, µ1).Qn+1 + (eq, µ2).Qn−1 for n > 0

S
def
= P0 BC

ep
Q0.

Obviously, the CTMC underlying these definitions is exactly the same than that
underlying the definitions of Example 4. However, in this case, RCAT cannot be
applied because the structural conditions are not satisfied, e.g. passive action ep is
not enabled in P0. Moreover, if one tries to apply RCAT regardless to its structural
conditions, the result is not correct. In fact πQ(m) expression would be proportional
to (µ1/µ2)

m instead of (λ/µ2)
m.

In conclusion, if we aim to study the product-form solution of a stochastic model
that is not defined in terms of PEPA formalism, we cannot limit our analysis to the
underlying CTMC but we also have to give a suitable PEPA definition that allows
for the application of RCAT.

Example 5 (Two queues with feedback) This example aims to show how Def-
inition 5 can be used to solve product-form models. We consider a model consisting
of two exponential queues P and Q with service rates µ1 and µ2, respectively. The
customers arrive according to a Poisson process to P , then after being served they
enter into queue Q. After the job completion in Q they can either leave the system
with probability p or go back to P with probability 1 − p. Figure 4.2 illustrates the
model. We can describe this model S by the following PEPA definitions:

4.5. PEPA models in product-form 63

Figure 4.2: Simple network of exponential queues with feedback.

P0
def
= (a, λ).P1 + (fq,>).P1

Pn
def
= (a, λ).Pn+1 + (fq,>).Pn+1 + (ep, µ1).Pn−1 for n > 0

Q0
def
= (ep,>).Q1

Qn
def
= (ep,>).Qn+1 + (eq, µ2p).Qn−1 + (fq, µ2(1 − p)).Qn−1 for n > 0

S
def
= P0 BC

ep
Q0,

Note that we have two possible transitions from Pn to Pn+1, n ≥ 0. One is labeled
with fq and the other with a. Similarly in Q the transition due to a job completion
is splitted into two transitions labeled by eq and eq that denote that a customer exits
the system or goes back to P respectively. Figure 4.3 shows the processes of P and
Q.

P0 P1 P2

Q
0 Q

1
Q

2

(a, λ)(a, λ)(a, λ)

(fq,⊤)(fq,⊤)(fq,⊤)

(ep, µ1)(ep, µ1)(ep, µ1)

(ep,⊤)(ep,⊤)(ep,⊤)

(fq, µ2(1 − p))(fq, µ2(1 − p))(fq, µ2(1 − p))

(eq, µ2p)(eq, µ2p)(eq, µ2p)

Figure 4.3: Processes associated with the queueing system of Example 5.

If we derive the CTMC of P (Q) we have a birth and death process whose birth
rate is λ+xfq (xep) and the death rate is µ1 (µ2). Note that the structural conditions
of RCAT are trivially satisfied. In order to obtain xep, i.e., the (constant) reversed
rate of the active actions labelled by ep, we observe that, in the CTMC, it is the

64 4. Markovian Process Algebra

reversed rate of the death transitions: xep = λ + xfq . Note that the reversed rate of
the death rate in the CTMC of Q is not xfq because the forward rate is the sum of the
transitions corresponding to action types eq and fq. Therefore applying Definition 5
we obtain xfp = xep(1 − p). Now we have to solve the traffic equation systems:{

xfp = xep(1 − p)

xep = λ + xfq ,

that gives xep = λ/p and xfq = λ + λ/p. Then, the joint steady state proability of
observing n customers in P and m in Q is given by:

π(n,m) ∝
(λ

pµ1

)n(λ

pµ2

)m

ERCAT is a theorem introduced in [61] that generalizes RCAT by relaxing its
structural conditions. The requirement of having the passive actions always enabled
both in the forward and reversed agents guarantees that the total flow out of the
forward and the reversed cooperation is the same for each state. We can avoid
these structural requests by introducing an appropriate balance on the flow in and
out of the states. The goal is being able to decide whether a cooperation of two
agents P and Q is in product-form by the analysis of the agents in isolation. Before
recalling the theorem we need to introduce some additional notation, as presented
in [61]. Suppose we have two agents P and Q and we want to study the steady state
probabilities of P BC

L
Q. Then we define the following subset of action types in L,

where A stands for the agent P or Q:

• PA(L): denotes the subset that are passive in A,

• AA(L) = L r PA(L): denotes the subset that are active in A,

• P i→
A denotes the subset that are passive in A and correspond to transitions

out of state i in the Markov process of A,

• P i←
A denotes the subset that are passive in A and correspond to transitions

into state i in the Markov process of A,

• Ai→
A denotes the subset that are active in A and correspond to transitions out

of state i in the Markov process of A,

• Ai←
A denotes the subset that are active in A and correspond to transitions into

state i in the Markov process of A,

• P(i,j)→ = P i→
P ∪ Pj→

Q and A(i,j)→ = Ai→
P ∪ Aj→

Q ,

• P(i,j)← = P i←
P ∪ Pj←

Q and A(i,j)← = Ai←
P ∪ Aj←

Q ,

4.5. PEPA models in product-form 65

• α
(i,j)
a denotes the instantaneous transition rate out of joint state (i, j) in the

Markov process of P BC
L

Q corresponding to active action type a ∈ L,

• β
(i,j)
a denotes the instantaneous transition rate out of state (i, j) in the reversed

Markov process of P BC
L

Q corresponding to passive action type a ∈ L.

Theorem 4 (ERCAT [61]) Suppose that the cooperation P BC
L

Q has a derivation
graph with an irreducible subgraph G. Given that every occurrence of a reversed
action of an active action type in AP (L) (respectively AQ(L)) has the same rate in
P (respectively Q), the reversed subgraph G is defined by the derivation graph of the

reversed agent P BC
L

Q =

R{(a, pa) ← (a,>)|a ∈ AP (L)} BC
L

S{(a, qa) ← (a,>)|a ∈ AQ(L)},

where

R = P{>a ← xa|a ∈ PP (L)}
S = Q{>a ← xa|a ∈ PQ(L)},

xa are the solutions (for >a) of the equations:

>a = qa a ∈ AQ(L) (4.3)

>a = ps a ∈ AP (L),

and pa (respectively qa) is the symbolic rate of action type a in P (respectively Q),
provided that the underlying Markov chain is ergodic (has a steady state) and:∑

a∈P(i,j)→

xa −
∑

a∈A(i,j)←

xa =
∑

a∈P(i,j)←\A(i,j)←

β
(i,j)
a −

∑
a∈A(i,j)→\P(i,j)→

α(i,j)
a . (4.4)

Example 6 In this example we use ERCAT to study a Boucherie’s product-form.
In [61] the author proves that any Boucherie’s product-form can be studied by ER-
CAT, however, for the sake of simplicity, we work on a simple model, i.e., that illus-
trated by Example 1 in Chapter 1. We have two processes, P1 and P2, that alternate
three states ai, bi, ci for i = 1, 2. The two processes compete for a resource when
they are in state ci. However, Boucherie’s product-form requires a stricter blocking
mechanism, i.e., when one of the two processes is in state ci the other one is always
blocked. Note that, even if we consider that the transition rates among the sates are
identical, the model can be reformulated in order to overcome this limitation. The
behavior of P1 in PEPA can be described as:

a1
def
= (a, λ1).b1 + (b,>).a1

b1
def
= (a, λ1).c1 + (b,>).b1

c1
def
= (a, λ1).a1,

66 4. Markovian Process Algebra

and P2:

a2
def
= (b, λ2).b2 + (a,>).a2

b2
def
= (b, λ2).c2 + (a,>).b2

c2
def
= (b, λ2).a2.

The whole system is S = a1 BC
a,b

a2 (see Figure 4.4). Note that RCAT structural

conditions do not hold since passive actions a and b are not enabled in states c2 and
c1 respectively. Therefore, we apply ERCAT.

a1 b1
c1

(b,⊤)(b,⊤)

(a, λ1)

(a, λ1)(a, λ1)

a2 b2
c2

(a,⊤)(a,⊤)

(b, λ2)

(b, λ2)(b, λ2)

Figure 4.4: Processes associated with the model of Example 6.

Note that states ai and bi have the same input and output transition labels and
rates, therefore we can check the ERCAT conditions (4.4) for the pairs of states
(α1, α2) (where αi = ai, bi for i = 1, 2), (α1, c2) (we can derive (c1, α2) by symmetry)
and finally (c1, c2).

• (α1, α2). In this case we have that:

P(α1,α2)→ = {a, b}
A(α1,α2)← = {a, b}
P(α1,α2)← = {a, b}
A(α1,α2)→ = {a, b},

that leads to: xa + xb − xa − xb = 0, that is trivially satisfied.

4.5. PEPA models in product-form 67

• (α1, c2). In this case we have that:

P(α1,c2)→ = {b}
A(α1,c2)← = {a, b}
P(α1,c2)← = {b}

A(α1,c2)→ = {a, b},

that leads to: xb − xa − xb = −αa(α1, c2). Since αa(α1, c2) = λ1, we have
xa = λ1. In the same way we derive xb = λ2.

• (c1, c2). In this case we have that:

P(c1,c2)→ = ∅
A(c1,c2)← = {a, b}

P(C1,c2)← = ∅
A(c1,c2)→ = {a, b},

that leads to: −xa − xb = −αa(c1, c2) − αb(c1, c2) that is satisfied for xa = λ1

and xb = λ2.

Finally, we have to derive xa and xb. By Kolmogorov’s criteria the sum of the
outgoing rates in the forward and in the reversed processes is the same, therefore
we have immediately that the reversed rate of λ1 (λ2) is xa = λ1 (xb = λ2), that is
coherent with ERCAT conditions.

Therefore, we have product-form and its expression is the same given by Boucherie’s
analysis.

ERCAT theorem has been generalized in [62] in order to deal with multiple-agent,
pairwise cooperations. In this section we just introduce the formal definition of this
kind of cooperation and, for the sake of brevity, omit to state the whole theorem
that can be seen as a straightforward generalization ERCAT. Let us define BC

L

n

k=1
Pk,

with n ≥ 2, where L = ∪n
k=1Lk and Lk = Pk ∪Ak is the set of synchronizing action

types that occur in agent Pk. Agents cooperate pairwise. Therefore, we define the
semantic of multi-agent cooperation as:

BC
L

n

k=1
Pk =

(
· · ·

((
P1 BC

M2
P2

)
BC
M3

P3

)
BC
M4

· · · BC
Mn−1

Pn−1

)
BC
Mn

Pn,

where Mk = Lk∩
(
∪k−1

k=1 Lj

)
. Roughly speaking, the pairwise condition of the multi-

agent cooperation states that if we have a synchronized transition then it involves
just a pair of agents, but, in general, an agent can synchronize with any number
of agents. Intuitively, MARCAT generalizes ERCAT by defining a unique system
of equations to solve in order to determine the reversed rates of the active action
types. This makes the computation of the product-form solution more efficient.

68 4. Markovian Process Algebra

For example, let us consider a Jackson QN. The analysis by ERCAT requires to
study the joint product-form process of just two nodes. Then, the analyzer should
consider this joint process and combine it with the process corresponding to another
node, and so on. Note that in a Jackson QN the synchronization at a job copletion
time involves just two nodes. Then, one can study the whole net simultaneously by
deriving the set of equations for the reversed rates that is proven to be equivalent
to the traffic equations of the corresponding QN [62].

4.6 Conclusions

In this chapter we informally reviewed the PEPA formalism [68] and introduced
the main results about product-form PEPA models. The main strength of PEPA
formalism is its compositionality, i.e., a modeler can define an agent behavior in
isolation and then combine it with other agents by the cooperation BC . For example
one can describe the behavior of a web server W and a web client C and then
obtain an evaluation of the performance indices depending on the number of clients.
Instantiating a set of clients is syntactically easy, because it suffices to use the BC
operator appropriately.

Among the various analysis that can be done on a PEPA model, we are mainly
interested in the analysis of the steady state probability distributions, for those
models that admit it. In this context, as seen for other formalisms in the previous
chapters, the generation of the infinitesimal generator Q of the CTMC, and the
solution of the global balance equations system can become unfeasible even for
relatively small models. Product-forms partially overcome this problem because
they allow the analyzer to derive the steady state probabilities through the steady
state probabilities of the single agents. Of course, this can be done under appropriate
conditions. Several results have been presented in order to characterize product-
form PEPA modes. We mainly focused on the most recent ones, i.e., the Reverse
Compound Agent Theorem (RCAT) and its extensions (ERCAT, MARCAT). It
defines some structural and behavioral conditions that can be decided by the analysis
of the forward and reversed CTMC of the cooperating agents. It has been shown
that RCAT can identify the Jackson and Gordon-Newell queueing networks product-
forms [59], a subclass of BCMP queueing networks [58], a subclass of product-form
G-networks [60] as well as new product-forms [61]. It is worthwhile pointing out
that it is not RCAT purpose to give an efficient algorithm to obtain the steady state
probabilities of single agents, or to solve the system of equations (4.1). In fact it
assumes these to be known and then it derives the product-form of the composed
agent.

The main strength of RCAT-based theorems is that they inherit the composi-
tional power and the high expressivity of the PEPA language. For example, in the
following chapter we use this result in the context of product-form SPN, and in
Chapter 6 in the context of GSPN.

II
Contributions

5
A new glance on product-form SPNs

using RCAT results

5.1 Introduction

This chapter illustrates some new results on product-form Stochastic Petri Nets
(SPNs). This is a joint work with P. G. Harrison (Imperial College, London).

In Chapter 3 we illustrated several results on stochastic Petri Nets (SPNs) in
product-form. In particular we reviewed the results of Coleman, Henderson et al.
given in [63, 39] (for the sake of brevity, in this chapter we refer to this model class
as CH-SPN). In Chapter 4 we reviewed RCAT-based theorems and pointed out that
they can be applied to other models than PEPA if the stochastic process of these
models can be conveniently expressed in terms of pairwise compositions of PEPA
agents. In this chapter we use this idea and apply ERCAT [61] and MARCAT [62]
results in order to study CH-SPNs. By this approach we establish a relation between
the product-form stochastic processes associated with CH-SPNs and the stochastic
processes that can be studied by RCAT-based theorems.

The main contributions of this work can be summarized as follows:

• we define a subclass of CH-SPNs, named CHC-SPN, where the transitions of
the SPN have constant firing rates and all the arc weights are 1, i.e., batch
token movements are not allowed,

• we define a CHC-SPN building block, i.e., a CHC-SPN pattern in which any
CHC-SPN can be decomposed,

• we study the building block by ERCAT deriving the conditions for the product-
form solution and its form,

• we prove that any CHC-SPN S can be decomposed into interconnected build-
ing blocks and that the steady state probabilities of S are in product-form by
using MARCAT,

• we define an algorithm that identifies the building blocks in a CHC-SPN,

72 5. A new glance on product-form SPNs using RCAT results

• we analyze the compositional and hierarchical properties of this new approach
to product-form SPNs.

Note that even if CHC-SPNs have strong restrictions compared to CH-SPNs
they can still model complex behaviors such as the fork and join constructs. In
the section dedicated to the conclusions we discuss how these limitations can be
overcome.

There are several practical consequences of these results. First of all, we have a
new interpretation of CH-SPN product-form theorem. In particular the condition
on the matrix rank (3.9) is now expressed in terms of ERCAT conditions, therefore
its motivation is no more purely algebraical. Moreover, the CHC-SPN product-
form modularity is enhanced. In fact, a CHC-SPN can be composed with models
expressed in terms of other formalisms whose stochastic processes satisfy RCAT
conditions maintaining the product-form property. For example, it is possible to
combine a CHC-SPN with a product-form G-network [50] obtaining a product-form
solution because product-form G-networks can be studied by RCAT [60]. Note that
when a building block B is composed with a CHC-SPN S the modeler can derive
the solution of the new model S ′ using the steady state probabilities known for S
and B. In Coleman, Henderson et al. approach this operation would require a new
analysis of S ′.

5.2 The building block

The purposes of this section are twofold. First, we show how it is possible to
use RCAT-based theorems (see Chapter 4 for a quick review) to study SPNs and
second we introduce a central concept for the following results, i.e., the structure
and the analysis of the building block. The building block plays a central role in
this work because, as we show in Section 5.3, every CHC-SPN can be partitioned
into several cooperating building blocks. Then, we use the analysis of the building
blocks to decide whether the whole model is in product-form and, if this is the case,
to compute its steady-state probabilities.

5.2.1 An introductory example

For the sake of clarity, before proving the general case we study a special simple case
called basic building block model (BBB). Let us consider the SPN model illustrated
in Figure 5.1. According to the notation illustrated in Chapter 3, χy (χy′) denotes
the intrinsic firing rate of transition Ty (T ′

y). We assume that for every state m, the
potential function ψ and φ are defined as follows: φ(m) = ψ(m) = 1. So the firing
rate of transition Ty is marking independent:

w(Ty,m) = χy,

5.2. The building block 73

P1 P2

T1 T12 T2

T
′

1
T

′

12
T

′

2

Figure 5.1: A basilar building block model (BBB).

and similarly for T ′
y.

In the study of a building block we use these conventions: transitions Ty are
always enabled, we call them input transitions and denote the set of all Ty by
TI . Transitions T ′

y are transitions with null output vector, we call them output
transitions and denote the set of all T ′

y by TO. The subscript y in Ty (T ′
y) is a set

containing the indices of the output places (input places) for the input (output)
transition Ty (T ′

y). Usually, we write y as subscript without parenthesis. Moreover,
in order to make the following formulas more familiar to those who are comfortable
with queueing theory, we set χy = λy (the arrival rates) and χ′

y = µy (the service
rates).

In order to model the BBB in PEPA we identify two agents that correspond to
the two places of the SPN model. The state of the agent is given by the number of
tokens in the place. Then, using a PEPA semantic, we can write:

P 1
0

def
= λ1.P

1
1 + (t12, λ12).P

1
1

P 1
n

def
= µ1.P

1
n−1 + (t′12,>′

12).P
1
n−1

+ λ1.P
1
n+1 + (t12, λ12).P

1
n+1 n > 0

P 2
0

def
= λ2.P

2
1 + (t12,>12).P

2
1

P 2
n

def
= µ2.P

2
n−1 + (t′12, µ12).P

2
n−1

+ λ1.P
1
n+1 + (t12,>12).P

1
n+1 n > 0

S
def
= P 1

0
BC

L
P 2

0 ,

where L
def
= {t12, t

′
12}, S is the agent that models BBB. Figure 5.2 gives an intuitive

representation of the definitions of P 1
n and P 2

n . Note that P 1
n controls the synchro-

nized arrivals (t12 is active in P 1
n) while P 2

n controls the synchronized departures (t′12

is active in P 2
n).

74 5. A new glance on product-form SPNs using RCAT results

0 1 2

0 1 2

P

P

1

2

λ1λ1

µ1µ1

(t12, λ12)(t12, λ12)

(t′
12

,⊤′

12
)(t′

12
,⊤′

12
)

λ2λ2

µ2µ2

(t12,⊤12)(t12,⊤12)

(t′
12

, µ12)(t′
12

, µ12)

Figure 5.2: Graphical description of P 1
n and P 2

n of BBB.

We can note that the structural conditions of RCAT are not satisfied because
the action with type t′12 is not enabled in every derivative of P 1. This is because a
synchronized departure is not possible if place P 1 is empty. Therefore, we have to
check the conditions to apply ERCAT.

ERCAT application First of all, we study the necessary conditions (4.4). Even
if these conditions require to study all the pairs (P 1

m, P 2
n) with m,n ≥ 0 we can

reduce this test to only four cases. In fact, it is easy to note that the outgoing and
incoming transitions and rates for all the states P 1

k (P 2
k) with k > 0 are the same.

Therefore, we have to analyze the pairs (0, 0), (0, k), (k, k), (k, 0):

• (0, 0). For this pair we have the following sets:

P(0,0)→ = {t12} A(0,0)← = {t′12}
P(0,0)← \ A(0,0)← = ∅ A(0,0)→ \ P (0,0)→ = ∅.

In order to apply ERCAT, condition (4.4) must be satisfied. Therefore, we
derive the condition x12 = x′

12.

• (0, k). For this pair we have the following sets:

P(0,k)→ = {t12} A(0,k)← = {t′12}
P(0,k)← \ A(0,k)← = {t12, t

′
12} \ {t′12} = {t12}

A(0,k)→ \ P (0,k)→ = {t12, t
′
12} \ {t12} = {t′12}.

In order to satisfy condition (4.4), we have that x12 −x′
12 = β12(0k)−α12(0k).

Both this condition and the one derived for pair (0, k) must hold, then we can
write α12(0k) = β12(0k), where α12(0k) = µ12.

5.2. The building block 75

• (k, 0) and (k, k). For these pairs the ERCAT conditions (4.4) are trivially sat-
isfied. In fact, every passive action and every reversed action corresponding to
an active action, are always enabled (therefore for these pairs RCAT structural
conditions are satisfied).

Therefore, ERCAT conditions are:{
x12 = x′

12

β12(0k) = α12(0k) = µ12.
(5.1)

Let us write the system of equations (4.3) for this model using Definition 5 (of
Chapter 4). {

x12 = λ12

λ12+λ1
(µ1 + x′

12)

x′
12 = µ12

µ12+µ2
(λ2 + x12)

. (5.2)

Let us assume x12 = x′
12, we obtain:{

x12 = λ12µ1

λ1

x′
12 = µ12λ2

µ2

,

that gives the condition:
λ1λ2µ12 = λ12µ1µ2. (5.3)

Now we still have to check the second condition of (5.1):

β12(0k) =
x12

x12 + λ2

(µ2 + µ12) = µ12,

that can be verified by easy calculations.
Under condition (5.3) the steady state probability distribution π(m1, m2) is in

product-form by ERCAT. By replacing >12 with x12 and >′
12 with x′

12 the stochastic
processes associated with P 1 and P 2 are simple birth and death processes therefore,
after some calculations, we can write:

π(m1,m2) ∝
(λ1

µ1

)m1
(λ2

µ2

)m2

. (5.4)

Coleman, Henderson et al. theorem application. In this paragraph we re-
peat the analysis of BBB model in order to compare the product-form conditions
required by ERCAT and those required by Theorem 2 of Chapter 3. We can note
that the structural conditions of Theorem 2 are not immediately satisfied because
the input transitions have the same input vector (the null vector). Therefore, we
fuse the transitions into one transition called T as shown in Figure 5.3. Different
linestyles represent different output vectors of the same transition T .

We have that transition T has three output vectors: O1(T) = (1, 0) with proba-
bility λ1/λ, O2(T) = (0, 1) with probability λ2/λ and O3(T) = (1, 1) with probability

76 5. A new glance on product-form SPNs using RCAT results

T

P1 P2

T
′

1
T

′

12
T

′

2

Figure 5.3: BBB after melting the input transitions.

λ12/λ, where λ = λ1 +λ2 +λ12 is the firing rate of T . Therefore, the traffic equation
system (3.6) becomes:

λf = µ1f1 + µ2f2 + µ12f12

µ1f1 = λf λ1

λ

µ2f2 = λf λ2

λ

µ12f12 = λf λ12

λ

That gives f = 1, f1 = λ1/µ1, f2 = λ2/µ2, f12 = λ12/µ12.
From these f values we can derive vector C (3.7):

C =

log µ1

λ1

log µ2

λ2

log µ12

λ12

log λ1

µ1

log λ2

µ2

log λ12

µ12

.

In the following we use ci to denote the i-th component of vector C. The incidence
matrix A is:

A =

1 0
0 1
1 1
−1 0
0 −1
−1 −1

 ,

5.2. The building block 77

and we have rank(A) = 2. Matrix [A|C] is the matrix:

[A|C] =

1 0 c1

0 1 c2

1 1 c3

−1 0 c4

0 −1 c5

−1 −1 c6

 .

We have that rank([A|C]) = rank(A) = 2 if and only if c1 + c2 = c3, i.e.:

µ1

λ1

µ2

λ2

=
µ

λ
=⇒ µ1µ2λ = λ1λ2µ.

Under this condition SPN BBB is in product-form by Henderson, Coleman et al.
theorem. Now we can derive the product-form expression by solving system (3.10),
that gives: {

− log y1 = c1 =⇒ y1 = λ1

µ1

− log y2 = c2 =⇒ y2 = λ2

µ2

.

This gives the product-form solution:

π(m1,m2) ∝
(λ1

µ1

)m1
(λ2

µ2

)m2

.

Asymmetric BBB Let us consider model BBB shown in Figure 5.1 and suppose
that both transitions T1 and T ′

1 are missing. In this case the definition of the PEPA
agents is different but the analysis of conditions (4.4) does not change. In particular
condition x12 = x′

12 is trivially satisfied, so:

x12 = x′
12 =

µ12λ2

µ2

is unconditionally satisfied. It is also easy to check that β12(0k) = µ12 uncondition-
ally. The product-form is then given by:

π(m1, m2) ∝
(µ2λ12

λ2µ12

)m1
(λ2

µ2

)m2

.

It is possible to apply again Theorem 2 and verify that the conditions and the steady
state probability function π are the same.

Some notes. This simple example has shown the different approaches of the well-
know technique for solving product-form SPNs, i.e., based on Theorem 2, and the one
we discuss in this thesis based on ERCAT (Theorem 4). Note that both ERCAT
and Theorem 2 give the same condition for the product-form and, obviously, the

78 5. A new glance on product-form SPNs using RCAT results

same steady state probabilities. However, informally, ERCAT needs the condition
in order to balance the flows in the forward and reversed stochastic processes of the
model, while Coleman and Henderson approach seems to be more algebraical.

In particular, it is worthwhile pointing out that the conditions that arise from
the application of ERCAT have clear motivations based on the first Kolmogorov’s
criteria (see the proof of ERCAT for more details [61]). In fact, we know that for
each state of a CTMC, the sum of the outgoing rates in the forward process is equal
to the sum of the outgoing rates in the reversed process. As a consequence ERCAT
condition (4.4) is required (while in RCAT it is always satisfied).

Another aspect we want to point out is the following. If we consider the sym-
metric BBB condition (5.3) then we can explicit λ1/µ1 obtaining the base of the
first factor of the product-form solution for the asymmetric case. We show in the
following sections that this result can be generalized.

Finally, a last peculiarity of this example is that, as far as we know, it is the first
case of application of ERCAT in which all the sets specified in 4.4 are not empty,
therefore showing that the theorem defined in order to consider all the possible cases
has not only a theoretical relevance but also practical applications.

5.2.2 Analysis of the building blocks

A building block consists of a set of places P1, . . . PN , a set of input transitions
TI whose input vectors are null, and a set of output transitions TO whose output
vectors are null. We say that a building block is complete if for every non-empty
subset y of {1, . . . , N} there exists an input transition Ty ∈ TI such that the output
vector has 1 values in position i if and only if i ∈ y and all the other components
are 0. Symmetrically there must exist an output transition T ′

y whose input vector
coincides with the output vector of Ty. Therefore, a complete building block with
N places has 2N − 1 input transitions and 2N − 1 output transitions. It should be
clear that this is a generalization of model BBB presented before. The main result
presented in this section is the following lemma, that states the conditions for (and
the expression of) the product-form solution for a building block:

Lemma 1 Consider an SPN S consisting of N places {P1, . . . , PN} and a set of
transitions T = TI ∪ TO where TI = {Ty|y ∈ P{1, . . . , N} r ∅} and TO = {T ′

y|y ∈
P{1, . . . , N}r∅}. The i-th component of the output (input) vector of Ty (T ′

y) is 1 if
i ∈ y, 0 otherwise. The firing rates of transitions Ty ∈ TI (T ′

y ∈ TO) are denoted by
λy (µy). Assuming that S has a steady state distribution, then it has the following
product-form solution:

π(m) ∝
N∏

i=1

(λi

µi

)mi

(5.5)

provided that the following set of conditions holds:

∀y ∈ P{1, . . . , N} r ∅, λy

∏
i∈y

µi = µy

∏
i∈y

λi. (5.6)

5.2. The building block 79

As first we simplify a little the notation. In the following, letters i and j take
values in {1, . . . , N} while y is a set belonging to the set of the parts of {1, . . . , N}
unless differently specified. We write λi instead of λ{i}, and similarly for µ and x.
If we want to add an index to a set we will just write y, i instead of y ∪ {i} and
similarly for the minus operator we write y − i instead of y r {i}.

In order to simplify the proof of Lemma 1 we introduce the following simple
lemma.

Lemma 2 Conditions (5.6) holds if and only for each y such that |y| > 2, and for
each i ∈ y we can write:

λyµy−iµi = µyλy−iλi (5.7)

Proof of Lemma 2

The case |y| = 2 is trivial because condition (5.6) is always true.

• (5.6) ⇒ (5.7) Let |y| > 2, then we can rewrite Equation (5.6) as:

λyµi

∏
j∈y
j 6=i

µj = µyλi

∏
j∈y
j 6=i

λj.

By hypothesis:

λy−i

µy−i

=

∏
j∈y
j 6=i

λj∏
j∈y
j 6=i

µj

,

we obtain (5.7).

• (5.7) ⇒ (5.6) We can prove the Lemma by induction on |y|. The base case
|y| = 2 is trivial, so let us consider |y| > 2. By Formula (5.7) we can write:

λyµy−iµi = µyλy−iλi.

By inductive hypothesis we have that:

λy−i

µy−i

=

∏
j∈y
j 6=i

λj∏
j∈y
j 6=i

µj

,

that proves the second verse of the double implication. This completes the
proof. ♠

80 5. A new glance on product-form SPNs using RCAT results

Introduction to the proof of Lemma 1

The proof of Lemma 1 can result complicated. It is done by induction on the number
of places of the building block. In order to help the intuition, in this paragraph we
show how we can study a building block consisting of 3 places basing the results on
the analysis of a building block with 2 places (BBB). Readers who are confortable
with ERCAT applications can skip this paragraph.

Let us consider a complete BB with 3 places, P1, P2 and P3. In this case the set
of input and output transitions are:

TI = {T1, T2, T3, T12, T13, T23, T123}
TO = {T ′

1, T
′
2, T

′
3, T

′
12, T

′
13, T

′
23, T

′
123}

Let us describe such a building block by a PEPA component S defined as a synchro-
nization of a model S ′ associated with places P1 and P2 (a BBB) and the a model
P 3 associated with place P3:

S
def
= S ′

00
BC

t123,t13,t23,t′123,t′13,t′23
P 3

0 .

Basically, S ′ and P 3 synchronize on every input and output transition that includes
at least one place in S ′ and one in P3. Figure 5.4 informally illustrates how S ′ and
P 3 interact.

Note that structural conditions of RCAT are not satisfied, therefore we apply
ERCAT.

Now we check ERCAT condition (4.4) for every pair that forms the joint process
state. Our aim is to derive some conditions on the reversed rates xy,3 and x′

y,3 where
y = {1}, {2}, {1, 2}. Let K, J be a positive integers. If we consider the joint state
(00, 0) then we have:

P(00,0)→ = {t13, t23, t123}
A(00,0)← = {t′13, t

′
23, t

′
123}

P(00,0)← = {t′13, t
′
23, t

′
123}

A(00,0)→ = {t13, t23, t123}.

Then the condition on xy,3 and x′
y,3 is:

x123 + x23 + x13 = x′
123 + x′

23 + x′
13

Let us consider the joint state (0K, 0), then we have:

P(0K,0)→ = {t13, t23, t123, t′23}
A(0K,0)← = {t′13, t′23, t′123, t23}
P(0K,0)← = {t′13, t′23, t′123}
A(0K,0)→ = {t13, t23, t123}.

5.2. The building block 81

0 1P3

00 10

01 11

S’

λ3

(t13,⊤13)

(t23,⊤23)

(t123,⊤123)

µ3

(t′
13

, µ13)

(t′
23

, µ23)

(t′
123

, µ123)

λ1

λ1

µ1

µ1

λ2
λ2 µ2µ2

(t13, λ13)

(t13, λ13)

(t′
13

,⊤′

13
)

(t′
13

,⊤′

13
)

(t23, λ23)

(t23, λ23)

(t′
23

,⊤′

23
)

(t′
23

,⊤′

23
)

(t123, λ123)

(t′
123

,⊤′

123
)

λ12

µ12

Figure 5.4: Interactions of a BBB with another PEPA agent in order to model a
building block with 3 places.

Hence, we derive:

x123 + x23 + x13 + x′
23 = x′

123 + x′
23 + x′

13 + x23,

that, combined with the first condition, straightforwardly gives x23 = x′
23. Using ex-

actly the same technique we derive the condition xy = x′
y, with y = {1, 3}, {2, 3}, {1, 2, 3}.

Assuming this condition, the following calculations result relatively simple.

82 5. A new glance on product-form SPNs using RCAT results

Let us consider the joint state (0K, J). Then we have:

P(0K,J)→ = {t13, t23, t123, t
′
23}

A(0K,J)← = {t′13, t
′
23, t

′
123, t23}

P(0K,J)← = {t′13, t
′
23, t

′
123, t13, t23, t123}

A(0K,J)→ = {t13, t23, t123, t′13, t′23, t′123}.

Hence, we derive:

x′
23 − x23 = β13(0K, J) + β123(0K, J) − α13(0K, J) − α123(0K, J). (5.8)

In the same way, from the analysis of joint state (K0, J) we obtain:

x′
13 − x13 = β23(K0, J) + β123(K0, J) − α23(0K, J) − α123(0K, J). (5.9)

Note that, by assumptions, x23 = x′
23 and x13 = x′

13.
The analysis of agent P 3 basically is the analysis of a birth and death process.

The formula for x′
13 is:

x′
13 =

µ13

µ3 + µ13 + µ23 + µ123

(λ3 + x13 + x23 + x123).

Note that the condition xy,3 = x′
y,3, for y = {1, 3}, {2, 3}, {1, 2, 3}, allows us to derive

the solutions, i.e:

x′
y,3 = xy,3 =

λ3

µ3

µy,3. (5.10)

Now we have to verify that Equation (5.10) satisfies conditions (5.8) and (5.9). We
have that:

β13(K0, J) =
x13

x23 + x123 + λ3

(µ13 + µ23 + µ123 + µ3) = µ13 = α13(0K, J),

and similarly β23(K0, J) = µ23 and β123(K0, J) = µ123. Therefore, conditions (5.8)
and (5.9) are verified.

We assume the hypothesis (5.6), that can be rewritten as:
µ123λ1λ2λ3 = λ123µ1µ2µ3

µ12λ1λ2 = λ12µ1µ2

µ13λ1λ3 = λ13µ1µ3

µ23λ2λ3 = λ23µ2µ3

(5.11)

In order to study the BB modeled by S ′ we have to prove that these conditions
imply:

(λ12 + λ123)(µ1 + x13)(µ2 + x23) = (µ12 + x123)(λ1 + λ13)(λ2 + λ23).

5.2. The building block 83

The proof is purely algebraical and we omit it because we give a proof for the
general case in the following paragraph. The BB identified by S ′ has the following
product-form solution:

π′(m′) ∝
(λ1 + λ13

µ1 + x13

)m1
(λ2 + λ23

µ2 + x23

)m2

,

where m′ = (m1,m2), xi3 = (λ3/µ3)µi3. Model S is in product-form and its solution
is given by:

π(m) ∝ π′(m′)
(λN+1

µN+1

)m3

,

where m = (m1,m2,m3). Using Hypothesis (5.11) we can derive that:

π(m) ∝
3∏

i=1

(λ1

µi

)mi

.

Proof of Lemma 1

The proof is inductive on N , the number of places. The case N = 1 is a simple
exponential queue, and the case N = 2 has already been studied because it is model
BBB. Let us consider a SPN S with N + 1 places. We remove from the SPN place
PN+1 and all the arcs incoming to or outgoing from PN+1 obtaining the model called
S ′. From the point of view of S ′, this operation causes transitions Ty,N+1 (T ′

y,N+1)
to have the same behavior (i.e. the same input and output vectors) of Ty (T ′

y) with
y ∈ P{1, . . . , N}r∅. However Ty does not synchronize with PN+1 while Ty,N+1 does.
Let us describe the interactions between S ′ and PN+1 in PEPA. We use small letter
t to denote the action type associated with transition T , and the PEPA component
PN+1

n represents the state with n tokens in PN+1.
Process PN+1

n can be described in PEPA as follows:

PN+1
0

def
= λN+1.P

N+1
1 + (ty,N+1,>y,N+1).P

N+1
1

PN+1
n

def
= λN+1.P

N+1
n+1 + (ty,N+1,>y,N+1).P

N+1
n+1

+µN+1.P
N+1
n−1 + (t′y,N+1, µy).P

N+1
n−1 ,

where n > 0 and y ∈ P{1, . . . , N} r ∅.

ERCAT structural conditions. In this part of the proof we study the ERCAT
conditions for the product-form of the cooperation

S ′ BC
{∀y 6=∅,ty,N+1,t′y,N+1}

PN+1
0 .

We use an analysis that is completely similar to the one illustrated for model BBB.

84 5. A new glance on product-form SPNs using RCAT results

Let m denote a derivate of S ′ and we define O(m) = {y : t′yis enabled in m}.
The derivatives of PN+1 are clustered in two classes, 0 is PN+1

0 while K is a general
PN+1

K with K > 0.
For a joint state (m, 0) it is possible to show that the ERCAT conditions are:∑

(y,N+1)∈O(m)

x′
y,N+1 +

∑
y∈P{1,...,N}\∅

xy,N+1 =
∑

(y,N+1)∈O(m)

xy,N+1 +
∑

y∈P{1,...,N}\∅

x′
y,N+1

(5.12)
while from a joint state (m, K) the ERCAT conditions are:∑

(y,N+1)/∈O(m)

βy,N+1(m, K) =
∑

(y,N+1)/∈O(m)

αy,N+1(m, K). (5.13)

If we consider derivate m such that O(m) = ∅ we can write (5.12) as:∑
y∈P{1,...,N}\∅

xy,N+1 =
∑

y∈P{1,...,N}\∅

x′
y,N+1,

This, combined with (5.12) written for m such that O(m) = {i} with 1 ≤ i ≤ N
gives the conditions:

∀y, xy,N+1 = x′
y,N+1 (5.14)

where y ∈ P{1, . . . , N} r ∅.

Analysis of agent PN+1 and solution for xy,N+1 and x′
y,N+1. Let us assume

that conditions (5.14) are satisfied. Figure 5.5 illustrates agent PN+1 graphically,
where labels ys have to be intended as all the existing synchronized transitions from
S ′ and y′, y′′ as two examples of these transitions. ERCAT gives us a method

0 1 2

λN+1
λN+1λN+1

µN+1µN+1µN+1

⊤y′,N+1
⊤y′,N+1⊤y′,N+1

⊤y′′,N+1
⊤y′′,N+1

⊤y′′,N+1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

µy′,N+1µy′,N+1

µy′,N+1

µy′′,N+1µy′′,N+1
µy′′,N+1

Figure 5.5: Description of agent PN+1.

to replace >s with opportune rates xy,N+1s as shown by Figure 5.6. As we have
that xy,N+1 = x′

y,N+1 we can determine x′
y,N+1s rates (and then xy,N+1s) by the

analysis of PN+1 in isolation. In order to achieve this, we must obtain the CTMC

5.2. The building block 85

0 1 2

λN+1
λN+1λN+1

µN+1µN+1µN+1

xy′,N+1
xy′,N+1xy′,N+1

xy′′,N+1
xy′′,N+1

xy′′,N+1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

µy′,N+1µy′,N+1

µy′,N+1

µy′′,N+1µy′′,N+1
µy′′,N+1

Figure 5.6: Description of agent PN+1 after replacing > with x.

associated with PN+1 and, once it is reversed, determine the rates associated with the
transitions with type t′y,N+1 using Definition 5. If these reversed rates are constant
we have the solution for x′

y,N+1s. The CTMC associated with the process of Figure
5.6 is a birth and death process with constant birth and death rates. The total
birth rate is

∑
y x′

y,N+1 + λN+1 and the total death rate is
∑

y µy,N+1 + µN+1, where
y ∈ P{1, . . . , N} \ ∅. Then we can obtain xy,N+1:

x′
y,N+1 =

µy,N+1

µN+1 +
∑

y µy,N+1

(∑
y

x′
y,N+1 + λN+1

)
, (5.15)

therefore, we can note that x′
y,N+1 = kµy,N+1 with k > 0 constant. This gives:

k − k

∑
y µy,N+1

µN+1 +
∑

y µy,N+1

=
λN+1

µN+1 +
∑

y µy,N+1

,

that implies:

x′
y,N+1 = xy,N+1 =

λN+1

µN+1

µy,N+1. (5.16)

We can show that Formula (5.16) satisfies condition (5.13), indeed using again Def-
inition 5, we have:

βy,N+1(m, K) =
xy,N+1∑

y xy,N+1 + λN+1

(∑
y

µy,N+1 + µN+1

)
= µy,N+1,

that is independent of state m. So we have proved that:

1. xy,N+1 = x′
y,N+1 ⇐⇒ x′

y,N+1 = xy,N+1 = λN+1

µN+1
µy,N+1,

2. xy,N+1 = x′
y,N+1 =⇒ condition (5.13).

86 5. A new glance on product-form SPNs using RCAT results

Analysis of agent S ′. If we derive the CTMC of S ′ we have that each possible
state transition is caused by two possible actions. One is the internal action of S ′, ty
(t′y), and the other is the synchronizing action ty,N+1 (t′y,N+1) (see Figure 5.7). So,
in the CTMC, the total rate of each transition is µy + x′

y,N+1 where x′
y,N+1 is the

rate obtained by the application of ERCAT theorem, or λy + λy,N+1. Therefore, by
the inductive hypothesis we have the following product-form solution of S ′:

π′(m) ∝
N∏

i=1

(λi + λi,N+1

µi + xi,N+1

)mi

. (5.17)

if the following condition holds:

∀y ∈ P{1, . . . , N} \ ∅, (λy + λy,N+1)
∏
j∈y

(µj + xj,N+1)

= (µy + xy,N+1)
∏
j∈y

(λj + λj,N+1). (5.18)

m m’ k k + 1

m/k m’/k

m / k + 1 m ’ / k+1

(1)

(2)

λy

(ty,N+1, λy,N+1)

µy

(t′y,N+1
,⊤′

y,N+1
)

(ty,N+1,⊤y,N+1)

λN+1

µN+1

(t′y,N+1
, µy,N+1)

λy

λy

µy

µy

µN+1µN+1 λN+1
λN+1 λy,N+1

µy,N+1

Figure 5.7: Intuition of the possible transitions between two states in the CTMC of
S (2) and the way they are modeled in PEPA (1).

(5.6) =⇒ (5.5). This is the main part of the proof. In order to help the intuition,
Figure 5.8 illustrates the steps we are going to do in order to reach our goal.

We assume that (5.6) holds for the BB with N + 1 places, and we prove (5.18),
i.e., Condition (5.6) holds for S ′. If |y| = 1 Equation (5.18) is an identity. By
Lemma 2 we can prove that for any set y, |y| > 1, and label i ∈ y the following

5.2. The building block 87

CONDITIONS (5.6)

ERCAT

CONDITIONS (5.13)

INDUCTIVE
HYPOTHESIS

SOLUTION (5.12)

SOLUTION (5.5)

GOAL

Figure 5.8: Schema of the proof of Lemma 1.

relation holds:

(λy + λy,N+1)(µy−i + xy−i,N+1)(µi + xi,N+1)

= (µy + xy,N+1)(λy−i + λy−i,N+1)(λi + λi,N+1).

As xy,N+1 = (λN+1/µN+1)µy,N+1, we can rewrite:

(λy + λy,N+1)(µy−i +
λN+1

µN+1

µy−i,N+1)(µi +
λN+1

µN+1

µi,N+1)

= (µy +
λN+1

µN+1

µy,N+1)(λy−i + λy−i,N+1)(λi + λi,N+1).

By hypothesis, Condition (5.6) holds, then µy = λy

∏
j∈y µj/

∏
j∈y λj and similarly

we can rewrite µy,N+1, hence, the second hand side becomes:∏
j∈y

µj

λj

(λy +
λN+1

µN+1

µN+1

λN+1

λy,N+1)(λy−i + λy−i,N+1)(λi + λi,N+1).

After some simplifications, we have to prove:

(µy−i +
λN+1

µN+1

µy−i,N+1)(µi +
λN+1

µN+1

µi,N+1) =
∏
j∈y

µj

λj

(λy−i + λy−i,N+1)(λi + λi,N+1).

By rewriting µy−i and µy−i,N+1, the left hand side becomes:

λi

µi

∏
j∈y

µj

λj

(λy−i + λy−i,N+1)(µi +
λN+1

µN+1

µi,N+1).

After some simplifications, eventually we obtain:

λi +
λiλN+1

µiµN+1

µi,N+1 = λi + λi,N+1,

88 5. A new glance on product-form SPNs using RCAT results

that is satisfied by hypothesis.
As conditions (5.18) are verified, by inductive hypothesis we conclude that the

steady state probabilities of S ′ are given by (5.17). Let us verify that the solutions
for xy,N+1 expressed by (5.16) are correct, i.e., the reversed rates of the active actions
of types ty,N+1 are constant.

In S ′ we have that xy,N+1 = λy,N+1, i.e, the reversed rate of the firing rates of
transition Ty where y ∈ P{1, . . . , N} r ∅. As we know the steady state solution of
S ′ by the inductive hypothesis (5.17), we can easily obtain the reversed rates:

π(m)(λy,N+1 + λy) = π(m′)(λy,N+1 + λy),

where m′ is the state reached from m after the firing of transition Ty,N+1. We obtain:

xy,N+1 =
∏
i∈y

(µi + xi,N+1

λi + λi,N+1

)
λy,N+1,

that is independent of state m (as required) and that can be proved to be coherent
with solutions (5.16) using hypothesis (5.6). By ERCAT, the product-form solution
for S ′ BCPN+1 is:

π(m) ∝
N∏

i=1

(µN+1(λi + λi,N+1)

µN+1µi + λN+1µi,N+1

)mi
(∑

y[(λN+1/µN+1)µy,N+1] + λN+1∑
y µy,N+1 + µN+1

)mN+1

,

that can be shown to be equal to (5.5) using (5.16) and (5.6). In particular, it can
be proved that

µN+1(λi + λi,N+1)

µN+1µi + λN+1µi,N+1

=
λi

µi

,

and that: ∑
y[(λN+1/µN+1)µy,N+1] + λN+1∑

y µy,N+1 + µN+1

=
λN+1

µN+1

.

The left hand side of the last equality can be rewritten as:∑
y xy,N+1 + λN+1∑
y µy,N+1 + µN+1

,

that by (5.15) becomes:

xy,N+1

µy,N+1

=
λN+1

µN+1

µy,N+1

µy,N+1

=
λN+1

µN+1

.

This concludes the proof. ♠

Note that we have not proved that conditions (5.6) are necessary for the product-
form solution of the model, but we can show that they are necessary in order to

5.2. The building block 89

apply ERCAT. In fact conditions (5.12) and (5.13) are necessary for ERCAT. Let
us calculate the reversed rates λy,N+1. We first consider singleton y = {i}, then:

xi,N+1 =
µiλi,N+1

λi

,

that, compared to (5.16) gives µiµN+1λi,N+1 = λiλN+1µi,N+1. If |y| ≥ 2 we have:

xy,N+1 =
µyλy,N+1

λy

,

that, compared to (5.16) gives µyλy,N+1µN+1 = λyλN+1µy,N+1. It is easy to prove
that these conditions together with the previous ones are equivalent to (5.6) (for
example by induction on |y|).

5.2.3 Comparison between Lemma 1 and Coleman, Hender-
son et al. approach

In this subsection we review the analysis of the building block using Theorem 2. In
particular we analyze an incomplete building block, i.e., a building block in which
there is at least one set y ∈ P{1, . . . , N} \ ∅ for which transitions Ty /∈ TI and
T ′

y /∈ TO. This analysis can be done by ERCAT in a analogue way of what we
have shown in the proof of Lemma 1 but, as only some algebraic steps change,
we prefer to see the same problem from a different point of view. The case of
incomplete (asymmetric) building block for N = 2 places has already been studied
using ERCAT.

Lemma 3 Consider an SPN S consisting of N places {P1, . . . , PN} and a set of
transitions T = TI ∪ TO where TI = {Ty|y ∈ Y} and TO = {T ′

y|y ∈ Y}, where
Y ⊆ {1, . . . , N} \ ∅. The i-th component of the output (input) vector of Ty (T ′

y) is 1
if i ∈ y, 0 otherwise. The firing rates of transitions Ty ∈ TI (T ′

y ∈ TO) are denoted
by λy (µy). Assuming that S admits a steady state, then it is in product-form if:

∀y ∈ P{1, . . . , N} r ∅ : |y| > 1, λy

∏
i∈y

µi = µy

∏
i∈y

λi. (5.19)

The product-form solution is:

π(m) ∝
N∏

i=1

(λi

µi

)mi

, (5.20)

where in case of y = {i} /∈ Y with i ∈ {1, . . . , N}, ratio λi/µi is obtained by a
condition related to a transition y such that i ∈ y.

90 5. A new glance on product-form SPNs using RCAT results

P1 P2 P3

T12 T23

T
′

12
T

′

23

T3

T
′

3

Figure 5.9: Example of incomplete building block.

Example 7 Suppose we aim to study the incomplete building block of Figure 5.9.
Using Lemma 3 we have the following conditions for the product-form:{

λ12µ1µ2 = µ12λ1λ2

λ23µ2µ3 = µ23λ2λ3

In this example transitions T1, T
′
1, T2, T

′
2 are missing, so the conditions above are

satisfied. Therefore, we can explicit the ratios λ1/µ1 and λ2/µ2 obtaining:{
λ2

µ2
= λ23

µ23

µ3

λ3

λ1

µ1
= λ12

µ12

µ2

λ2
= λ12

µ12

λ3

µ3

µ23

λ23

Therefore, the steady state probabilities are given by:

π(m1,m2,m3) ∝
(λ12λ3µ23

µ12µ3λ23

)m1
(λ23µ3

µ23λ3

)m2
(λ3

µ3

)m3

.

As explained before, we prove Lemma 3 using Theorem 2 in order to clarify the
relations between our approach and the well-known one.

Proof of Lemma 3

In order to satisfy Theorem 2, we fuse all the input transitions into one named T
with rate λ =

∑
y∈Y λy, and use the probabilistic output vectors in order to preserve

the model behavior, i.e., transition T has the output vector of Ty with probability
λy/λ. Then, the traffic equations (3.6) become:{

λf =
∑

y∈Y µyf
′
y

∀y ∈ Y µyf
′
y = λf λy

λ
= fλy.

5.3. The composition of the building blocks 91

A possible solution is given by f = 1 and f ′
y = λy/µy.

Vector C (3.7) has the first |Y| rows whose components are cy = log(µy/λy) and
the last |Y| ones whose components are c′y = log(λy/µy).

Let us determine the incidence matrix. The matrix has 2|Y| rows and N columns.
Let ei be a N-dimension row vector in which only component ei = 1 and ej = 0 for
j 6= i. Then the row ry of the incidence matrix A is given by

∑
i∈y ei for the first

|Y| rows, and r′y = −
∑

i∈y ei for the last |Y| rows.

Now suppose that row ry can be written as sum of L other rows of the first half
A: ry = ry1 + . . . + ryL

. Then, the rank condition (3.9) becomes:

L∑
i=1

cyi
= cy,

that can be written as:

L∏
i=1

µyi

λyi

=
µy

λy

=⇒ λy

L∏
i=1

µyi
= µy

L∏
i=1

λyi
.

This is Lemma 3 condition. The product-form solution is given by (3.10) and can
been easily seen that it is coherent with the thesis of the lemma. ♠.

5.3 The composition of the building blocks

In this section and in the following ones we implicitly assume that the models we are
considering admit a steady state. Although the proof of Lemma 1 by using ERCAT
is complex, we now take advantage from this approach and show how the lemma
can be used in order to study complex product-form SPN models. As the building
blocks are in product-form by ERCAT we can observe that:

1. the reversed rates of the reversed actions corresponding to output transition
firings are constant,

2. an input transition is always enabled,

3. each state of the building block can be reached by the firing of any output
transition.

Then we can use RCAT (Theorem 3) to combine two building blocks (i.e. we do
not need to check the conditions of ERCAT theorem). Considering only pairwise
compositions of several building blocks for each action type, we can apply MARCAT
in order to solve the model in one step.

92 5. A new glance on product-form SPNs using RCAT results

5.3.1 CHC-SPN

In this part of the section we characterize a subset of the models considered by
Coleman, Henderson et al. in their works [63, 39] and presented here in Chapter 3.
In the following definition we refer to the notation for SPNs introduced in Chapter
3.

Definition 6 (CHC-SPN) A Coleman, Henderson et al. SPN with constant firing
rates (CHC-SPN) is a net with the following structural conditions:

1. Each arc has weight 1,

2. All the exponential transition rates are constant and are denoted by χi where
i is the index of the corresponding transition Ti: w(Ti,m) = χi,

3. For each input vector I(Ti) there exists a transition Tj with an output vector
Ob(Tj) such that I(Ti) = Ob(Tj).

Note that every CHC-SPN satisfies the structural conditions of the product-form
model class required by Theorem 2.

CHC-SPNs exhibit a useful property, i.e., they can be decomposed into building
blocks. Let us consider the following relation between places: Pi ∼ Pj if there exists
at least a transition T such that (T, Pj) ∈ A and (T, Pi) ∈ A, where according with
the notation defined in Chapter 3, A is the set of arcs. Note that relation ∼ is
symmetric and reflexive but it is not transitive as shown by the counterexample of
figure 5.10, where P1 ∼ P2, P2 ∼ P3 but P1 ∼ P3 is not true. Therefore, if we want

Figure 5.10: Example of relations among transitions.

to identify a relation which induces a partition of the places in the net, we need to
extend ∼ with transitivity. Hence, we have that Pi ∼′ Pj if Pi ∼ Pj or if there exists
Pk ∈ P such that Pi ∼ Pk and Pk ∼′ Pj. Now relation ∼′ is an equivalence relation.
As a consequence, each set of the partition ∼′ (an equivalence class) identifies the
places of a building block as required. As a consequence of the definition of this

5.3. The composition of the building blocks 93

relation, we can use a new approach to study SPN models in product-form. If we
have a CHC-SPN we can partition it into building blocks, and then apply MARCAT
[62] to identify the product-form solution.

The steps of the analysis are the following:

1. We identify the building blocks in the net,

2. We study each building block considering as unknown the rates of the input
transitions (i.e. xi is the rate of the input transition Ti),

3. For each building block we determine the reversed rates of the output transi-
tions and set these rates as xi. This originates a linear system of equations to
be solved.

Recall that the reversed rate of a transition T ′
y of a building block can be easily

obtained by its steady state solution using Kolmogorov’s criteria:

π(m)µy = π(m′)µy,

where m′ is a state reachable by m through the firing of T ′
y. Note that µy is

independent of the choice of m:

µy =
π(m)

π(m′)
µy. (5.21)

5.3.2 Other compositions

When a CHC-SPN and a building block satisfy RCAT conditions (for the latter one
given by Lemmas 1 and 3) we can compose them with other ones with the same
properties maintaining the product-form solution. We introduce some of these mod-
els expressed by GSPN in the following chapters, but one can even use a completely
different formalism. For example, CHC-SPNs can be composed with product-form
G-Networks as the product-form solution for this model class has been analyzed
by RCAT in [60]. In [58] the author introduces several models in product-form
that can be analyzed by RCAT and each of these can be composed with CHC-SPN
in product-form originating other product-form models. Note that, as corollary of
these results, we have that a combination of CHC SPNs and exponential queue-
ing centers are in product-form, i.e., we straightforwardly prove the product-form
results for queueing Petri nets (without batch customer movements) presented in
[18, 19] and without solving the set of global balance equations. We point out again
what we have said in Note 1, i.e., when we say that a stochastic model fulfils RCAT
conditions, we mean that it is possible to define a convenient PEPA definition of its
underlying stochastic process that satisfies the conditions of Theorem 3. Unfortu-
nately, the problem of mapping the underlying process into a PEPA definition has
not a unique solution, therefore an automatic general method seems hard to define.

94 5. A new glance on product-form SPNs using RCAT results

In the following, we interpret RCAT conditions for CHC-SPNs by the analysis of a
convenient PEPA representation of the underlying process.

We show in the next chapters some example of hybrid modeling in product-form.

5.3.3 A first example

In this section, we analyze one of the examples illustrated in [39] so that one can
compare our method with that presented in the original paper. The SPN structure
is shown in Figure 5.11. It consists of 3 building blocks shown in Figure 5.12.

P1

P2

P3 P4 P5

T1

T2 T3

T4

T5 T6

Figure 5.11: CHC-SPN of the example of Section 5.3.3.

(1) (2) (3)

P1
P2 P3P4 P5

T1

T1

T2

T2

T3

T3 T4

T4

T5

T5

T6

T6

Figure 5.12: Decomposition in building blocks of the CHC-SPN of the example
presented in Section 5.3.3.

We apply MARCAT.

Block 1 (Figure 5.12 (1)). The product-form condition is x6χ1χ3 = χ2x4x5 and
the steady state solution has the form:(x4

χ1

)m1
(x5

χ3

)m2

,

the reversed rates are x1 = x4 and x3 = x5.

5.3. The composition of the building blocks 95

Block 2 (Figure 5.12 (2)). The block is unconditionally in product-form. The
steady state solution has the form:(χ6x2

x3χ5

)m4
(x3

χ6

)m5

,

the reversed rates are x5 = x2 and x6 = x3.

Block 3 (Figure 5.12 (3)). The block is unconditionally in product-form. The
steady state solution has the form (x1/χ4)

m3 , and x4 = x1.
The condition of block 1 is satisfied if x4 = χ1χ3/χ2. In order to reproduce the

results of [39] it suffices to set x6 = χ3:

π(m) ∝
(χ3

χ2

)m1
(χ1χ3

χ2χ4

)m3
(χ6

χ3

)m4
(χ3

χ6

)m5

.

5.3.4 A second example

In this section, we analyze one of the examples illustrated in [56]. The SPN structure
is shown in Figure 5.13. This example is significant because it deals with transitions
with the same input vectors and transitions with the same output vectors. In the
original paper it is studied using Theorem 2. We can identify the building blocks of

T1 T2 T3

T4

T5

T6

T7

P1

P2 P3

P4 P5

P6

Figure 5.13: CHC-SPN of the example of Section 5.3.4.

Figure 5.14. We can simply focus on building blocks 1 and 4. Building block 1 is an
incomplete building block, and is unconditionally in product-form. Its product-form
is (x3/χ1)

m1 [(x5χ1)/(χ4x3)]
m4 . The other building blocks are simple exponential

queues. We study block 4 because of the presence of T5 and T6. Obviously, in this
case we have x5 + x6 = x4, however, we have to establish the rate ratio for x5 and

96 5. A new glance on product-form SPNs using RCAT results

(1) (2) (3)

(4) (5)

T1

T1

T2

T2 T3

T3

T4

T4

T5

T5

T6

T6 T7

T7

P1 P2 P3P4

P5 P6

Figure 5.14: Decomposition in building blocks of the CHC-SPN of the example
presented in Section 5.3.4.

x6. We use Definition 5 that gives x6 = χ6/(χ6 + χ5)x4 and similarly we have for
x5. The system of equations for xi is:

x1 = x2 = x3

x6 = x7

x4 = x5 + x7 = x5 + x6

x6 = χ6

χ6+χ5
x4.

The linear system is underdetermined, so we have a solution for x1 = x2 = x3 = χ1

and x4 = χ4. The product-form of the model is given by:

π(m) ∝
(χ1

χ2

)m2
(χ1

χ3

)m3
(χ4

χ5 + χ6

)m5
(χ4χ6

(χ6 + χ5)χ7

)m6

.

5.3.5 Modular and hierarchical composition of CHC-SPNs:
another example

Let us consider a CHC-SPN in which we can identify a set of transitions TI ⊆ T
whose input vectors are the null vector, and the symmetrical set of transitions TO

whose output vectors are the null vector. In this case we can interpret the SPN

5.3. The composition of the building blocks 97

as an open model, where the input transitions model the arrivals to the system,
and the output transitions model the departures. In this section we study product-
form properties of a composition of CHC-SPNs. By composition of CHC-SPNs
we mean a model in which a subset of the input transitions of a block becomes
output transitions of the other block. Basically, the firing of an output transition
corresponds to the firing of the corresponding input transition.

The conditions that the composed CHC-SPNs must satisfy in order to have a
product-form solution are derived from ERCAT condition, therefore we analyze the
model from the PEPA point of view (see Note 1 of Chapter 4). Suppose that we
have two SPN models S1 and S2 and that we want to connect them as follows:
output transition of S1 To ∈ T (S1)

O has to be connected with transition Ti ∈ T (S2)
I .

Recall that, following our conventions, the action type to (ti) in the PEPA model is
associated with the firing of To (Ti) for the components that correspond to the state
of the SPN in which To (Ti) is enabled. Let us call the PEPA definitions of S1 and
S2: S∗

1 and S∗
2 respectively. Then we replace transition (ti, χi) in S∗

2 as follows:

S∗∗
2

def
= S∗

2{(ti, χi) ← (to,>o)},

and the composed model S∗ can be defined as follows:

S∗ = S∗∗
2

BC
{to}

S∗
1 .

It is also possible to connect more output transitions of S1 to the same input tran-
sition of S2 (if one wants to connect more than one input transition to the same
output transitions it suffices to split the output transitions). Suppose one wants to

connect output transitions To1 and To2 ∈ T (S1)
O with TI ∈ T (S2)

I . Then S∗∗
2 does not

change, but we define S∗∗
1 as:

S∗∗
1

def
= S∗

1{(to1, χo1) ← (to, χo1), (to2, χo2) ← (to, χo2)},

that is the actions corresponding to the firing of the output transitions have the
same type to. In general, if we want to connect a set of output transitions in S1 with
a set of input transitions in S2 in the PEPA definition of S we have more than one
action type. Before applying RCAT we have to check the following conditions:

• The passive actions are enabled in every derivative of S∗
2 . This is obvious

because the input transitions have null input vectors by hypothesis.

• The active actions in the reversed process of a CHC-SPN have to be always
enabled in every derivative of S1. In the forward process this means that for
every state m of the SPN there has to exist a state m′ such that m is reachable
from m′ through the firing of every output transition.

This condition can be decided structurally using the minimal closed support
T-invariants [109]. Let X be a minimal T-invariant, and ||X|| its support
(see Chapter 3), then X is a minimal closed support T-invariant if for every
transition T ∈ ||X|| we have that:

98 5. A new glance on product-form SPNs using RCAT results

– there is a transition in ||X|| whose input vector is the output vector of
T ,

– there is a transition in ||X|| whose output vector is the input vector of
T .

Let To be an output transition, then if To is covered by a minimal closed
support T-invariant, every reachable state m can be reached through the firing
of To. The proof is trivial and is based on the definition of the firing sequence
that from a general reachable state m takes the net to a state m′ such that
m is reachable from m′ through the firing of To. Let us assume that XTo is a
minimal closed support T-invariant covering output transition To, then there
exists an input transitions Ti ∈ ||XTo||. Let m be a generic reachable state
of the net. Since the input transitions are always enabled, Ti can fire and it
takes the net to state m′. By hypothesis, there exists a transition T1 ∈ ||XTo||
such that the input vector of T1 is the output vector of Ti, therefore T1 is

enabled by m1. If T1 = To then m1
To−→ m and this concludes the proof,

otherwise we consider transition T2 ∈ ||XTo||, T2 6= T1, such that its input
vector is the output vector of T1. We can iterate this until transition Tn whose
output vector is the input vector of To fires. Since XTo is a minimal support
T-invariant, when transition Tn fires, To is the only transition of ||XTo|| that
has not fired. The described firing sequence is uniquely determined [109].

Note that in [109] the authors prove that the traffic equations of the routing
processes of a CH-SPN admit the solutions only if every transition is covered
by a minimal support closed T-invariant.

• The reversed rates of output transitions have to be constant for each transition.
This is true thanks to the analysis of the building blocks made by ERCAT and
then of the net by RCAT.

Therefore, if we have a set of CHC-SPNs that admit a product-form solution by
RCAT, then we can compose them obtaining a new model that can be efficiently
studied by RCAT.

Note that this approach enhances the modularity of that proposed by Coleman,
Henderson et al. Moreover, our approach allows for a hierarchical modeling tech-
nique, in fact, a product-form CH-SPN still satisfies RCAT theorem, therefore it
can be used as block for further modelings.

The following paragraph shows an example.

Example Let us consider the model depicted in Figure 5.15. The figure also shows
the decomposition into building blocks. The building block with P1 and P2 is an
incomplete basic building block, therefore it is in product-form unconditionally. The
product-form is: (x8 + χ1

χ5 + χ4

χ3

χ2

)m1
(χ2

χ3

)m2

.

5.3. The composition of the building blocks 99

The reversed rates are x5 = (x8 + χ1)/(χ4 + χ5)χ5 and x4 = (x8 + χ1)/(χ4 + χ5)χ4.
The other blocks are simple blocks: x3 = χ2, x6 = x5 = x8, x4 = x7. The solution
of the equations for xi is x6 = x5 = x8 = χ1χ5

χ4
, x4 = x7 = χ1. Therefore, the steady

state solution for the model is:

π1(m) ∝
(χ1χ3

χ4χ2

)m1
(χ2

χ3

)m2
(χ1χ5

χ4χ6

)m3
(χ1χ5

χ4χ8

)m4
(χ1

χ7

)m5

. (5.22)

The input transition set is T (1)
I = {T1, T2} and the output transition set is T (1)

O =
{T7, T3}. Note that minimal closed support T-invariants covering T3 and T7 are
(0, 1, 1, 0, 0, 0, 0, 0)T and (1, 0, 0, 1, 0, 0, 1, 0)T , respectively:

P1

P1

P2

P2

P3

P3

P4

P4

P5

P5

T1

T1

T2

T2

T3

T3

T4

T4

T4

T5

T5

T5

T6

T6

T6

T7

T7

T8

T8

T8

Figure 5.15: BLOCK1: CHC-SPN model with input/output transitions. Net and
building blocks.

Now we consider the open CHC-model depicted in Figure 5.16 in which the input
transition set is T (2)

I = {T1, T2} and the output transition set is T (2)
O = {T6, T8}. In

this case there are 4 building blocks, 3 of which are trivial. The block with places
P1, P2, P3 is an incomplete building block and is unconditionally in product-form.
Its steady state probabilities can be expressed as:(χ1χ4

χ3x7

)m1
(x7

χ4

)m2
(χ2χ4

χ5x7

)m3

.

100 5. A new glance on product-form SPNs using RCAT results

T1

T1

T2

T2

T3

T3

T3

T4

T4

T4

T5

T5

T5

T6

T6

T7

T7

T7

T8

T8

P1

P1

P2

P2

P3

P3

P4

P4

P5

P5

P6

P6

Figure 5.16: BLOCK2: CHC-SPN model with input/output transitions. Net and
building blocks.

The reversed rates are given by x3 = λ1, x4 = x7 and x5 = χ2. The analysis of the
building block with P5 gives the condition x7 = x4. We can choose x4 = x7 = χ4.
Therefore, the product-form solution can be obtained straightforwardly:

π2(m) ∝
(χ1

χ3

)m1
(χ2

χ5

)m3
(χ1

χ6

)m4
(χ4

χ7

)m5
(χ2

χ8

)m6

.

Now we want to compose models BLOCK1 and BLOCK2 such that a firing of
output transition T3 in BLOCK1 corresponds to a firing of an input transition T1 in
BLOCK2. Similarly, we do for T7 and T2. We use the notation χ

(n)
i with n = 1, 2

in order to distinguish the firing rates for model n = 1 and n = 2 where it could be
ambiguous. In the expression of the steady state probability function π2 we replace
χ1 and χ2 by x3 and x7, respectively. Then we calculate the reversed rates x3 and
x7 from model BLOCK1:

x3 = χ
(1)
2 , x7 = χ

(1)
1 .

Therefore, we can easily obtain the steady state solution for the composed model in
product-form.

The solution of models BLOCK1 and BLOCK2 using Theorem 2 is given in
Appendix B.

5.4. Conclusions 101

Note that:

• The composition can have feedback. In fact, RCAT just requires the reversed
rates to be constant.

• Something similar to the probabilistic routing of the queueing networks can
be modeled. One can do this by replacing an output transition with a set
of transitions whose rates are such that their sum gives the original output
transition rate.

• A model obtained by composition is itself a model that satisfies RCAT so it
can be used in an hierarchical modeling.

5.3.6 The algorithm to identify the building blocks in an
SPN

In this section we present a simple algorithm which identifies the building blocks in
the SPN. The input of the algorithm is a CHC-SPN. The output is a partition of
the set of the places, and each class of the partition contains the places of a building
block. The algorithm is shown by Algorithm 1.

The correctness of the algorithm is based on the fact that the relation among the
places determined by the building blocks is an equivalence relation. Therefore, sets
Pi calculated by the algorithm are such that: ∪iPi = P and Pi ∩ Pj = ∅ if i 6= j.

The complexity is O(|P| · |A|).

5.4 Conclusions

In this chapter we have presented a new technique to analyze SPN in product-form.
We have restricted our analysis to a subset of SPN models that we have called
CHC-SPN. This model class is characterized by the following structural properties:

• The transitions have constant firing rates,

• Every input vector of a transition has a correspondent output vector and vice
versa,

• Every arc has multiplicity 1.

The analysis is based on the application of some theorems formulated for PEPA
models, i.e., RCAT, ERCAT and MARCAT [59, 61, 62]. The main idea is that we
can represent a CHC-SPN by the cooperation of PEPA agents, and then determine
the product-form conditions and expression by those theorems. First we have studied
some special CHC-SPNs called building blocks and then we have proved that every
CHC-SPN can be expressed as a composition of building blocks. Building blocks

102 5. A new glance on product-form SPNs using RCAT results

can be thought as the bricks of a general CHC-SPN. Note that it is not the case
that every CHC-SPN is in product-form because the product-form conditions may
depend on the transition firing rates.

In particular, we have shown that the composition of building blocks and of
CHC-SPNs in product-form can be studied by the RCAT based approach. In this
sense the technique presented in this chapter is modular and hierarchical.

The flexibility of low-level theorems such as those based on RCAT allows us
to analyze hybrid models in product-form, i.e., we can compose a CHC-SPN in
product-form with other models in a product-form based on RCAT. In literature
RCAT has been successfully used to study product-forms that go from Jackson
queueing networks [73, 59] to BCMP queueing networks [17, 58], G-networks [50, 60]
and others [61]. For example, we can study a product-form queueing Petri net
[19] without batch token movements without verifying the set of global balance
equations.

It is worthwhile comparing our product-form SPN class with that of Coleman,
Henderson et al. [63, 39]. As we pointed out before, the structural conditions of
our CHC-SPN are more restrictive than those required by the model class studied in
[63, 39] (CH-SPN). In fact, in the latter class, batch token movements are allowed as
well as a sort of marking dependent firing rates (see Chapter 3 for a quick review).
However, the results of Coleman, Henderson et al. are based on the analysis of
the whole stochastic process of the considered SPN and they obtain an algebraic
condition that arises from a matrix rank involving the transition rates. Our approach
is more modular. Note that even if we have proved that for the building blocks the
product-form criteria are the same when using ERCAT and Theorem 2, we cannot
state the same for a composition of the building blocks. In other words, if we consider
a CHC-SPN we cannot be sure that the conditions for the product-form required by
our technique are identical to those required by Theorem 2. Further research efforts
will be devoted to deeply explore this point.

We think that one of the contributions of this work is pointing out a proof
for product-form SPNs based on a compositional analysis. Informally speaking, the
techniques to prove a product-form based on the global balance equations verification
tell us whether a model is in product-form or not, but do not say anything about the
reasons that explain why it is or not. From this point of view, RCAT based theorems
are more expressive. Historically, after the definition of the BCMP queueing network
model class [17] several research efforts have been devoted to explore why some
queueing disciplines originate a product-form model and others do not [94, 32, 98].
We think that this attention should be devoted to product-form SPNs as well.

In our opinion further research should study the following aspects:

• Using ERCAT to deal with building blocks with batch token movements. In
this case the analysis of the building blocks cannot be based on the analysis
of simple birth and death precesses. In particular, in our opinion, it is not
obvious how to solve the system of equations generated by ERCAT conditions

5.4. Conclusions 103

in the general case.

• Extending the approach in order to deal with state dependent firing rates.
This could be seen as a consequence of a generalization of RCAT theorem.

104 5. A new glance on product-form SPNs using RCAT results

Input: SPN structure: P ,A, T
/* Input: places, arcs and transitions */

Output: Building blocks: Pi

/* Pi is a subset of P such that Pi ∩ Pj = ∅ with i 6= j */

/*
∪

i Pi = P */

/* The places in Pi belongs to the same building block i */

/* Identify the building blocks in a SPN */

foreach t ∈ T do
/* i − 1 denotes the number of classes identified */

i := 1;
/* Consider every output arc */

Pt = {P ∈ P such that (t, P) ∈ A};
if exists P ∈ Pt and j > 0 such that P ∈ Pj then

Pj := Pj ∪ Pt;
end
else

/* Create a new class */

Pi := Pt;
i := i + 1;

end

end

Algorithm 1: Algorithm which identifies the building blocks of a CHC-SPN.

6
Representing BCMP queueing

centers by GSPN models

6.1 Introduction

In this chapter and in the following one we focus on the relations between two
classes of product-form stochastic models: multiple-class BCMP QNs and a class of
product-form Generalized Stochastic Petri Nets (GSPN). These results have been
published in [15, 16, 14].

We have reviewed the BCMP product-form theorem in Chapter 2 and the var-
ious classes of product-form models based on GSPNs in Chapter 3. Although the
product-form results are defined for different formalisms, it is important to con-
sider that product-form is a property that is strictly related with the underlying
CTMCs of the models. It is a good practice interpreting the conditions for the
product-form of the stochastic process of a given model in terms of properties of the
formalism used to express that model. However, if one aims to study the relations
among product-form model classes it can be useful to investigate and characterize
the corresponding CTMCs.

The starting point of this and the following chapter is the definition of a GSPN
model for each BCMP service center type. Then, we define an equivalence relation
and prove that every BCMP queueing center is equivalent to the associated GSPN
model if considered in isolation. In particular, the equivalence terms are interesting
because they preserve the average performance indices. This means that, under an
appropriate interpretation of the state of the GSPN model (e.g. associating to every
reachable marking the number of customers that are present in the corresponding
queueing station), the average response time, the throughput and the mean number
of customers for each class, are the same than those that can be derived by the
analysis of the corresponding queueing system.

In the next chapter we study the compositional properties of these models and
we show that they can be composed in order to preserve the BCMP stationary
product-form solution. In order to achieve this result we explore a property that
characterizes the CTMC of a BCMP queueing center: Muntz’s M ⇒ M , that
has been described in Chapter 2. Using the same property we also derive a result

106 6. Representing BCMP queueing centers by GSPN models

concerning the characterization of service centers with probabilistic disciplines in
QNs with BCMP product-form solutions. In particular, we derive a constraint on
the possible choices for probabilistic queueing disciplines in multiple-class service
centers that leads to a product-form stochastic process based on M ⇒ M .

Finally, we analyze the behavior of the defined GSPN models with non-BCMP
models and we state sufficient conditions for a product-form solution.

It is worthwhile noting that the results are not obvious because multiclass QNs
are not equivalent to SPN state machines (i.e. models whose transitions have at most
one input and one output arc) since the queueing discipline influences the steady
state probabilities and then also the conditions for the product-form solution. In
fact, if we consider the stochastic process that underlies a BCMP queueing center
we can easily show that it is not isomorphic to the stochastic process associated
with the corresponding GSPN model. Therefore, the equivalence definition is not
immediate and must be proved. In particular, we prove that:

• the aggregated stationary distribution for a the BCMP station as calculated
in [17] is identical to an appropriately aggregated stationary distribution of
the corresponding GSPN model,

• the composition of the introduced GSPN models admits a product-form solu-
tion.

Figure 6.1 illustrates by Venn diagrams the relations between the introduced GSPN
models and the well-known classes of product-form models reviewed in Chapter 3.
In particular the multiple-class BCMP QNs are mapped into a class of product-form
GSPN models that is not included in any of the already well-known product-form
GSPN models [39, 63, 83, 84, 6].

6.1.1 Motivations

The motivations of this work are twofold. First, let us consider the differences
between the semantic of QN and GSPN models. The former formalism consists
of a high-level definition (such as the description of a queueing discipline) and the
definition of the associated Markov process is not automatic. On the other hand,
GSPNs are defined at a lower level of abstraction, i.e., their semantic is entirely
defined by a bipartite graph and a set of functions. Moreover, the Markov process
(or the semi-Markov process) associated with a GSPN is uniquely defined. Hence,
having a collection of GSPN models that, under a set of conditions, behave like
the BCMP service centers, can be helpful in order to describe a stochastic model
by a hybrid formalism that can be studied by a product-form analyzer. In Section
7.5 we present a simple example in order to clarify this point by using a model
that combines GSPN and QN. Note that this approach is different from that used
in [18, 19]. Another reason to explore the relations between the product-form of
BCMP QNs and GSPN is theoretical and it goes in the direction of offering an

6.1. Introduction 107

QUEUEING
NETWORKS

GSPN

PRODUCT-FORM
GSPN (Balbo et al.)

BCMP NETWORKS

PRODUCT-FORM
SPN
(Coleman et al.)

GSPN-x MODELS

Figure 6.1: Venn diagrams illustrating relations between various product-form solu-
tions.

original contribution to the effort of developing a unique theory for product-form
interacting Markov processes.

6.1.2 Comments to bibliography

As first we think that it is important to recall that product-form is a property of the
interacting CTMCs so it is interesting to study the relations among these classes of
product-form processes. For example, a well-known result partially proved in [39]
and explored deeply in [9] states that Coleman and Henderson product-form includes
the SPNs called state machines which are the result of the mapping of Jackson
and Gordon-Newell QNs [73, 54] (which can be considered single-class open and
closed BCMP QNs with exponential servers) onto SPNs. This means that the same
stochastic process has a well-known product-form solution both in the QN domain
and the SPN domain. However, note that the problem becomes more complex when
considering QNs with multiple classes of customers, different scheduling disciplines
and Coxian service time distributions. All these factors are needed to determine
whether a product-form solution exists and to identify its definition. On the other
hand, standard GSPN models (i.e., those described in Chapter 3 without colors
and without the possibility of specifying the discipline of the transitions or different
distributions for the transition delays) do not implement any of these high-level
features (even if one can consider classes of extended models based on SPNs, such
as Queueing Petri Nets [18]). Hence, the conditions defined in the QN domain cannot
be immediately reformulated in the GSPN domain. In [121] the authors introduce

108 6. Representing BCMP queueing centers by GSPN models

a comparison between QN models and SPN models based on the representation of
multiclass features by colored Petri nets. However, the differences between different
scheduling disciplines are not analyzed. Balbo et al. in [5] combine GSPNs and
product-form QNs by replacing subsystems in a low-level model with their flow
equivalents models. Still little attention is devoted to the scheduling disciplines. In
[7] the authors observe how they can map each service station of a BCMP QN into
a complex GSPN. The GSPN model depends on the scheduling disciplines and it
has an infinite number of places and transitions for the FCFS and LCFSPR stations
but it is not in Coleman, Henderson et al. or Boucherie’s product-form. They also
give a finite and remarkably compact representation which satisfies the product-form
conditions for SPN shown in [63, 39], but that representation does not distinguish
different queuing disciplines by mapping everything to the PS discipline. Thus, it
is not possible to define product-form conditions on the GSPN that are equivalent
to those defined for the corresponding BCMP queueing stations. Roughly speaking,
we can say that none of the product-form defined on Stochastic Petri Nets catches
the product-form property of the stochastic process underlying the BCMP QNs.

6.1.3 Contribution

In this chapter we introduce a class of GSPN models that have a product-form
solution, but that do not belong to any of the classes identified by Boucherie or
Coleman, Henderson et al. In the next we prove that a combination of these models
is in product-form. In order to achieve this result, we use two properties defined
on the Markov process associated with the model. One is the M ⇒ M property
introduced by Muntz [94] and the other is introduced by Harrison in the PEPA
domain [59, 61]. However, in general, the conditions expressed on the CTMCs
cannot be straightforwardly interpreted in terms of general structural conditions of
the GSPN.

In this chapter we define a set of GSPN models that are associated with every
BCMP station type. Their stochastic processes are not isomorphic to those under-
lying the corresponding BCMP queueing centers, but we prove that the stationary
probability distributions of the former ones are identical to appropriate aggregations
(precisely defined in the following sections) of the stationary probability distribu-
tions of the latter ones. The GSPN models have a finite structure, thus they can be
used and easily integrated in existing software tools which deal with GSPNs with
state-dependent transition firing rates and immediate transition weights.

The definition of the GSPN models is based on the idea of mapping the de-
terministic queueing disciplines FCFS and LCFSPR used in BCMP theorem into
probabilistic queueing disciplines with special features intended to represent the pre-
emption and Coxian service times. The equivalence terms between RANDOM and
FCFS queuing disciplines are well-known, however we do not just reformulate them
in the GSPN domain [1], but we also show how real multiple servers can be repre-
sented by GSPN (hence not using one server with a load dependent service time). In

6.2. Representing BCMP stations by GSPN models 109

our opinion this leads to a more intuitive model of the system with multiple servers.
Finally, we prove that in the GSPN model with probabilistic discipline, only the uni-
form choice between the queued customers leads to a product-form solution based
on M ⇒ M . To the best of our knowledge, the GSPN model for LCFSPR is totally
new.

In the next chapter we study the interaction among the defined GSPN models
and other product-form GSPN blocks which satisfy RCAT theorem conditions. The
conditions are derived from the analysis of the reversed processes of the GSPN mod-
els equivalent to the BCMP queueing stations. These results extend the application
fields of these GSPN models. For example, we can combine a GSPN model equiv-
alent to a FCFS BCMP station with single server with a G-Network with negative
customers that satisfies RCAT conditions [60].

6.2 Representing BCMP stations by GSPN mod-

els

In this section we introduce the main results of our work, i.e., we present the four
GSPN models which are shown to be equivalent to the corresponding BCMP stations
in terms of performance indices. In this section we use ei to denote a vector with all
zero components but the i-th, that is equal to 1. Vector ei has the same dimension
of the GSPN marking that is being described or analyzed.

6.2.1 FCFS discipline

We define a GSPN model that represents a R-multiclass M/M/k/FCFS queue. Then
we prove that the GSPN model is equivalent to the queuing system in terms of a
given aggregation of the steady state probabilities. The structure of this section is
organized in the following way:

1. The following Definition 7 formally introduces the GSPN-EXP model.

2. Lemma 4 states a closed form solution for the steady state probabilities of
GSPN-EXP model by considering the set of reachable markings:

m = (m1, . . . ,m2R+1).

3. Then we introduce a state aggregation by defining the aggregate state of the
GSPN model such that a state differers from another just for the number of
customers of one or more classes and not for being in queue or in service.
Theorem 5 provides the closed form solution for model GSPN-EXP in terms
of aggregated stationary probabilities.

110 6. Representing BCMP queueing centers by GSPN models

4. Corollary 1 states that the GSPN-EXP model is equivalent to the M/M/k
FCFS multiclass queueing system in terms of the aggregated stationary prob-
abilities.

Given a M/M/K/FCFS station let us define the model called GSPN-EXP. We
recall that: R is the number of classes, K the number of servers, µ is the class-
independent and load-independent service rate for a single customer and λr the
arrival rate for class r customer, 1 ≤ r ≤ R.

Definition 7 (GSPN-EXP) According to GSPN definition given in Chapter 3 let
us define:

• P = Pq ∪ Ps ∪ {P2R+1} with Pq = {P1, . . . , PR} and Ps = {PR+1, . . . , P2R},

• T = Tw ∪ Tq where Tq = {t1, . . . , tR} and Tw = {TR+1, . . . , T2R},

• function Π is defined as follows:

Π(t̃i) =

{
0 if R + 1 ≤ i ≤ 2R
1 if 1 ≤ i ≤ R

,

• input and output vectors for transition ti, 1 ≤ i ≤ R: I(ti) = ei + e2R+i and
O(ti) = eR+i. Input and output vector for transition TR+i: I(TR+i) = eR+i

and O(TR+i) = e2R+1,

• H(ti) = (0, . . . , 0) for all ti ∈ T ,

• w(TR+i,m) = mR+iµ for 1 ≤ i ≤ R and w(ti,m) = mi for 1 ≤ i ≤ R,

• m0 = (0, . . . , 0, K) .

Tokens arrive to places Pi, 1 ≤ i ≤ R according to Poisson stochastic processes.

Figure 6.2 illustrates the graphical representation of GSPN-EXP model where t1, . . . , tR
are immediate transitions and TR+1, . . . , T2R are exponential transitions.

Note that the model defines a uniform probability among the tokens in places
P1, . . . , PR to enter in place PR+1, . . . , P2R. From a queueing system point of view,
this means that every customer in the queue has the same probability to enter in
service when a server becomes available. We prove in Section 7.3 that this is the only
possible choice in order to have a product-form model based on M ⇒ M property.
Hence, let m be a valid vanishing state of the GSPN-EXP, and let Ta ⊆ Tq be the
set of immediate transitions enabled by m, then the probability of firing of ti ∈ Ta

can be written as:

p(ti,m) = pi(m) =
mi∑

j∈{j|tj∈Ta} mj

(6.1)

6.2. Representing BCMP stations by GSPN models 111

Figure 6.2: Graphical representation of GSPN-EXP model

Intuition of the model behavior. Let us review the model and give an in-
terpretation in the queueing theory field. The system can be associated with a
FCFS BCMP exponential station with R classes of customers. Tokens represent-
ing the customers arrive to places P1, . . . , PR with rates λ1, . . . , λR. The tokens in
P2R+1 represent the free servers, i.e, in the initial state m2R+1 = K. The tokens in
PR+1, . . . , P2R represent the customers in service. When a customer of class r arrives
to Pr and a server is free, the customer immediately enters in PR+r and a token is
removed from P2R+1 through the firing of tr. If m2R+1 = 0 at a class r customer
arrival, then it has to wait in the queue represented by Pr. At job completions (fir-
ing of timed transitions TR+r) there is a customer departure and a server becomes
free in P2R+1. It is easy to see that the GSPN-EXP model does not represent the
customer arrival order, therefore it cannot implement a real FCFS discipline. In
fact, when there are more than one customer in queue belonging to different classes,
immediate transitions tx are in conflict. According to GSPN semantic, the conflict
is resolved probabilistically by assigning to each immediate transition a weight w.
In our case the weight assigned to transition tr is proportional to the number of
class r customers waiting in Pr. Note that the weights of timed transitions repre-
sent the transition rates. The transition weight of Tr is µmR+r where µ is the class
independent service rate.

The following lemma gives a closed formula for the steady state probabilities of
model GSPN-EXP.

Lemma 4 Let m = (m1, . . . ,m2R+1) be a reachable tangible state of the GSPN-
EXP. Then if the stability condition holds, the stationary state probability can be
written as follows:

π(m) = π0

R∏
i=1

λ
mi+mR+i

i

(
∑2R

i=R+1 mi)!∏2R
i=R+1 mi!

· (
∑R

i=1 mi)!∏R
i=1 mi!

P2R
i=1 mi∏
j=1

1

µ(j)
. (6.2)

112 6. Representing BCMP queueing centers by GSPN models

where π0 is a normalizing constant, µ(j) = x(j)µ = min(j,K)µ following the BCMP
conventions.

The proof is purely algebraic and is illustrated in Section A.1. It is based on verifying
the set of the global balance equations.

The following theorem states the terms of the equivalence between a multiclass
FCFS exponential queueing station and a GSPN-EXP model. It basically defines
an aggregation of states on the GSPN-EXP model CTMC and on the FCFS station
CTMC, then it states that the steady state probability function is the same in the
two cases. The two aggregations are not exact lumps of the CTMCs, therefore
an algebraic proof of the equivalence is required. From a modelling point of view,
the aggregation is meaningful because in both cases the aggregated state can be
interpreted as the number of customers (tokens) for every class either in service or
in queue. As a consequence of this equivalence we can say that GSPN-EXP model
and FCFS BCMP station have the same performance indices.

Theorem 5 Consider the model GSPN-EXP and let ni = mi + mR+i, 1 ≤ i ≤ R
and n = (n1 . . . , nR) be an aggregated state. Let πa(n) be the steady state probability
of ni for i = 1, . . . , R. Then we can write:

πa(n) = π0
(
∑R

i=1 ni)!∏R
i=1 ni!

R∏
i=1

λni
i

PR
i=1 ni∏
i=1

1

µ(i)
∀n ∈ NR. (6.3)

The proof is based on a convolution formula for binomial coefficients and can be
found in Section A.2.

Corollary 1 The M/M/k queuing system with FCFS discipline, R customer classes,
arrival rates λi, 1 ≤ i ≤ R, single server rate µ and steady state probability π′(n) is
equivalent to the GSPN-EXP in terms of steady state probability, i.e., πa(n) = π′(n)
for all n ∈ NR where πa(n) is the aggregated probability of GSPN given by formula
(6.3).

Proof 1 It follows immediately from Equation (2.12) and Theorem 5.

Note that it can be shown by trivial counterexamples (see Example 8) that GSPN-
EXP does not have the steady state distribution (2.10) when the service rate is class
dependent. Therefore, an automatic tool can decide if the model has a product-form
solution by checking the firing rates of the timed transitions.

Example 8 Consider a M/M/1/PS queue with R = 2 classes of customers with
average service time 1/µ1 and 1/µ2. From queueing theory we can write the steady
state probability function as follows:

π′(n1, n2) = π′
0λ

n1
1 λn2

2

(n1 + n2)

n1!n2!

1

µn1
1 µn2

2

.

6.2. Representing BCMP stations by GSPN models 113

Suppose we aim to represent this queue by model GSPN-EXP with some changes,
i.e., w(T3,m) = m3µ1 and w(T4,m) = m4µ2 in the model of Figure 6.3. Let us
determine the effective arrival rate to reachable tangible state m = (0,m2, 1, 0, 0),
with m2 > 0. The adjacent states are m1 = (0,m2 − 1, 1, 0, 0), m2 = (1,m2, 1, 0, 0)
and m3 = (1,m2, 0, 1, 0). Thus the effective arrival rate to state m is:

π(m)
[1

λ2

m2

m2

µ2λ2 + λ1(m2 + 1)
1

µ1

µ1
1

m2 + 1
+ λ2(m2 + 1)

1

µ2

µ2
1

m2 + 1

]
= π(m)[µ2 + λ1 + λ2].

The effective departure rate from state m is clearly π(m)(µ1 + λ1 + λ2), i.e., the
GBEs are verified if µ1 = µ2. Therefore, we observe that model GSPN-EXP shares
the same condition for the product-form of FCFS queueing centers.

Figure 6.3: Model used in Example 8

GSPN-EXP can as well simulate a single server FCFS service station with a
BCMP-like load dependent service rate as proved in the technical report [11]. The
net structure complexity is linear on R, the number of customer classes.

6.2.2 LCFSPR discipline

In this section we introduce a GSPN which can be considered equivalent, for the
steady state probability distribution, to a multiclass M/COX/K queue with LCF-
SPR scheduling discipline. We provide a model for this queueing system whose
structure is finite and depends only on the number of classes of customers and
stages of the Coxian service time, i.e., not on the number of servers. The structure
of this section is similar to the previous one, but the proof of the aggregation results
is more complex because it is divided in two steps. First, we prove that Coxian time
distributions can be replaced by exponential ones with appropriate means without
changing the performance measures, and then we aggregate the states such that two
aggregated states are distinguished only by the number of customers for each class
(and not for being in queue or in service).

114 6. Representing BCMP queueing centers by GSPN models

Given a M/M/K/LCFSPR station let us define the model called GSPN-COX.
We recall that: R is the number of classes, K the number of servers, µr,` is the
class-dependent service rate at stage ` of the Coxian random variable, λr the arrival
rate for class r customer, and Lr is the number of stages for class r customers, with
1 ≤ r ≤ R and 1 ≤ ` ≤ Lr.

Definition 8 (GSPN-COX) According to the definition given in Section 3.3:

• Places. P = {Pr,l, PR+r,l, Pr,0 : 1 ≤ r ≤ R, 1 ≤ l ≤ Lr} ∪ {P0, P2R+1}

• Transitions. T = Ts ∪ Tp ∪ T ′, where Ts = {tsr,l : 1 ≤ r ≤ R, 0 ≤ l ≤ Lr},
Tp = {tpr,l : 1 ≤ r ≤ R, 1 ≤ l ≤ Lr}, T ′ = {Tr,l : 1 ≤ r ≤ R, 0 ≤ l ≤ Lr}.
Function Π is defined as follows:

Π(t̃) =

{
1 if t̃ ∈ Tp ∪ Ts

0 if t̃ ∈ T ′

• Arcs. Let tpr,l ∈ Tp, then I(tpr,l) = er,l + e0, H(tpr,l) = e2R+1 and O(tpr,l) =
e2R+1 + eR+r,l + e0. Let tsr,l ∈ Ts and l > 0, then I(tsr,l) = eR+r,l + e2R+1,
H(tsr,l) = e0 and H(tsr,l) = er,l. Let tsr,0 ∈ Ts then I(tsr,0) = er,0 + e0,
H(tsr,0) = 0 and O(tsr,0) = er,1. Let Tr,l ∈ T ′ then I(Tr,l) = er,l, H(Tr,l) =
0. If l < Lr then the output vector is probabilistic: O1(Tr,l) = e2R+1 with
probability br,l and O2(Tr,l) = er,l+1 with probability ar,l with ar,l + br,l = 1. If
l = Lr the output vector is deterministic, O(Tr,Lr) = e2R+1.

• Weights. Let 1 ≤ r ≤ R and l > 1 then w(tsr,l) = mR+r,l], w(tsr,0) = 1,
w(tpr,l) = mr,l and w(Tr,l) = µr,lmr,l.

• Initial marking. m0 = (0, . . . , 0, K).

Tokens arrive to places Pr,0 for r = 1, . . . , R and P0.

Note that, given a marking m, m0 = 1 if and only if mr,0 = 1 for a r, and that
if m0 > 0 then m is a vanishing marking, with 1 ≤ r ≤ R. Figure 6.4 illustrates
a graphical model for R = 2, L1 = 3, L2 = 2. Exponential transitions T0,1 and
T0,2 are introduced to show the arrival behaviors. The dotted lines and the solid
lines represent alternative firing modes while grey lines are used for sake of clarity.
Finally, transitions tp have an incoming arc from P0 and an outgoing art to P0, we
represent this by an arc with a double arrow.

Intuition of the model behavior. We can give the following interpretation to
the model: place P5 has as many tokens as the free servers, place Pr,`, 1 ≤ r ≤ 2, has
as many tokens as the number of customers being served at stage ` of class r. The
tokens in place PR+r,`, 1 ≤ r ≤ 2 represent the number of customers in the queue

6.2. Representing BCMP stations by GSPN models 115

of class r and stage `. When a customer of class r arrives to the system a token
is temporarely (i.e. it originates a vanishing state) stored in places Pr,0 and P0.
Immediate transition ts,0 puts the arrived token in service at stage 1, the customer
which must be preempted is chosen probabilistically by the transitions tps. When a
customer leaves the system by the firing of a timed transition, a preempted customer
from places PR+r,` is chosen probabilistically by a transition tss and it resumes the
service.

P1,1 P1,2 P1,3

P2,1 P2,2

P3,1 P3,2 P3,3

P4,1 P4,2

P1,0

P2,0

P0

P5

T0,1

T0,2

T1,1 T1,2 T1,3

T2,1 T2,2

tp1,1 tp1,2 tp1,3

tp2,1 tp2,2

ts1,1 ts1,2 ts1,3

ts2,1 ts2,2

ts1,0

ts2,0

Figure 6.4: GSPN-COX for R = 2 classes, L1 = 3 and L2 = 2 stages.

In the following, we first introduce a lemma which gives the stationary proba-
bilities for model GSPN-COX under Poisson arrivals. Then we aggregate the states
giving the marginal probabilities in closed form and the final corollary states how the
model GSPN-COX can be considered equivalent to a M/COX/k/LCFSPR station.

Lemma 5 Let m be a tangible state of model GSPN-COX. Then the steady state

116 6. Representing BCMP queueing centers by GSPN models

probability of m is given by:

π(m) = π0

[R∏
r=1

λmr+mR+r
r

]
·
[(

∑R
r=1 mr)!∏R

r=1

∏Lr

l=1 mr,l!

(
∑R

r=1 mR+r)!∏R
r=1

∏Lr

l=1 mR+r,l!

]
·
[R∏

r=1

LR∏
l=1

(Ar,l

µr,l

)mR+r,l+mr,l
][m∏

a=1

1

min{n, k}

]
, (6.4)

where mr =
∑Lr

l=1 mr,l, mR+r =
∑Lr

l=1 mR+r,l, m =
∑R

r=1 mr + mR+r and π0 is the
normalizing constant.

The proof is based on verifying that formula (6.4) satisfies the set of GBEs of the
model and is illustrated in Section A.3.

The following lemma states a closed formula for an exact aggregation of states.
The basic idea is to obtain an aggregated state which does not represent the stage at
which a token is, but it just distinguishes between a token being in service and being
in queue. The actual relevance of the lemma is to show a result which is equivalent
to the well-known result of the BCMP theorem, that is, the marginal distribution
for a Coxian service time LCFSPR station is equal to that of the same station with
an exponential service time distribution with the same mean. In other words, by
Lemmas 5 and 6 we have derived the steady state probabilities for two levels of
details of the state representation: a detailed state, where the stage of services are
represented, and a more compact one, where the customers are distinguished only by
the class and by the fact that they are in the queue on being served. In practice, this
is helpful because often a simplified version of model GSPN-COX can be used, i.e.,
with just an exponential stage for each class. However, the detailed state represents
more information, and the generalized GSPN-COX model has a theoretical relevance
because it allows us to prove the insensitivity property for this probabilistic queueing
discipline that, to the best of our knowledge, has never been studied before. In other
words, a modeler can decide to use a GSPN-COX model with multiple stages to give
a detailed description of the system, but as a consequence of Lemma 6 he/she can
decide to perform an analysis that is not interested in distinguishing the customers
for each stage of service, using a simplified model with just one service stage for
class.

Lemma 6 Let us define the aggregate tangible state as follows:

n = (n1, . . . , nR, nR+1, . . . , n2R, n2R+1),

where nr = mr =
∑Lr

l=1 mr,l and nR+r = mR+r =
∑Lr

l=1 mR+r,l and n2R+1 = mR+1,
with 1 ≤ r ≤ R and m is a tangible state of model GSPN-COX. The steady state

6.2. Representing BCMP stations by GSPN models 117

probabilities for GSPN-COX can be written as follows:

πA(n) = π0

R∏
r=1

λnr+nR+r
r

(
∑R

r=1 nr)!∏R
r=1 nr!

(
∑R

r=1 nR+r)!∏R
r=1 nR+r!

·
R∏

r=1

(1

µr

)nr+nR+r
n∏

a=1

1

min(n, k)
, (6.5)

where 1/µr is the mean service time, i.e.,
∑Lr

l=1 Ar,l/µr,l, n =
∑R

r=1 nr = m.

The proof of this lemma is given in Section A.4.

The following theorem states the equivalence of the BCMP LCFSPR marginal
probabilities and the GSPN-COX ones, that is, the fundamental result of this sec-
tion.

Theorem 6 Consider the model GSPN-COX and let m be a tangible state. Let
the aggregated state u be defined as follows: ur =

∑Lr

l=1 mr,l +
∑Lr

l=1 mR+r,l for r =
1, . . . , R, i.e., ur represents the number of customers of class r in the system, either
in service or in queue. Then we can write:

πA(u) = π0
u!∏R

r=1 ur!

R∏
r=1

[
λur

r

(1

µr

)ur
] u∏

a=1

1

min{K, a}
, (6.6)

where u =
∑R

r=1 ur.

The proof is based on a convolution for multinomial coefficient and is very similar
to that of Theorem 6.

Note on the model CTMCs. It is worthwhile considering the case that the
relations between the GSPN-COX and GSPN-EXP models and the corresponding
BCMP stations can be deduced by ax exact lumping of states in the CTMCs. This
approach would be appreciable because it would imply a stronger equivalence than
the one given here. For example, the product-form of combinations of this class of
models would be a straightforward consequence. However, it is easy to show that
the CTMC of GSPN-EXP cannot be obtained by an exact lumping of the CTMC of
FCFS BCMP queueing station, and the same holds for GSPN-COX and LCFSPR.

6.2.3 IS and PS disciplines

In the BCMP theorem, the state of PS and IS scheduling disciplines is defined as a
finite vector with fixed size [17]. In fact, for both disciplines the state represents the

118 6. Representing BCMP queueing centers by GSPN models

number of customers in the station for each class and stage of service. Therefore,
the arrival order in the queue does not influences the steady state probabilities of
the corresponding CTMC.

In the following we give the definition of a GSPN model equivalent to a PS
station and immediately after we explain the differences with a IS station.

Given the M/M/K/PS models let us define the model called GSPN-PS. We
recall that: R is the number of classes, K is the number of servers, µr,` is the load-
independent service rate for class r customers at stage `, and λr the arrival rate for
class r customers, 1 ≤ r ≤ R. ar,` denotes the probability that a class r customer
goes to stage ` + 1 after being server at stage `, and br,` = 1− ar,` is the probability
of leaving the system after stage `.

Definition 9 (GSPN-PS) According to the GSPN definition given in Chapter 3
let us define:

• P = {Pr,` : 1 ≤ r ≤ R, 1 ≤ ` ≤ Lr},

• T = {Tr,` : 1 ≤ r ≤ R, 1 ≤ ` ≤ Lr},

• function Π is defined as Π(t̃) = 0 for all t̃ ∈ T ,

• input and output vectors for transition Tr,` are I(Tr, `) = er,`, O1Tr, ` = 0 with
1 ≤ ` ≤ Lr, and probability br,`. O2(Tr, `) = er,`+1 with 1 ≤ ` < Lr, with
probability ar,`.

• H(T) = 0 for all T ∈ T ,

• w(Tr,`,m) = mr,`/[
∑R

s=1

∑Lr

i=1 ms,i]µr,` for 1 ≤ r ≤ R and 1 ≤ ` ≤ Lr.

• m0 = (0, . . . , 0) .

Tokens arrive to places Pr,1, 1 ≤ r ≤ R according to independent Poisson stochastic
processes.

In order to obtain an IS station it suffices to change the definition of function w
as follows:

w(Tr,`) = mr,`µr,`

Figure 6.5 illustrates the model for two classes with L1 = 3 and L2 = 2.

Intuition of the model behavior GSPN-PS and GSPN-IS models differ from
GSPN-EXP and GSPN-COX for several reasons. First of all, in GSPN-EXP and
GSPN-COX models the number of servers was represented by the number of tokens
in the initial state in a specific place. In the GSPN-PS model the number of servers
influences the weight function w of the models. The idea is that transition Tr,` rates
is proportional to the number of tokens in Pr,`. The total computation rate is shared

6.3. Conclusions 119

Figure 6.5: PS and IS model example for two classes of customers, with L1 = 3 and
L2 = 2 stages of service.

by all the customers in the model, i.e., 1/
∑R

r=1

∑Lr

`=1 mr,`µr,`. For GSPN-IS model
the transition firing rates for each token are independent of the total number of
customers in the station.

Note 2 The CTMCs underlying GSPN-IS and GSPN-PS models are isomorphic
to those defined in BCMP theorem [17] for the IS and PS scheduling disciplines
respectively. Therefore it is obvious that the stationary probabilities are the same
and that they yield the same properties of the corresponding queueing models.

We can say that the equivalence between GSPN-PS, GSPN-IS and PS, IS BCMP
scheduling disciplines is stronger than that introduced for GSPN-EXP and FCFS,
GSPN-COX and LCFSPR. In fact in the former cases there is an isomorphism
between the CTMCs while in the latter ones there is an equivalence of the steady
state probabilities under specific aggregations.

6.3 Conclusions

In this chapter we have defined a GSPN model for each queueing center type defined
in the BCMP theorem [17]. Then, we have defined an equivalence relation that
preserves the performance indices and we have proved that the BCMP stations
are equivalent to the corresponding GSPN models under class independent Poisson
arrivals.

In this chapter we have mainly given a theoretical result that is functional to the
following chapter. In order to clarify the importance and the practical relevance of
these proposed models, we need to study their compositional properties. We address
this problem in the following chapter, and we show that the equivalence holds even
under some non-Poisson arrival processes.

However, it is interesting to note that the defined probabilistic queueing disci-
plines are suitable to replace the corresponding deterministic ones if the modeler is

120 6. Representing BCMP queueing centers by GSPN models

interested in the analysis of the average performance indices (of course the response
time distributions for a probabilistic queueing discipline and the corresponding de-
terministic one cannot be the same).

7
Composition of GSPN models
equivalent to BCMP stations

7.1 Introduction

In this chapter we study the compositional properties of the GSPN models intro-
duced in Chapter 6. In particular, we are interested in determining the conditions
under which a model consisting of a set of sub-models, some of which are GSPN-
EXP, GSPN-COX, GSPN-IS or GSPN-PS, has a product-form solution. We can
distinguish three types of possible compositions:

BCMP-like composition: In this case the GSPN blocks called GSPN-EXP, GSPN-
COX, GSPN-IS and GSPN-PS are used to obtain a model that is equivalent
in terms of average performance indices to a BCMP queueing network (QN).
The product-form property of the BCMP QNs is maintained in the equivalent
GSPN model. This technique can be useful for large models with complex
load-dependent service rates, i.e., models that do not satisfy the conditions
required by the algorithms defined to study the BCMP QNs [27, 114, 29, 34,
93, 101, 40, 26, 107, 41]. In fact, in these cases simulation can be required
due to numerical problems or algorithm preconditions not satisfied. GSPN
simulators are widely available therefore it can be useful to map a BCMP QN
into a GSPN.

Extended BCMP-like composition: After the introduction of product-form QNs
[73, 54, 17], several research efforts have been devoted to characterize queue-
ing stations that can be embedded within a product-form network originating
maintaining the product-form property. Since product-form is a property re-
lated to the CTMC of the cooperating models, some authors have worked in
this direction (see for example [76]), while others focused on the high level
properties of the QN stations that originate product-form solutions (for ex-
ample [32]). Muntz’s property M ⇒ M can be seen from both these points of
view (see Chapter 2). In fact, it requires to analyze the CTMC of a station in
isolation in order to decide whether it can be composed with other M ⇒ M
models originating a product-form model, but it also involves typical high-level

122 7. Composition of GSPN models equivalent to BCMP stations

notions of queueing theory such as customers, customer arrivals or customer
departures. The main strength of this property is that it identifies a set of
queueing stations with a general (non structural) property that can be com-
posed in order to obtain product-form queueing networks. For example, Le
Boudec used this result in order to prove that a new queueing discipline (with
practical applications) was in product-form by M ⇒ M [86], and a similar
approach has been used by Afshari et al. in [1]. However, it is not easy to take
advantage from this generalization of BCMP QNs in software tools. Ideally
the modeler would like a tool that allows the specification of a queueing disci-
pline and then it should be able to decide whether the discipline satisfies the
M ⇒ M property or not. There are two problems in this sense: the first one
is that the queueing disciplines are usually described at high level, therefore
it can be hard to automatically define the underlying stochastic process. The
second one is that deciding the M ⇒ M property requires the analysis of the
whole stochastic process from its steady-state solution, that can be unfeasible
in case of large of infinite state spaces. Therefore, the production of a tool
that allows a product-form analysis with arbitrary queueing disciplines added
to the BCMP ones appears to be a really difficult task. We partially overcome
the first problem by using GSPNs as formal language to describe queueing
disciplines or stations. We show that the GSPN models defined in Chapter
6 satisfy the M ⇒ M property, therefore they can be combined with other
GSPN models, even not equivalent to BCMP stations, obtaining a product-
form model. For example, a practical consequence is that we can represent
the Le-Boudec MSCCC station [86] using a GSPN model, combine it with
GSPN-EXP, GSPN-COX, GSPN-IS and GSPN-PS and study or simulate the
resulting model. In the following sections we analyze how these models have
to be combined.

Non BCMP-like composition: BCMP product-form QNs require the solution of
a linear system, called system of the traffic equations. In the last few years a
class of product-form models with non-linear traffic equations has been defined.
One of the first results in this direction is the definition of the product-form for
G-Networks [50]. In his talk at SIGMETRICS 2008 E. Gelenbe claims that:

There can be product-form solutions (a) without local balance, (b)
without one step transitions, (c) without quasi-reversibility, (d) with
non-linear traffic equation.

However, the proves based on the verification of the set of global balance
equations of the CTMC underlying the model are difficult to handle. On one
hand they often require a lot of calculations and on the other hand they just do
not give information on what causes (or prevents) the product-form solution.
RCAT-based theorems [59, 61, 62] base the identification of the product-form

7.2. M ⇒ M property on GSPN models 123

of a model on the analysis of the reversed processes of the interacting sub-
models. These theorems, reviewed in Chapter 4, have been successfully used to
prove several classes of product-forms. In particular, they can be used to study
Jackson QN product-form [59] and also models with non-linear traffic equation
systems [60]. In this chapter we reconsider the GSPN models introduced in
Chapter 6 and show that they can be composed using RCAT under some
restrictions. This result extends their field of application. We show how a
modeler can take advantage of this result in order to study hybrid models (i.e.
models that can be defined by different formalisms) in product-form.

The chapter is structured as follows. Section 7.2 studies the composition of GSPN-
EXP, GSPN-COX, GSPN-IS and GSPN-PS models by M ⇒ M , Section 7.4 studies
the composition of the same models using RCAT. We need both these analysis
because we show that it is not the case that one class of models includes the other,
even if there is a non-empty intersection. Within Section 7.4 we also show how
it is possible to use RCAT results to define new product-form GSPNs. Section
7.3 considers a generic probabilistic queueing discipline with exponential service
time and without preemption. It investigates the conditions on the probability
distribution of a customer to obtain the service and we prove that only the uniform
distribution characterizes a model that satisfies the M ⇒ M property. Finally,
Sections 7.5 and the following ones show some examples of hybrid modeling. The
examples are structured as follows: the first one shows a modeling of a real system
that is in product-form, the second one shows a hybrid model in product-form using
G-queues and originates a linear system of traffic equations, the third one illustrates
a hybrid model in product-form with a non-linear system of traffic equations.

7.2 M ⇒ M property on GSPN models

Markov implies Markov property has been introduced by Muntz in [94] with the
aim of characterizing the queueing disciplines whose composition has a product-
form solution. In particular, every BCMP queueing discipline satisfies the M ⇒ M
property. In order to prove that the compositions of GSPN-EXP, GSPN-COX,
GSPN-IS, GSPN-PS models have product-form solutions, we use the M ⇒ M prop-
erty. However, this property is defined in terms of queueing theory notions, such
as customers, service completion etc. In this section we simply reformulate the
M ⇒ M property so that it can be used in the GSPN analysis. The main idea is
based on the work of Melamed [90] which generalizes [94]. Let us consider an ergodic
CTMC with state space Γ and a collection of sets of traffic transitions denoted by
Θ1, . . . , ΘB where Θi ⊆ Γ × Γ and Θi 6= ∅. Let us define Ki(t) as the process
which counts the number of transitions (α, β) ∈ Θi up to t. Let mi(γ) be defined
as mi(γ) =

∑
η∈Θi(·,γ) π(η)q(η, γ), where Θi(·, γ) = {β|(β, γ) ∈ Θi}, q(η, γ) is the

transition rate between states η and γ and π(η) is the stationary probability of state

124 7. Composition of GSPN models equivalent to BCMP stations

η. Intuitively mi(γ) is the total flux to state γ ∈ Γ limited to the transitions in Θi.
We define mi =

∑
γ∈Γ mi(γ).

Example 9 In order to clarify these definitions we introduce the following example.
Let us consider a BCMP FCFS station with R = 2 classes of customers. The state
of the station is its occupancy vector, i.e., a vector whose i-th component is the label
of the class of the i-th oldest customer in the station. The size N(t) of the vector is
not fixed and the customer in service is in position N(t). Figure 7.1 illustrates part
of the CTMC, where λ1, λ2 are the arrival rates of class 1 and class 2 customers
and similarly for the service rates µ1 and µ2. Suppose that Θ1 and Θ2 identify the

[]

[1] [2]

[21] [12] [22][11]

...

λ1

λ1

λ1

λ2

λ2

λ2

µ1

µ1

µ1

µ2

µ2

µ2

α

β

γ
δ

ǫ

ζ η

Figure 7.1: Part of the stochastic process of a 2 classes FCFS BCMP station.

traffic processes of class 1 and 2 job completions. Then we can write:

Θ1 = {(β, α), (γ, β), (δ, ε), . . .}
Θ2 = {(ε, α), (η, ε), (ζ, β), . . .}

Let us consider state β, then we have that:

Θ1(·, β) = {γ}
Θ2(·, β) = {ζ}

Intuitively, m1(β) = π(γ)µ1 is the rate of the expected traffic count due to transitions
into state β, while m1 =

∑
σ∈Γ m1(σ) is the total rate of expected traffic count. Note

that, since by hypothesis the queueing system admits a steady state, we have mi = λi

for i = 1, 2.

7.2. M ⇒ M property on GSPN models 125

Melamed’s result [90] states that Ki(t) are mutually independent Poisson pro-
cesses if and only if the following equation holds:

∀γ ∈ Γ,
B∑

i=1

mi(γ) = π(γ)
B∑

i=1

mi, (7.1)

that is proved to be equivalent to:

∀γ ∈ Γ, ∀i = 1, . . . , B mi(γ) = π(γ)mi (7.2)

The similarity between Equation (7.2) and Munt’z Equation (2.16) is clearly
visible by noting that, for a queueing center in equilibrium, we have that mi = λi.

We now apply Melamed’s results to our case. Let us consider the model GSPN-
EXP with R classes of customers. We can define R traffic processes as follows:

Θr = {(m′,m)||m′|r = |m|r + 1}, r = 1, . . . , R, (7.3)

where |m|i = mr + mR+r. Intuitively, Θr is the set of transitions that cause a
reduction of the number of class r customers, i.e., a class r customer departure (as
we know we deal with work-conserving disciplines).

In this case, in order to prove that Ki(t) are independent Poisson processes, we
have to prove that:

∀γ ∈ Γ,
∑

η∈Θi(·,γ)

π(η)q(η, γ) = λiπ(γ). (7.4)

In the following section we prove that this condition holds for GSPN-EXP, GSPN-
COX, GSPN-IS, GSPN-PS. As observed in [90] this property is equivalent to M ⇒
M therefore it ensures that a BCMP-like composition of the introduced GSPN
models has a closed-form steady state probability function.

7.2.1 Composing GSPN models by M ⇒ M

In this section we show that GSPN-EXP, GSPN-COX, GSPN-IS and GSPN-PS
models satisfies the M ⇒ M property in the sense specified in Section 7.2 and that
they can be composed in a BCMP-like way maintaining a product-form solution.
Moreover, they can be combined with other non-BCMP stations which fulfil the
same property maintaining the product-form solution.

The following lemma plays a central role because it basically states that a network
consisting of GSPN-EXP models or other GSPN models satisfying the M ⇒ M
property has a product-form solution. We state the lemma on GSPNs using the
intuition of queueing theory, i.e, we consider R as the number of classes instead of
the number of places, and similarly for the notion of customer, etc. This should
improve the readability of the results.

126 7. Composition of GSPN models equivalent to BCMP stations

Lemma 7 Given a GSPN-EXP model with R classes, if the arrivals are class in-
dependent Poisson processes then the departures are class independent Poisson pro-
cesses too.

The proof of the lemma is based on verifying the property expressed by Equation
(7.4) and it is illustrated in Section A.5.

Similarly, we can state a lemma on the M ⇒ M property and GSPN-COX
models. For GSPN-EXP model we showed the proof of M ⇒ M with details and
separated from the one that verifies the GBEs. However, the two proves can be fused
into one, because the definition of the traffic process is straightforward and one can
prove the GBEs with partial balances that correspond to the M ⇒ M condition
(7.4). This is the approach we use for GSPN-COX model. In fact, the proof of the
following lemma is embedded in the proof of Lemma 5.

Lemma 8 Given a GSPN-COX model with R classes, if the arrivals are class in-
dependent Poisson processes then the departures are class independent Poisson pro-
cesses too.

GSPN-IS and GSPN-PS models fulfil the M ⇒ M property. The proof is trivial
by Note 2. In fact, since the CTMCs of the GSPN-IS and GSPN-PS models are
isomorphic to those of the corresponding BCMP stations, and recalling that the
latter ones satisfy the M ⇒ M property [94], we immediately conclude that M ⇒ M
holds also for GSPN-IS and GSPN-PS models.

7.2.2 Analysis of a hybrid model with an extended BCMP-
like product-form

In this section we use the results illustrated in this chapter to analyze a hybrid
QN/GSPN model in product-form using the M ⇒ M property.

Model description We study a system that consists of a communication line
with two channels, and three identical servers. The customers are clustered into
three classes and two chains:

• Class A customers arrive from outside to the communication line COM. After
being transmitted they are served by a set of three identical servers SER and
then they leave the system.

• Class B customers arrive from outside to the communication line COM. After
being transmitted they join class A.

• Class C customers are internal customers and their number is fixed. Their
behavior is the following: they iterate a phase in which they perform a com-
putation DEL, then they pass through the communication line COM and
finally they are served by the servers SER. Once these passages are done, the
customers return to the phase DEL.

7.2. M ⇒ M property on GSPN models 127

The communication line follows the FCFS discipline, but cannot serve two customers
of the same class simultaneously. Customers belonging to class A and B have the
same stochastic behavior once they reach the servers SER. Class C customers are
interior control processes and their number in our example is fixed: K = 5. Server
SER queueing discipline is FCFS.

Note that a usual BCMP QN exact analyzer cannot analyze this system because
of the presence of the multiple line communication channel. Moreover, in these
tools it is usually not possible to define new queueing disciplines because of their
high-level description.

Representing the model by GSPN In order to represent the model by a
product-form GSPN we need the following further assumptions:

• The service time distributions of the channel COM and servers SER must be
exponentially distributed and class independent.

• The service time distribution for the DEL phase of the internal processes can
have any distribution with rational Laplace transform. In order to keep the
example simple we assume (but it is not necessary) that it is exponentially
distributed as well.

• The external arrival processes are independent Poisson processes with constant
rates λA and λB for class A and class B customers respectively.

The behavior of the communication line is exactly modeled by a MSCCC station
defined by Le Boudec in [86]. Although it is not a BCMP discipline type, Le Boudec
proved that it satisfies the M ⇒ M property, therefore it is in product-form when
combined with other M ⇒ M stations.

Therefore, we can represent an equivalent system with GSPN by using the results
presented here as shown by Figure 7.2. The set of three servers with FCFS scheduling
discipline can be represented by a GSPN-EXP service center, and finally the DEL
phase of the internal processes are represented by a simple GSPN-IS model.

Model analysis As all the three blocks satisfy the M ⇒ M property, we can state
that the whole system, under stability assumption, has a product-form stationary
probability distribution. The arrival rates of class A and class B customers to station
SER is e2A = λA + λB, the arrival rates to the stations that form the closed chain
can be set to 1. Then, the steady state solution is given by the normalized product
of the steady state solutions of the three GSPN sub-models considered in isolation.

128 7. Composition of GSPN models equivalent to BCMP stations

COMMUNICATION LINE SERVERS

INTERNAL PROCESSES

P1,1

T2,1

T2,2

T2,3

T3,1

T3,2

CLASS A
ARRIVALS

CLASS B
ARRIVALS

(CLASS C CUSTOMERS)

CLASS A

CLASS B

CLASS C

MSCCC STATION BCMP FCFS STATION

BCMP DELAY STATION

(a)

(b)

P2,7
P2,5

Figure 7.2: Example of product-form GSPN obtained by hybrid modeling.

7.3 On the characterization of probabilistic queue-

ing disciplines with a single server

In this section we study model GSPN-EXP under the restriction of a single server
and a general weight function for the immediate transitions, i.e., Definition 7 of
Section 6.2.1 changes to:

• The initial state. Instead of m0 = (0, . . . , 0, K) we consider the initial state
m0 = (0, . . . , 0, 1).

• The weight of immediate transitions. Instead of w(tr,m) = mr (1 ≤ r ≤ R)
we allow more general weights: w(tr,m) = wr(m).

Let us name this model GSPN-EXP-1. Note that model GSPN-EXP with a single
server has a CTMC which is isomorphic to the CTMC of a random queueing dis-
cipline with multiple classes of customers and it is known to satisfy the M ⇒ M
property if the probability of getting a free server is uniform among the customers in
queue [1]. Are there other possible choices, but the uniform, that lead to a M ⇒ M
product-form? In this section we prove that the only possible distribution that gives

7.3. On the characterization of probabilistic queueing disciplines with a single server129

a M ⇒ M product-form is the uniform, i.e.,

Pr{tr fires} =
mr∑R
i=1 mi

⇐⇒ M ⇒ M property holds (7.5)

where r = 1, . . . , R. Lemma 7 proves the =⇒ verse of the implication, in this section
we prove the opposite verse.

Although we are stating a negative result, we think that it is interesting from a
theoretical point of view. In fact, informally speaking, it binds the M ⇒ M property
for random queueing disciplines to an idea of fairness of accessing the server among
the customers.

The importance of this result does not concern only with GSPN models but
also with the QN models and specifically with the definition of probabilistic queue-
ing disciplines that exhibit BCMP-like product-form solutions. In other words, we
study the conditions under which a multiclass station with a probabilistic queueing
discipline without preemption and with an exponential server has a M ⇒ M based
product-form solution. Is it possible to define a random choice between the classes
such that the probability of choosing a class r customer is proportional to the class
arrival rate? Or is proportional with the square of the number of customers of the
same class in the queue? By the result we are going to present, the answer to all
these questions is negative.

The proof is rather technical so we introduce a simplification of the notation in
order to make it more readable. We assume ws(m) = 0 if (and only if) ms = 0, and
we denote by m(r) a state m with mR+r = 1, i.e., with a class r customer in service,
and by m0 the state with m2R+1 = 1, that is no customer is at the station. We aim
to prove that the only choice for function wr which leads to a M ⇒ M product-form
is the uniform one.

In this section we state the main theorem and we prove it in Appendix A, Section
A.6.

Theorem 7 Le us consider a GSPN-EXP-1 model. Let m be a generic tangible
state of model GSPN-EXP-1, A = {r : mr > 0, 1 ≤ r ≤ R}. M ⇒ M property holds
if and only if the following condition holds:

• For every A such that |A| ≥ 2, wr(m) = f(m)mr for r ∈ A, with f an
arbitrary positive function.

In this case the stationary distribution is given by Formula 6.2 with K = 1.

Note that the theorem formally states what we have introduced before. Given a
tangible marking m, set A is the set of the immediate transitions that are enabled
after a job completion (i.e., after the firing of a timed transition). If |A| > 1 then
there is a conflict among the immediate transitions. Recall that, in this case, the
probability of firing of a transition is proportional to its weight. The theorem states
that the transition weights must be in the form wr(m) = f(m)mr. Note that
function f only depends on the current state and not on the transition. Therefore,
it can be set f(m) = 1 without loss of generality for obvious algebraic reasons.

130 7. Composition of GSPN models equivalent to BCMP stations

7.4 RCAT composition

In Section 7.2 we have shown how we can interpret the M ⇒ M property in the
GSPN formalism context. This leads to the definition of a class of GSPN models
that can be combined in a QN-like manner such that the solution of the whole
model is in product-form. In this section we apply a similar approach using RCAT.
The section is organized as follows. At first, we interpret RCAT theorem in the
GSPN formalism context with special attention for models GSPN-EXP and GSPN-
COX. Then we prove that under a set of structural conditions these models satisfy
RCAT conditions. This means that the models can be composed with other models
satisfying RCAT conditions including product-form G-Networks [50] or Coleman,
Henderson et al. SPNs in product-form [63, 39] with the restrictions presented in
Chapter 5. The last part of this section illustrates some examples of applications of
this result.

7.4.1 A comparison between M ⇒ M and RCAT conditions

In this section we compare the condition on the reversed transition rates of RCAT
(Theorem 3) and the condition for the M ⇒ M property (2.16). For the sake of
clarity we reason for a composition of queueing systems, although the conclusions
can be extended to the general case. Let us consider a multiclass queueing system
without blocking, i.e., it can always accept customer arrivals, and let us suppose
that each state of the queueing system can be reached by a customer departure
transition of any served class. Le ξ be a generic state of the queue and, following
Munt’z notation, let S+

r (ξ) be the set of states with one customer of class r more
than state ξ from which ξ is reachable. We are sure, by hypothesis, that S+

r (ξ) is
not empty. Each transition from a state ξ′ ∈ S+

r (ξ) to ξ corresponds to a class r
customer departure. From RCAT point of view this means that:

xr =
π(ξ′)

π(ξ)
q(ξ′, ξ)

where xr is the reversed rate. xr must be independent of ξ′ ∈ S+
r and ξ. The

condition required by M ⇒ M is different because it states that the processes corre-
sponding to the customer departures must be class independent Poisson processes.
Algebraically this is expressed by Equation (2.16). Note that, in the reversed pro-
cess, this equation means that the sum of the reversed rates qR(ξ, ξ′), ξ′ ∈ S+

r (ξ)
must be equal to the arrival rate of class r customer to state ξ.

It is worthwhile pointing out when RCAT condition and M ⇒ M conditions
coincide. We introduce the following observation:

Observation 1 A multiclass queueing model that satisfies the following conditions:

• Constant arrival rates for each class λr,

7.4. RCAT composition 131

RCAT modelsM=>M mode ls

G-queues

GSPN-EXP models
with single serverGSPN-EXP models

with mult iple servers

Figure 7.3: Relation between M ⇒ M models and RCAT models.

• For every state ξ we have that |S+
r | = 1,

• For every state ξ there exists a state ξ′′ reachable due to a class r customer
arrival,

• M ⇒ M property is satisfied for this model,

also satisfies the conditions of RCAT theorem.

Note that by the considerations formulated in this section we cannot say that
one of RCAT or M ⇒ M is more general than the other. M ⇒ M can easily deal
with variable arrival rates, but it requires the sum of the reversed rates from any
state ξ to ξ′ ∈ S+

r (ξ) to be exactly equal to the arrival rate of class r to ξ. On the
other hand RCAT just asks the reversed rate of every transition from ξ to ξ′ ∈ S+

r (ξ)
to be constant (so not related to the arrival rate). In the following we show that
models GSPN-EXP and GSPN-COX can be used in an RCAT composition under
some restrictions. Moreover, recall that there are several models that do not fulfil
M ⇒ M but satisfy RCAT conditions, e.g. the G-queue. Therefore, we have shown
examples of models that satisfy M ⇒ M but not RCAT conditions, models that
satisfy both of them, and models that satisfy RCAT conditions but not M ⇒ M .
This situation is depicted by Figure 7.3.

7.4.2 RCAT for GSPN models

In this part of the section we give an interpretation of RCAT conditions for what
concerns models GSPN-COX and GSPN-EXP. The approach can be extended to
a general GSPN model although special attention should be devoted to represent
transitions with multiple synchronization. In Chapter 5 we have shown a possible
technique to deal with this case. Roughly speaking we can interpret the three RCAT
conditions on a queueing station as follows:

1. There is no blocking for the customer arrivals in any state of the station. This
means that the customer can be destroyed, served, or put in queue, but the
process which generated the arrival cannot be blocked.

132 7. Composition of GSPN models equivalent to BCMP stations

2. For each customer class r and reachable state ξ, there is at least another
reachable state ξ′ such that ξ is reachable from ξ′ by a class r job completion.

3. The reversed rates of the transitions corresponding to a job completion are
constant for each customer class.

In order to apply RCAT to a GSPN model we need to give an interpretation of the
model using PEPA. A GSPN with immediate transitions generates a semi-Markov
process that can be reduced to a CTMC. Let us consider the CTMC generated by
a GSPN model such as GSPN-EXP. In a SPN model every state transition in the
CTMC corresponds to the firing of a timed transition and the state transition rate in
the CTMC is equal to the transition rate of the SPN. This is not straightforwardly
true in a GSPN model. In fact, even if it is still true that a state transition in the
CTMC corresponds to the firing of a timed transition in the GSPN, the presence of
immediate transitions can change the rates.

Example 10 Let us consider a model GSPN-EXP with R = 2, rate µ and m0 =
(0, 0, 0, 0, 1), i.e., there is just a single server. We consider state (m1,m2, 0, 1, 0)
with m1, m2 > 0. A job completion event corresponds to the firing of transition T4

and transition T4 has rate m4µ = µ. However the state transitions in the CTMC due
to the firing of T4 have different rates. Figure 7.4 illustrates the reason by showing
the passage from the semi-Markov process to the CTMC. Note that this example is
simple because the the immediate transitions can be easily reduced by embedding their
probabilistic behaviors in the timed transition firing rates.

In order to study how to apply RCAT to a GSPN, we need to model the under-
lying CTMC of the GSPN in PEPA and then we can interpret RCAT conditions.
As any CTMC can be described by PEPA using just the prefix operator and the
parallel composition as noted in [68] we can for sure describe in PEPA the CTMC
of a GSPN model in isolation. Each transition in the CTMC of the GSPN model
correspond to a PEPA activity. The activity rate is the state transition rate, and
the activity type is a type corresponding to the transition in the GSPN:

Example 11 Let us consider again the model of Example 10. Suppose that m =
(m1,m2, 0, 1, 0), m′ = (m1 − 1,m2, 1, 0, 0) and m′′ = (m1,m2 − 1, 0, 1, 0). Then the
PEPA description of the transitions depicted in Figure 7.4 is:

m = (
m1

m1 + m2

µ, T4).m
′ + (

m2

m2 + m1

µ, T4).m
′.

Note that, in general, the fusion of timed and immediate transitions is not trivial.
In particular, cycles of immediate transitions can be difficult to analyze [89, 88, 74],
however it is out of the scope of this thesis reviewing the techniques to solve this
problem, and we limit our analysis to the models GSPN-x.

In the following we refer to the reversed rate of a transition T of the GSPN
without deriving the CTMC and the PEPA description of the model as it is a
purely formal operation.

7.4. RCAT composition 133

SEMI-MARKOV
PROCESS

CTMC
REDUCTION

[m1, m2, 0, 1, 0]

[m1, m2, 0, 1, 0] [m1, m2, 0, 0, 1]

[m1 − 1, m2, 1, 0, 0]

[m1 − 1, m2, 1, 0, 0]

[m1, m2 − 1, 0, 1, 0]

[m1, m2 − 1, 0, 1, 0]

µ

m1

m1+m2

m2

m1+m2

m1

m1+m2

µ

m2

m1+m2

µ

Figure 7.4: State transitions in the semi-Markov process and in the corresponding
CTMC for GSPN-EXP model of Example 10. Dotted line is used for vanishing
states.

Now, if we consider any of the GSPN-x models defined in Chapter 6, it is easy
to informally verify that conditions 1 and 2 are satisfied. Condition 3 has to be
checked algebraically.

7.4.3 Theoretical results

In this section we show that in the reversed CTMC underlying the models GSPN-
EXP and GSPN-COX the transitions associated with a class r customer departure in
the forward process have constant rates in the reversed process under the assumption
of load-independent single server. This result, combined with RCAT [59] illustrated
in Chapter 4, allows one to analyze GSPN models with a compositional approach
and then derive new product-form solutions, i.e., closed form stationary probability
functions which are not identified by previous product-form model classes.

Analysis of GSPN-EXP model The analysis of GSPN-EXP model is relatively
simple. The only condition required to have constant rate reversed departure tran-
sitions is that there must be a single server. Formally we introduce the following
Lemma.

Lemma 9 Given model GSPN-EXP with a single server, i.e., m2R+1 = 1 in the
initial state, then:

134 7. Composition of GSPN models equivalent to BCMP stations

1. The reversed rates of the CTMC transitions corresponding to customer depar-
tures have constant rates.

2. Let m be an arbitrary state, then there is always a possible transition to a state
m′ due to a class r customer arrival, for any r = 1, . . . , R.

3. Every state of the CTMC generated by GSPN-EXP model is reachable due to
a class r customer departure transition, for any r = 1, . . . , R.

Proof. First of all we identify the transitions corresponding to a customer depar-
ture. They clearly are the transitions which reduce the total number of tokens in
P1, . . . , P2R.

Let us prove the first proposition of the lemma. We have to distinguish two cases.
Suppose that there is at least one token in one of the places P1, . . . , PR (intuitively at
least one customer in the queue). The firing of a transition Tr ∈ {T1, . . . , TR} causes
a transition from state m to state m′. Clearly m′

r +m′
R+r = mr +mR+r − 1 that we

can interpret as a departure of a customer of class r, 1 ≤ r ≤ R. In particular, we
can write m′ = m−eR+r +eR+s−es, where s denotes the class of the customer that
obtains the server. The forward rate of this transition is µms/

∑R
j=1 mi. Then we

can calculate the reversed rate using the steady state probability distribution given
by formula (6.2):

q′(m′,m) =
π(m)

π(m′)
q(m,m′) =

∑R
i=1 mi

ms

ms

mr

λr
1

µ
µ

mr∑R
i=1 mi

= λr.

Let us consider the case of ms = 0 for all s = 1, . . . , R, intuitively, just a customer
in the station. In this case the only possible transition associated with a customer
departure is from m = eR+r to m′ = e2R+1 with rate µ. The computation of the
reversed rate straightforwardly gives λr. Therefore, the reversed rate for class r
customer departure is constant.

The second and third parts of the lemma are trivial. Second part: given an
arbitrary state m there can always be an arrival of a customer that enters in the
queue. Third part: given an arbitrary state m we can identify a state m′′ such that
there is a customer of class r in service, for any r = 1, . . . , R, and all the customers
in m are in the queue. The departure transition of the class r customer can lead
the system to state m. ♠.

Note that for single class FCFS queueing stations it is a well-known result that
the reversed rates of the departure transitions are constant and equal to the arrival
rates (usually denoted by λ). However, here we deal with multiclass stations and
the queueing discipline of GSPN-EXP is not FCFS but random.

7.4. RCAT composition 135

Note that we can look at this result from the point of view of Observation 1.
GSPN-EXP models with a single server are such that given a tangible state ξ = m,
the set S+

r (ξ) has cardinality 1. A counterexample can be shown of a GSPN-EXP
model with multiple servers not satisfying RCAT conditions.

Analysis of GSPN-COX model The case of Coxian service time distribution
requires more attention because in the original definition of the Coxian service time
a customer can leave the system from any service stage. We show that a sufficient
condition to have constant reversed rates of the customer departure transitions is
that a customer can leave the system only from the last stage of service, i.e., we set
ar,` = 1 for ` = 1, . . . , Lr − 1 and br,Lr = 1. Note that this is a strong restriction
because the service time distribution of the station becomes a generalized Erlang
distribution.

Lemma 10 Given model GSPN-COX with a single server, i.e., mR+1 = 1 in the
initial state, then

1. the reversed rates of the CTMC transitions corresponding to the customer de-
partures have constant rates if ar,` = 1 for ` = 1, . . . , Lr − 1 and ar,Lr = 0.

2. Let m be an arbitrary state, then there is always a possible transition to a state
m′ due to a class r customer arrival, for any r = 1, . . . , R.

3. Every state of the CTMC generated by GSPN-COX model is reachable due to
a class r customer departure transition, for any r = 1, . . . , R.

Proof. We just sketch the proof of the first part, and explain the reason of the
conditions on ar,` parameters. The second and third propositions are proven as for
Lemma 9. Let us consider a GSPN-COX model with a single server and 0 < ar,` ≤ 1
for r = 1, . . . , R and ` = 1, . . . , Lr − 1. Consider the case of mR+r,` > 0 for some r
and `, intuitively there is at least a customer preempted (in queue). By the steady
state distribution, we can derive the reversed transition rate m′ → m assuming that
mr,` = 1, similarly to what we have done in the previous proof, we obtain:

q′(m′,m) = λrAr,`br,`.

Note that q′(m′,m) depends on Ar,`br,`. This explains the conditions required by
the Lemma on the values of ar,`. In fact, if the ar,` = 1 for ` = 1, . . . , Lr − 1 then
the departures are possible only for ` = Lr, thus we obtain: q′(m′,m) = λr, because
Ar,Lr = 1 and br,Lr = (1 − ar,Lr) = 1. Finally, we observe that the value of the
expression λrAr,`br,` can be state independent even for some values of ar,` and br,`

of a Coxian distribution. However we have preferred to state a stricter but just
structural product-form condition. ♠

136 7. Composition of GSPN models equivalent to BCMP stations

Roughly speaking, Lemma 9 and Lemma 10 state that GSPN-EXP and GSPN-
COX model can either be fed by or feed other RCAT-compatible blocks under the
specified restrictions.

7.4.4 New product-form GSPN models with RCAT

This part of the chapter illustrates how it is possible to generate new product-form
GSPN models using RCAT. Our approach may seem a little peculiar. In fact, we
start from a model that it is not in product-form and we try to modify it in order
to allow the application of RCAT. In this way the resulting model can be seen
as a product-form approximation of the original model. By this technique several
product-form models can be generated in a relatively simple way. It is out of the
purpose of this thesis the analysis of how good such approximation can be, however
we think that an analysis in this direction could give interesting results.

It is worthwhile pointing out that this approach is possible because RCAT proves
the product-form of a model without analyzing the global balance equations, there-
fore we have a high-level point of view of the product-form.

Let us consider a system with N servers. When a customer arrives to the system
from the outside (according to a Poisson process) it immediately enters in service
if there is an available server, and after an exponentially distributed service time it
leaves the system. However, differently from normal queueing systems, the server
does not become immediately available after the job completion but, it can be used
again after an exponentially distributed random delay. If a customer arrives to the
system and there are not free servers, then it waits in queue with a RANDOM
discipline. We use the SPN model of Figure 7.5 to represent this system.

P1

P2

P3

T1

T2

T3

Figure 7.5: Example of SPN not in product-form.

7.4. RCAT composition 137

In the model of Figure 7.5 (let us call it IDEAL) transition T3 has rate µ3 = λ
and represents the external arrivals, transition T2 has rate µ2 and represents the
service rate. The firing of T2 frees a server, however the corresponding token is
placed in P1. The firing of transition T1 (with rate µ1) makes the server available
again.

SPN model IDEAL is not in product-form by Theorem 2 in fact it is not true
that for every input vector there is a corresponding output vector (for example there
is not a transition whose output vector is the null vector). Moreover, model IDEAL
is not in Boucherie product-form.

We can see the model consisting of two cooperating processes. One process
represents the availability of the server, and the other process represents the number
of customers in the station. Even if the application of RCAT we are going to do
can be performed quickly, we show it step by step. Let us formulate the PEPA
description of the two processes. Pi is an agent that represents the availability of i
servers. Therefore, we obtain:

P0
def
= µ1.P1

Pi
def
= µ1.Pi+1 + (t2, µ2).Pi−1 for i = 1, . . . N − 1

PN
def
= (t2, µ2).PN−1,

where N is the total number of servers. Let us consider the PEPA definition Qj of
the other process:

Q0
def
= λ.Q1

Qj
def
= λ.Qj+1 + (t2,>).Qj−1 j > 0

Figure 7.6 shows a graphical representation of Pi and Qj. RCAT cannot be applied

1

2

N

0

0 1 2

P

Q

µ1

µ1

µ1

(t2, µ2)

(t2, µ2)

(t2, µ2)

λλλ

(t2,⊤)(t2,⊤)(t2,⊤)

Figure 7.6: Representation of IDEAL model by cooperating processes.

because:

138 7. Composition of GSPN models equivalent to BCMP stations

• In the reversed process of P there is not any outgoing arc of active type t2
from state PN .

• In the forward process of Q there is not any outgoing arc of passive type t2
from state Q0.

In order study model IDEAL we need to modify the structure of the processes
obtaining model SIMPLE. Of course the resulting model and analysis are different
from the original ones, but we are going to show that there are some minor changes.
We call P ′ the modified model of P , Q′ the modified model of Q (see Figure 7.7):

P ′
0

def
= µ1.P

′
1

P ′
i

def
= µ1.P

′
i+1 + (t2, µ2).P

′
i−1 for i = 1, . . . N − 1

P ′
N

def
= (t2, µ2).P

′
N−1 + (t2, µ1).P

′
N

Q′
0

def
= λ.Q′

1 + (t2,>).Q′
0

Q′
j

def
= λ.Q′

j+1 + (t2,>).Q′
j−1 j > 0

1

2

N

0

0 1 2

P

Q

µ1

µ1

µ1

(t2, µ2)

(t2, µ2)

(t2, µ2)

λλλ

(t2,⊤) (t2,⊤)(t2,⊤)(t2,⊤)

(t2, µ1)

Figure 7.7: Representation of model SIMPLE by cooperating processes.

As we can see the self-loop on PN has rate µ1 and not µ2 as one could expect.
This is because we set the rate such that the reversed rate of the actions of type
t2 in P is constant. In our case this reversed rates is µ1 and the reversed rate of a
selfloop is the rate in the forward process. Therefore, we have two birth and death
processes in product-form and the steady state solution is given by:

π(i, j) ∝
(µ1

µ2

)i(λ

µ1

)j

.

7.4. RCAT composition 139

However, our analysis cannot be considered finished. In fact, it is worthwhile
understanding how we have modified model IDEAL in terms of SPN representation
and system behavior in order to obtain model SIMPLE. Indeed, we have introduced
the following undesired behavior:

• if all the servers are available there can be a customer that is served and the
resource becomes immediately available by going straightforwardly to place P2

without passing through P1. The service rate is µ1 instead of µ2;

• if there are not any waiting customers then an available server can become
unavailable. From the system point of view, this can be interpreted as a sort
of energy-save politic.

Note that the unwanted behavior happens only when all the server are available or
when there is not any customer in the center. So a limited part of the joint process
of the model results modified.

A GSPN model corresponding to model SIMPLE is depicted in Figure 7.8. T4

and T5 are the new transitions and we use inhibitor arcs.

P1

P2

P3

T1

T2

T3

T4

T5

Figure 7.8: Example of SPN in product-form. Model SIMPLE.

Note that the RCAT analysis is still possible if we set the rate of T2 to m2µ2. In
this case all the available servers work even if there are less customers than servers.
Note that the reversed rate of the actions labeled by t2 is still state independent and
equal to µ1. The steady state solution becomes:

π(i, j) ∝
(µ1

µ2

)i 1

i!

(λ

µ1

)j

140 7. Composition of GSPN models equivalent to BCMP stations

If we want to combine model SIMPLE with other sub-models, we can assume T3

to be a transition whose firing is governed by another sub-model. This can be done
because transition T3 of model SIMPLE is always enabled, therefore it can be seen
as a passive action in the corresponding process. This means that model SIMPLE
can receive tokens from other models that satisfies RCAT. The state transitions that
are associated with a customer departure are those corresponding to the firing of
transitions T5 and T2. Let us consider a generic state m = (m1,m2,m3) with m3 > 0
and m1 6= 0. The reversed rate for a job completion µ2 can be obtained as:

π(m)µ2 = π(m − e3 − e2 + e1)µ2,

where, as always ei is a vector whose component are all 0 but the i-th that is 1.
Then, we can write:

µ2 =
µ1

µ2

λ

µ1

µ2 = λ.

If we consider state m = (0,m2,m3) then transition T5 is enabled. Transition T5

changes the state from m to m − e3 with rate µ1. In a similar way we obtain µ5:

µ5 =
λ

µ1

µ1 = λ.

Note that the reversed rates are independent of state m and µ5 = µ2 = λ hence the
model can feed other RCAT models as shown by the following example.

Example 12 (New product-form GSPNs) Let us consider the GSPN of Figure
7.9. The model consists of a composition of model SIMPLE and a simple place. From
a high level point of view we can see the model as depicted by Figure 7.10.

Sub-model SIMPLE is in product-form by RCAT if the following conditions on the
transition rates hold: {

χ6 = χ2

χ5 = χ1

,

while the other sub-model is unconditionally in product-form. In Section B.2.1 we
derive the product-form solution and verify it by substitution in the GBEs.

7.5 A first example of hybrid modeling

In this section we apply the previous theoretical results to study a simple system con-
sisting of a FCFS multiclass service center and a communication channel obtaining
an example of a hybrid model with GSPN and QN sub-models.

7.5. A first example of hybrid modeling 141

P1

P2

P3

P4

T1

T2

T3

T4T5

T6

T7

Figure 7.9: Example of GSPN in product-form under some conditions on the tran-
sition rates.

MODEL
"SIMPLE"

EXPONENTIAL
QUEUE

p

1-p

POISSON
ARRIVALS

Figure 7.10: High level interpretation of the model of Figure 7.9.

System description The system consists of two classes of customers. There is a
fixed number K1 of class 1 customers. They alternate a thinking phase (TP) and a
service phase (SP). In the SP they require a service from a server S. Class 2 cus-
tomers arrive from the outside and they ask a service to S. Before leaving the system
they have to pass through a communication channel. The channel transmission pro-
tocol consists of 3 phases and only one customer can occupy a phase at a given time.
Therefore, at most 3 customers can stay simultaneously in the channel. Customers
pass from a phase to the next one simultaneously. If there is a customer arrival when
the first protocol phase is busy then a collision occurs and the first phase becomes
available but both the customers (the one which generated the collision and the one
occupying the first phase) are lost. We can say that the first protocol phase is the
vulnerable phase. Figure 7.12 illustrates a high level representation of the system.

Assumptions In order to obtain an exact analytical solution we have to introduce
some assumptions. The service time of S must be exponentially distributed and
class independent with rate µ. Class 2 arrivals to the system occur according to a

142 7. Composition of GSPN models equivalent to BCMP stations

Poisson process with parameter λ. For what concerns the communication channel
we assume that the protocol phase transitions occur every exponentially distributed
random time with rate µp. The thinking time for class 1 customers can be very
general, e.g. Coxian distributed. For the sake of simplicity we assume hereafter that
it is exponentially distributed with rate µt.

GSPN representation Server S representation is given by a GSPN-EXP model
with R = 2. The communication channel is depicted in Figure 7.11. The tokens
representing the customers arrive to place P1. P2, P3, P4 represent phases 1, 2, 3
of the protocol, respectively. Immediate transition t1 models the collision in the
first protocol phase. Immediate transition t2 models the entering of a customer in
the channel in phase 1. The timed transitions, that are labelled with the number
of the input places to enhance the readability of the picture, model the customers
movements across the protocols phases. For every timed transition the firing rate
is w(T) = µp and for every immediate transition w(t) = 1 (as there are not con-
flicts between t1 and t2). The transitions filled in grey are the ones whose firings
correspond to a service completion by the channel. The TP for class 1 customers is
modelled by a couple place/transition in standard way of state machines (see [74]
for example).

Steady state analysis In this paragraph we obtain the steady state solution for
our model under stability assumptions. We have studied the GSPN-EXP under
Poisson arrivals. We proved that the system fulfils the M ⇒ M property therefore
the composition with feedback with the block representing the class 1 customers
thinking phase is in product-form. Note that because of the feedback the arrival
process to server S is not a Poisson process, but the product-form still holds [94].

Let us consider the communication channel. Figure 7.13 shows the underlying
process. A state is described by a sequence of three bits. The one on the left denotes
if the first phase of the protocol is busy (1) or free (0) and similarly the other ones for
phases 2 and 3. Symbol > denotes a transition caused by a class 2 customer arrival
from the server S block. In the following we keep the convention of denoting by m
the state of the whole system. The state of block i and its steady state probability
distribution is denoted by m(i) = (m

(i)
1 ,m

(i)
2 , . . .) and π(i) respectively, where the

subscripts of the vector components correspond to the labels of the places.

In order to obtain the steady state solution we can apply RCAT because the
reversed rate of a class 2 customer departure transitions from the server is constant
and we proved in Section 7.4.3 that it is equal to λ. Moreover, in every state of the
channel a customer arrival is allowed. Therefore, we can replace in the process of
Figure 7.13 the > symbol by the value λ obtaining in few steps:

π(2)(m
(2)
2 ,m

(2)
3 ,m

(2)
4) ∝

(
λ

λ + µp

)P4
k=2 m

(2)
k

. (7.6)

7.5. A first example of hybrid modeling 143

Figure 7.11: GSPN model of a communication channel with a 3 phases protocol.
Phase 1 is vulnerable to collisions

Figure 7.12: Scheme of the interacting GSPN blocks for the model described in
Section 7.5

144 7. Composition of GSPN models equivalent to BCMP stations

Figure 7.13: Description of the stochastic process associated with the communication
channel.

The steady state solution for block 1, the server, is given by Formula (6.2) with
R = 2, λ1 = λ and λ2 = 1, that is the relative visit ratio between blocks 1 and 3.
Hence we obtain:

π(1)(m(1)) ∝ λ
m

(1)
1 +m

(1)
3

1 · (m
(1)
1 + m

(1)
2)!

m
(1)
1 !m

(1)
2 !

·
(

1

µ

)P4
i=1 m

(1)
i

.

Block 3 behaves like a single class M/M/∞ station.
As we have product-form we can state that the stationary distribution can be

expressed by:

π(m) =
1

G
π(1)(m(1))π(2)(m(2))π(3)(m(3)), (7.7)

where G is the normalizing constant.

7.6 An example of hybrid models in product-form

with a G-queue

This example is more theoretical than the previous one. It does not aim to represent
a real system but to show how flexible the approach we have presented in this chapter
can be. We consider a model consisting of three blocks defined by three different
formalism: a GSPN-EXP model, a CHC-SPN (see Chapter 5 for a formal definition)
and a G-queue. Before describing the model we present a brief introduction to the G-
networks because we have not reviewed this formalism before in this thesis. Then we

7.6. An example of hybrid models in product-form with a G-queue 145

λ+

λ−

µ

Figure 7.14: Simple G-queue with positive and negative customers.

describe the composition of the three models and analyze the steady state solution
of the whole system provided that it exists.

7.6.1 Description of a general G-Queue

In its simplest definition, a single G-queue has one class of customers. Customers
can be either positive or negative. The G-queue treats the positive customers exactly
like a normal exponential queue. When a negative customer arrives to the G-queue
we can have two possibilities:

• The queue is empty. In this case the negative customer arrival does not change
the state of the queue.

• The queue has a positive number of customers. In this case the negative
customer removes one customer form the queue.

We assume Poisson arrivals for positive and negative customers with rates λ+ and
λ− respectively. The service time is exponentially distributed with rate µ. Figure
7.14 illustrates a simple G-queue.

We can see a G-queue as a normal exponential queue with service rate λ− + µ,
therefore the stationary probability π(n) of observing n customers in the queue is
given by:

π(n) ∝
(λ+

λ− + µ

)n

.

G-queues can be combined in order to obtain G-networks [50]. A customer that
leaves a G-queue can leave the system or enter in another G-queue as a positive or
a negative customer. The routing is probabilistic with fixed probabilities. It can be
proved that under stability conditions the steady state solution of a G-network is in
product-form.

G-networks can be studied using RCAT [60]. In fact:

• There can always be a positive or a negative customer arrival;

146 7. Composition of GSPN models equivalent to BCMP stations

λ+

λ−

µ

P1

P2

Figure 7.15: GSPN model of a simple G-queue with positive and negative customers.

• Every state can be reached by a customer departure (i.e., the reversed transi-
tions corresponding to forward active action types are enabled in every state);

• The reversed rates of the transitions corresponding to customer departures
have constant rates.

The latter point can be easily proved using Kolmogorv’s criteria. Let n1 be a state
of the G-queue with n1 > 0. Then the rate to state n2 = n1 − 1 is given by the sum
of the rate of a service completion (µ) and the rate of negative customer arrivals λ−.
Therefore, we have:

π(n1)(µ + λ−) = π(n2)α,

that gives an easy expression for the reversed transition rate α:

α = λ+.

The reversed rate of the departure transitions is then obtained by Definition 5:

µ =
λ+µ

λ− + µ
.

7.6.2 The model description

We now describe the hybrid model we are going to study in the following. We first
give a graphical representation of the whole model, and then we describe in detail
each of the three composing blocks.

The hybrid model is depicted by Figure 7.16. The model parameters are the two
arrival rates λ1 and λ2, the probability p of a customer to get back to BLOCK 1 as
well as all the parameters of the sub-models BLOCK 1, BLOCK 2 and BLOCK 3
that we are describing in the following paragraphs.

7.6. An example of hybrid models in product-form with a G-queue 147

BLOCK 1
GSPN-EXP

BLOCK 2
CHC SPN

BLOCK 3
G-QUEUE

λ1

λ2

p

1 − p

I11

I12

O11

O12

I21

I22

O21

O22

I31

I32
O31

Figure 7.16: Hybrid model studied in Section 7.6

BLOCK 1 description. This sub-model is model GSPN-EXP with a single server
as described in Section 6.2.1, and R = 2. Transition T2 (T7 in Figure 7.17) has rate
λ12 = λ2. Note that arrivals to place P1 (P11) come from the outside and also
from the internal feedback (i.e., from point O31 if Figure 7.16). We can model this
by setting the transition rate of T1 (T6) equals to λ11 = λ1 and the feedback flow
entering directly to P1 (P11). We call µ1 the service rate.

BLOCK 2 description. This sub-model is the CHC-SPN studied in Section 5.3.5
depicted in Figure 5.15. According to the original labels of Figure 5.15, transition T1

fires when a customer goes from O11 to I21 and transition T2 fires when a customer
goes from O12 to I22. In Figure 7.17 the labels of places and transitions preserve
the same order of Figure 5.15 but a 2 is added. Therefore, the rate of transition
T2i is χ2i for i = 3, . . . , 8. The output denoted by O21 is controlled by the firing of
transition T7 (T27) while the output denoted by O22 is controlled by transition T3

(T23).

BLOCK 3 description. This sub-model is a G-queue. Positive customers arrive
from I31 and negative customers arrive from I32. After a job completion customers
depart from O31 and go back to BLOCK 1 with probability p and exit the system
with probability 1 − p. We denote the service rate by µ3.

Note that the model of Figure 7.16 has a feedback, therefore the arrivals to I11

are, in general, not according to a Poisson process.
Figure 7.17 shows a possible mapping of the hybrid model of Figure 7.16 into a

GSPN in product-form. Transitions T6 and T7 model the external arrivals and have
rates λ1 and λ2 respectively. Immediate transitions t4 and t5 are used to model the
probabilistic output from the G-queue. In this case the use of immediate transitions
could be replaced by using two timed transitions with rate µ3(1 − p) and µ3p.

7.6.3 The model analysis

By the results presented in this thesis we know that:

• Model GSPN-EXP with a single server satisfies RCAT conditions with a single
exponential server and constant rate arrivals,

148 7. Composition of GSPN models equivalent to BCMP stations

BLOCK 1 BLOCK 2

BLOCK 3

P11

P12

P13

P14

P15

t11

t12

T13

T14

P21

P22

P23 P24

P25

T23

T24

T25 T26

T27

T28

P31 T31

t32

t33

P32

T4

T5

T6

T7

Figure 7.17: GSPN model equivalent to the hybrid model studied in Section 7.6

• The CHC-SPN of BLOCK 2 satisfies RCAT conditions,

moreover from [60] we know that the G-queue satisfies RCAT conditions. Therefore,
we can do an RCAT based analysis of the whole system. The unknown parameters
are:

• xa: the transition rate corresponding to an arrival to I21,

• xb: the transition rate corresponding to an arrival to I22,

• xc: the transition rate corresponding to an arrival to I31,

• xd: the transition rate corresponding to an arrival to I32,

• xe: the transition rate corresponding to an arrival to I11 due to the feedback.
The total transition rate due to any arrival to I11 is xe + λ1.

In the analysis of GSPN-EXP model we proved that the reversed rate corresponding
to a class r customer departure is λr, therefore we have xa = λ1 + xe and xb = λ2.
Let us consider the CHC-SPN of BLOCK2. We already determined the reversed
rates of the transition rates due to the firings of T3 and T7 in Section 5.3.5, so we
have xc = xa and xd = xb.

From the analysis of the G-queue we obtain an equation for xe. Note that in
this case when the queue passes from state with k customers to a state with k − 1
customers there are three possible transitions combined:

• an arrival of a negative customer,

• a job completion and the customer leaves the system,

• a job completion and the customer goes back to I11.

7.7. An example of hybrid models with non-linear traffic equations 149

According to the introduced notation we have that λ+ = xc and λ− = xd, therefore
we have xe = (xcµ3p)/(µ3 + xd). Now we have to solve the following system of
equations:

xa = λ1 + xe

xb = λ2

xc = xa

xd = xb

xe = xcµ3p
µ3+xd

The solution for this system is:
xa = xc = λ1(µ3+λ2)

(1−p)µ3+λ2

xb = xd = λ2

xe = λ1µp
(1−p)µ+λ2

.

Under stability assumptions, we can say that the product-form solution π is:

π(S) ∝ g1(S1)g2(S2)g3(S3),

where S = (S1, S2, S3) is the model state, Si the state of BLOCK i model, i =
1, 2, 3. Functions gi are defined as follows. For BLOCK 1, S1 is the GSPN state
m1 = (m11,m12,m13,m14,m15), and the unnormalized steady state probabilities are
given by (6.2).

g1(m1) =
(λ1 + xe

µ1

)m11+m13
(λ2

µ1

)m12+m14 (m11 + m12)!

m11!m12!

For BLOCK 2, state S2 is vector m2 = (m21,m22,m23,m24,m25) we have that
the unnormalized steady state probabilities are given by (5.22):

g2(m2) =
(xaχ23

χ24λ2

)m21
(λ2

χ23

)m22
(xaχ25

χ24χ26

)m3
(λ1χ25

χ24χ28

)m24
(xa

χ27

)m25

.

State S3 of BLOCK 3 is just a natural number n, therefore we have:

g3(n) =
(xa

λ2 + µ3

)n

=
(λ1

(1 − p)µ3 + λ2

)n

.

7.7 An example of hybrid models with non-linear

traffic equations

In the introduction of this chapter we said that the combination of models based
on RCAT could originate a system of non-linear traffic equations. However the
examples analyzed until now have shown just models with linear traffic equations.

150 7. Composition of GSPN models equivalent to BCMP stations

BLOCK 1
GSPN-EXP

BLOCK 2
G-QUEUE

λ1

I11

I12

O11

O12

I21

I22

O21

1 − p

p

Figure 7.18: Hybrid model studied in Section 7.7

It is clear that dealing with non-linear systems is in general more difficult than
solving linear ones. However it is out of the purpose of this thesis analyzing efficient
algorithms for solving this class of traffic equations. The purpose of this example is
only to show a model with non-linear traffic equations, therefore we study a really
simple case.

7.7.1 The model description

We now describe the hybrid model we are going to study in the following. As done
before, we first give a graphical representation of the whole model, and then we
describe in detail each of the two composing blocks.

The hybrid model is depicted by Figure 7.18. The model parameters are the
arrival rate λ1, the probability p of a customer to exit the system after being served
by BLOCK 2 as well as all the parameters of the sub-models BLOCK 1 and BLOCK
2.

BLOCK 1 description. This sub-model is model GSPN-EXP with a single server
as described in Section 7.4.3, and R = 2. Transition T2 firing is governed by the
customer flow from O21 to I12, while T1 has rate λ11 = λ1. We call µ1 the service
rate.

BLOCK 2 description. This sub-model is a G-queue. Positive customers arrive
from I21 and negative customers arrive from I22. After a job completion customers
depart from O21 and go back to BLOCK 1 (I21) with probability 1− p and exit the
system with probability p. We denote the service rate by µ2.

Note that the model of Figure 7.18 has a feedback.

7.7.2 The model analysis

The unknown parameters of this model are:

• xa: the transition rate corresponding to an arrival to I21,

7.8. Conclusions 151

• xb: the transition rate corresponding to an arrival to I12,

• xc: the transition rate corresponding to an arrival to I22,

In the analysis of GSPN-EXP model we proved that the reversed rate corresponding
to a class r customer departure is λr, therefore we have xa = λ1 and xc = xb. By
the analysis of the reversed process of the simple G-queue, we have that:

xb =
xaµ2(1 − p)

xc + µ2

.

From this last equation we have:

xb =
λ1µ2(1 − p)

xb + µ2

⇒ (xb + µ2)xb = λ1µ2(1 − p).

Note that the equation is not linear for xb. Hence we have:

x2
b − µ2xb − λ1µ2(1 − p) = 0,

that gives the solution:

xb =
−µ2 +

√
µ2

2 + 4λ1µ2(1 − p)

2
= ε.

Then, under stability, the steady state solution of the model depicted in Figure
7.18 is in product-form and is given by the normalized product of the steady state
solution of model GSPN-EXP where the transition rate for T2 is ε and the steady
state solution for the G-queue where λ+ = λ1 and λ− = ε.

7.8 Conclusions

In this chapter we have discussed the following results:

• Models GSPN-EXP, GSPN-COX, GSPN-PS and GSPN-IS satisfy the M ⇒ M
property, therefore they can be combined in a BCMP-like way. The resulting
model can include non-BCMP stations if they fulfil the M ⇒ M property.
The resulting model is in product-form.

• We have proved that, given a queueing station with a probabilistic queueing
discipline, class independent exponential service time and without preemption,
the M ⇒ M property holds if and only if the every customer in the queue has
the same probability to enter in service after a job completion.

152 7. Composition of GSPN models equivalent to BCMP stations

• Models GSPN-EXP, GSPN-COX can be combined using RCAT. Note that for
what concerns models GSPN-PS and GSPN-IS, their CTMCs are isomorphic
to the CTMCs of the equivalent BCMP stations, therefore an RCAT based
analysis can be found in [58]. By this result we have shown a hybrid modeling
technique that originates models whose product-form solution can be decided
and studied by RCAT.

• We have shown how it is possible to derive new product-form GSPN models
using RCAT. In our opinion this approach is really promising for the definition
of new product-form GSPN models with practical applications.

8
An algorithm to transform BCMP

QNs into GSPNs

8.1 Introduction

In this chapter we define an algorithm that, given a BCMP queueing network, may
calculate an equivalent GSPN with a finite structure. The equivalence terms are
those explained in Chapter 6, i.e., we can say that the steady state probabilities
of the BCMP network and of the corresponding GSPN model are identical under
appropriate aggregations. These aggregations are defined such that the average
performance indices are preserved. Another property that is preserved by the GSPN
model is that it is in product-form by M ⇒ M property. These results have been
published in [13].

The main idea of the algorithm is simple. We translate each service center of
the BCMP QN into a GSPN using the models presented in Chapter 6. Then, we
compose these models using immediate transitions used to represent the probabilistic
routing. The resulting GSPN is in product-form by the results presented in Chapter
7. We aim to define an algorithm that can be easily extended in order to deal with
non-BCMP stations that fulfil the M ⇒ M property, e.g., the MSCCC station of
Le Boudec [86]. Moreover, the compositionality and the possibility of hierarchical
compositions should be allowed. To this aim we mark some places of the GSPN
blocks with special labels:

• The arrival places (or input places). These places are the output vector of the
transition modeling the arrivals.

• The departure places (or output places). These places are used to store the
tokens representing customers that have completed their service in the station.

We call the set of input places the input interface of the model, and the set of
output places the output interface of the model. Hence, the algorithm becomes
very modular. In fact, one can define an arbitrary service center that satisfies the
M ⇒ M property and then it can be connected with the rest of the network just
knowing its input and output interfaces.

154 8. An algorithm to transform BCMP QNs into GSPNs

8.2 Algorithm definition

We shall now define the algorithm that converts a BCMP QN with multiple classes
of customers into a product-form GSPN. Note that, in order to keep the notation
simple, we just deal with networks with multiple chains but just one class for chain.
Therefore, in the first part of the chapter chain and class become synonymous. Let
Ω be the set of queueing stations of the BCMP network. In the algorithm we use
the following syntactical conventions for the input that is represented by the set
of parameters of the QN, according to the definition introduced in the section on
product-form stochastic models:
- P is the routing matrix.
- Ω = {c1, . . . cN} is the set of queueing stations, and ci is a record with the following
fields: ci.µ

(c) is the single server service rate, ci.K is the number of servers, ci.type is
a description of the station type. For FCFS stations, we use ci.µ to point out that
class-dependent service rate is not allowed.
- If station i has a Coxian service time distribution, then we use the following
notation that reflects the influence of customers of class r: ci.Lr is the number
of stages of the random variable, ci.µ

(r)
` the rate of stage `, ci.a

(r)
` (` < Lr) the

probability that a customer goes to stage ` + 1 after being served at stage `, and by
ci.b

(r)
` the probability of leaving the Coxian service after being served at stage `.

- λ = (λ1, . . . , λR) is the vector of the arrival rates for chain r, 1 ≤ r ≤ R. If chain
r is closed then λr = 0. Vector K = (K1, . . . , KR) components denote the number
of customers for closed chains. Kr = 0 for open chains.

Let us describe the output syntactical conventions that is the definition of the
GSPN equivalent to the given QN.
- P , T are the sets of places and transitions, respectively. Each element of P or T
can be labeled by a superscript (e.g. P I

r,`,i is labeled by an I). Subscript letters
denote some variables defined in the algorithm. In particular letter r denotes the
customer chain/class, ` the stage of a Coxian random variable, i, j the corresponding
service center number. For example P S

r,`,i is a place defined in the i-th service center
translation, corresponding to the `-th stage of the r class Coxian service time. Timed
transitions use capital T . Labels I and O play a special role for places, as P I

r

represents the input-place for class r customers, and PO
r the output place. Later in

this section we show an example.
- m is a net state and M is the initial state. Vector m consists of components
whose names are derived from the corresponding place names. For example mS

i is
the number of initial tokens in place P S

i .
- The arcs are specified in terms of input, output, and inhibition functions as defined
above in the section on product-form stochastic models. Transition priorities can
be either 0 or 1 and they are determined by function Π introduced above.
- The arc weights are defined by function w(t,m) for each timed transition t and
state m. For brevity we write just w(t). As arc weights can be state dependent,
a symbolic function must be assigned w(t). In order to point out this, we use the

8.2. Algorithm definition 155

assignment symbol ← instead of the usual :=.
- Function d(t, j) defines the probability of the output vector Oj(t, Pj) for a transition
t and a place Pj, as described above in the section on product-form stochastic models.

Before introducing the algorithm, it is worthwhile illustrating some notes on the
translation approach. The algorithm first translates every QN station into a GSPN
(sub)model. Then it combines these GSPNs obtained by the first step by connecting
them through a set of immediate transitions that model the QN routing. In order
to simplify the definition of the new combined GSPN in product-form, we use a
standard name for input/output places for each GSPN (sub)model corresponding to
a station type. This can be thought as an input and output interface of each GSPN
submodel that simplifies their composition (see Figure 8.1). Although this can be a
complication in the net structure, as a set of reducible immediate transitions could
be generated, the modularity of our algorithm results really enhanced. In fact, let

Figure 8.1: Modularity of station equivalent GSPN blocks

us consider station i and suppose that p
(r)
ij > 0 and p

(r)
ik > 0. Using input and

output interfaces we can represent this probabilistic routing without caring about
the queueing discipline of stations i and j as illustrated in Figure 8.2. Note that
the use of probabilistic arcs to implement the routing is not really necessary. In
fact, a set of immediate transitions whose weights are proportional to the routing
probabilities can be used, even if we think that the readability of the model gets
worse. However, this solution should be used in most of the existing tools at least
to describe the incidence matrix and allow the structural analysis. Finally we point
out that a job completion can enable together the internal immediate transitions
of the station that generated that event, and the immediate transitions that model
the routing. However these two classes of transitions are not in conflict, therefore
the behavior of the net is not ill-defined. For the sake of precision one can decide to
give different priorities to the routing immediate transitions and those internal to
the station.

The main structure of the algorithm is simple and is shown by Algorithm 2. The
main cycle of the algorithm considers each service center of the QN and executes

156 8. An algorithm to transform BCMP QNs into GSPNs

Input: BCMP QN: Ω,P, λ,K
Output: GSPN T ,P , w,H, I, O, d,M
/* Initialization */

M := 0; P := ∅; T := ∅;
graph(d) := ∅; graph(H) := ∅; graph(I) := ∅; graph(O) := ∅; graph(w) := ∅;
/* Transform every service center */

foreach ci ∈ Ω do
switch ci.type do

case FCFS
FCFSBlock;

end
case LCFSPR

LCFSPRBlock;
end
case IS

ISBlock;
end
case PS

PSBlock;
end

end

end
/* Model the routing */

ROUTINGBlock;
/* Model arrivals and closed chains population */

CHAINSBlock;

Algorithm 2: Main program

8.2. Algorithm definition 157

Figure 8.2: Modelling the QN probabilistic routing. In this example the out-
put vector of transition tZr,i is determined probabilistically and O0(t

Z
r,i, P

I
r,j) = 1,

O0(t
Z
r,i, P

I
r,k) = 1 and d(tZr,i, 0) = p

(r)
ij , d(tZr,i, 1) = p

(r)
ik .

the appropriate code block. Finally, the queueing network routing is modelled by
ROUTINGBlock. Instructions graph(g) := ∅, where g is a function, are used to
initialize the function definitions to the empty set, i.e. their domain is initially
empty. The labels are slightly modified with respect to those introduce in the
theoretical analysis of Chapter 6, this should enhance the algorithm readability.

FCFSBlock is defined by Algorithm 3. It generates the FCFS-equivalent GSPN
block described in the previous section. P S

i is the place for the free servers, P I
r,i the

place for queued customers of class r (and also the input place), P S
r,i the place for

customers being served. Place PO
r,i receives the class r customers after job comple-

tion. Transition tr,i puts in service a class r customer and Tr,i models the service
time.

Let us illustrate the LCFSPRBlock. In order to clarify the notation, we recall
that i denotes the considered station, ` the Coxian service stage, r the customer
class, label Q denotes the queue and label S denotes the service. The transformation
algorithm for the LCFSPRBlock is illustrated by Algorithm 4 and 5 that is splitted
in two parts for typographical reasons. Place P S

r,`,i contains the tokens representing

class r customers in service at stage ` while place PQ
r,`,i contains the preempted

ones. Transition tPr,`,i implements the preemption if there is an arrived customer
(I(tPr,`,i, P

T
i) := 1), there is at least a class r customer in stage ` (I(tPr,`,i, P

S
r,`,i) := 1),

there are no free servers (H(tPr,`,i, P
S
i) := 1). Transition tRr,`,i implements the customer

resume. Place P T
r,i stores the class r just arrived customers that will get the service

immediately.

The ISBlock is simple and is illustrated by Algorithm 6. PSBlock is similar to
ISBlock so the same Algorithm 6 applies, except for the definition of function w.
In fact in PS stations there is a limited number of servers, hence the servers speed
must be partitioned among all the customers in the station. The the weight w of

158 8. An algorithm to transform BCMP QNs into GSPNs

/* Add a place for the free servers */

P := P ∪ {P S
i };

foreach r ∈ ci.R do
/* Add 2 places, an immediate transition and a timed

transition for each class */

P := P ∪ {P I
r,i, P

S
r,i, P

O
r,i};

T := T ∪ {tr,i, Tr,i} ;
/* Input functions of immediate transition */

I(tr,i, P
S
i) := 1;

I(tr,i, P
I
r,i) := 1;

I(Tr,i, P
S
r,i) := 1;

/* Set immediate transitions */

O(tr,i, P
S
r,i) := 1;

O(Tr,i, P
O(r, i) := 1;

O(Tr,i, P
S
i) := 1;

w(tr,i) ← mA
r,i;

/* Set timed transition rates */

w(Tf,r,i) ← mS
r,i ∗ ci.µ;

/* Transition priority */

Π(tr,i) := 1;
Π(Tr,i) := 0;
MS

i := ci.K;
end

Algorithm 3: FCFSBlock

8.2. Algorithm definition 159

/* Add a place for the free servers */

P := P ∪ {P S
i };

P := P ∪ {P T
i };

foreach i ∈ ci.R do
/* Set up the arrival places and transitions */

P := P ∪ {P I
r,i, P

T
r,i};

T := T ∪ {tIr,i};
I(tIr,i, P

I
r,i) := 1;

O(tIr,i, P
T
r,i) := 1;

O(tIr,i, P
T
i) := 1;

w(tIr,i) := 1; Π(tIr,i) := 1;

/* Set up the output places */

P := P ∪ {PO
r,i};

/* Add the other needed places and transitions for each class

*/

for ` := 1 to ci.Lr do

P := P ∪ {PQ
r,`,i, P

S
r,`,i};

/* Add transitions which model the service time */

T := T ∪ {Tr,`,i};
w(Tr,`,i) ← ci.µ

(r)
` ∗ mS

r,`,i;
Π(Tr,`,i) := 0;
I(Tr,`,i, P

S
r,`,i) := 1;

if ` 6= ci.Lr then
O0(Tr,`,i, P

S
r,`+1,i) := 1;

d(Tr,`,i, 0) := ci.a
(r)
` ;

end
O1(Tr,`,i, P

S
i) := 1;

O1(Tr,`,i, P
O
i) := 1;

d(Tr,`,i, 1) := ci.b
(r)
` ;

/* Add transitions modelling the preemption (label P) */

T := T ∪ {tPr,`,i}; I(tPr,`,i, P
S
r,`,i) := 1;

I(tPr,`,i, P
T
i) := 1; H(tPr,`,i, P

S
i) := 1;

O(tPr,`,i, P
Q
r,`,i) := 1; O(tPr,`,i, P

S
i) := 1;;

w(tPr,`,i) ← mS
r,`,i Π(tPr,`,i) := 1;

/* Add transitions modelling the resume (label R) */

T := T ∪ {tRr,`,i}; I(tRr,`,i, P
Q
r,`,i) := 1;

I(tRr,`,i, P
S
i) := 1; H(tRr,`,i, P

T
i) := 1;

O(tRr,`,i, P
S
r,`,i) := 1; w(tRr,`,i) ← mQ

r,`,i;

Π(tRr,`,i) := 1;

end

end

Algorithm 4: LCFSPRBlock (Part 1)

160 8. An algorithm to transform BCMP QNs into GSPNs

transition Tr,`,u for PS station is defined as follows:

w(Tr,`,i) ←
min

(∑
t∈ci.R

∑ci.Lr

u:=1 mt,u,i, ci.K
)

∑
t∈ci.R

∑ci.Lr

u:=1 mt,u,i

∗ ci.µ
(r)
` ∗ mr,`,i.

Place Pr,`,i contains the class r customers at stage ` of station i. Transition Tr,`,i

models the stage ` service time and its output vector is probabilistic according to
the Coxian random variable parameters.

In the ROUTINGBlock we define a set of transitions tZ , where tZr,i models the
probabilistic routing for class r customers after being served by station i. The main
idea has been introduced at the beginning of this section. The external arrivals
are modelled by appropriate timed transition that are always enabled. In order to
model a chain population it suffices to set the initial marking M I

r,i for an arbitrary
service center i equals to the chain population. This work is done by CHAINSBlock
illustrated by Algorithm 8.

8.3 Supported extensions

The proposed algorithm that transforms BCMP QNs into GSPNs can support the
extensions of the introduced class of BCMP QNs. In this section, for sake of brevity
we just cite some extensions that can be easily supported by the algorithm with
small changes.
State dependent service rate. BCMP theorem defines several extensions of the
product-form solution to include state dependent service rates. We can represent
all the extensions whose service rates depend only on the state of the stations (i.e.,
we exclude the service rates depending on the state of a subnet of the QN).
Multiple chain and multiple class. In this work we have not considered the case
of customer class switching. This has been done just to keep the notation simple.
In fact by introducing some easy changes to the algorithm, with a more complex
state notation we can also model multiple classes and multiple chains BCMP QNs.
Other service station queueing disciplines. Some extensions of BCMP theorem
have been defined to allow different queueing disciplines that lead to M ⇒ M
product-form. If a GSPN model can represent such disciplines, then the proposed
transformation algorithm from QN to GSPN can be easily modified in order to
include these new station types. In fact it suffices to define a station type label and
extend the switch construct of Main Program to include that new type of station.
Then the model definition must provide an input interface and an output interface
as described in the previous section.

8.3. Supported extensions 161

/* Add transitions modelling the customers entering in stage of

service 1 */

T = T ∪ {tRr,0,i}; I(tRr,0,i, P
S
i) := 1;

I(tRr,0,i, P
T
i) := 1; I(tRr,0,i, P

T
r,i) := 1;

O(tRr,0,i, P
S
r,1,i) := 1; w(tRr,0,i) := 1;

Π(tRr,0,i) := 1;
MS

i := 0;

Algorithm 5: LCFSPRBlock (Part 2)

/* Set the places set */

foreach r ∈ ci.R do
P := P ∪ {PO

r,i};
for ` := 1 to ci.Lr do

/* Add place for stage ` of class r customers */

P := P ∪ {Pr,`,i};
/* Add transitions modelling service time */

T := T ∪ {Tr,`,i};
w(Tr,`,i) ← mr,`,i ∗ ci.µ

(r)
`,i ;

I(Tr,`,i, Pr,`,i) := 1;
O0(Tr,`,i, Pr,`+1,i) := 1;
d(Tr,`,i, 0) := ci.ar,`;
O1(Tr,`,i, P

O
r,i) := 1;

d(Tr,`,i, 1) := ci.br,`;
end
Let P I

r,i be an alias for Pr,`,1;

end

Algorithm 6: ISBlock

162 8. An algorithm to transform BCMP QNs into GSPNs

/* model the QN routing by GSPN */

foreach ci ∈ Ω do
foreach r ∈ ci.R do

/* Model internal routing */

T := T ∪ {tZr,i};
I(tZr,i, P

O
r,i) := 1;

w(tZr,i) := 1;Π(tZr,i) := 1;
f := 0;
foreach cj ∈ Ω do

if p
(r)
i,j > 0 then

f := f + 1;
Of (t

Z
r,i, P

I
r,j) := 1;

d(tZr,i, f) := p
(r)
i,j ;

end

end
/* model QN departures */

if p
(r)
i,0 > 0 then

d(tZr,i, f + 1) := p
(r)
i,0 ;

end

end

end

Algorithm 7: ROUTINGBlock

8.4. Example 163

8.4 Example

In this section we sketch an example of application of the proposed algorithm, by
considering also its extensions. We apply the algorithm to the queueing network
illustrated in Figure 8.3 (a). It is a QN with three classes of customers clustered in
two chains (classes A and B, class C) and there is a class switching. Classes A and B
form an open chain while class C a closed one. Note that the QN has product-form
solution, but it is not a BCMP QN because of the presence of a MSCCC station,
i.e., a queueing discipline not considered by BCMP theorem. MSCCC discipline
follows a multiple servers RANDOM discipline, but cannot serve two customers of
the same class simultaneously. It is described in [86] and it is proved and it holds the
M ⇒ M property. Customers of class A and B have the same stochastic behavior
once they reach the servers, and they leave the system at the end of the service.
Class C customers can be thought as representing a set of interior control processes
whose number is given, an is denoted in this case by K = 5. In order to simplify
the system model we assume that all the service times are exponentially distributed.
We assume that station 2 has 2 servers and station 3 has 3 servers.

By applying the proposed algorithm the three service centers can be translated
into GSPN models that are eventually composed and connected according to the
routing matrix, as described in the previous section. Then we obtain the overall
GSPN equivalent to the given QN, as showed in Figure 8.3 (b). The parameters of
the GSPN are completely defined by the various steps of the algorithm.

As the three blocks satisfy M ⇒ M property, we can state that the whole system
has a product-form stationary probabilities function. Then the derived GSPN can
be analyzed by product-form solution or by simulation.

Note that in this example we have showed how it is possible to deal with class
switching and no-BCMP queueing disciplines.

8.5 Conclusions

- to represent the concept of class of a place. Note that this does not necessarily
require the idea of color, as defined in Colored Petri Net extension.
- to identify whether a model satisfies the M ⇒ M property. An open problem is
the definition of an automatic efficient algorithm to decide this condition.
- to represent the stationary state probability expression of the model in isolation
for each GSPN model. In fact, although we know that a GSPN model satisfying
the M ⇒ M property has a product-form solution, only if the explicit expression
of the product-form is known we can obtain the stationary state probabilities for
the whole net. For some models although it is known that they fulfil the M ⇒ M
property, the computation of their steady state solution can be computationally
inefficient. For example the MSCCC model satisfies M ⇒ M property, but as far
as we know there are not algorithms to efficiently derive the average performance

164 8. An algorithm to transform BCMP QNs into GSPNs

Figure 8.3: (a) System modelled by a no-BCMP queueing network. (b) System
modelled by a product-form GSPN.

indices, and the computation of its steady state solution involve the definition of a
recursive function. In these cases the models can be still studied by simulation, and
the theoretical results guarantee that the performance indices are the same of the
original hybrid model.

8.5. Conclusions 165

for r := 1 to R do
if λr > 0 then

/* Open chain */

T := T ∪ {Tr,0};
w(Tr,0) := λr;
f := 0;
foreach p

(r)
0,j > 0 do

Of (Tr,0, P
I
r,j) := 1;

d(Tr,0, f) := p
(r)
0,j ;

f := f + 1;
end

end
else

/* Closed chain */

Choose an arbitrary i such that P I
r,i exists;

M I
r,i := Kr;

end

end

Algorithm 8: CHAINSBlock

166 8. An algorithm to transform BCMP QNs into GSPNs

Conclusions

This thesis is mainly focused on stochastic models in product-form. Our research
has had two main guidelines: one is the comparison among different product-form
formalisms, and the other is the definition of a framework that allows a hybrid
modeling of various types of formalisms presenting product-form solutions.

Comparing product-form results and the goal of defining a unique framework
for studying product-form models are not new topics. Several works in literature
addressed these problems (e.g. [7, 60, 58]) or proposed the translation of some
theoretical results obtained for a formalism in terms of a different formalism (e. g.
[110, 57, 70]).

We point out that the originality of the theoretical results presented in this thesis
is twofold. First, we have used two properties to analyze most of the well-known
product-form models expressed by different formalisms, i.e., Muntz’s M ⇒ M [94]
and RCAT [59, 61]. We have shown that the well-known product-form SPN model
class defined in [63, 39] without batch token movements and with constant transition
rates belongs to the class of models whose stochastic process can be expressed by
RCAT in product-form. Second, we have shown the relation between the class of
models that fulfil the M ⇒ M property and the class of models whose product-form
can be studied by RCAT. In particular, we derive a condition under which a model
belongs to both the classes and we observe than none of the two classes of models
includes the other one. We have presented some examples of stochastic models that
can be studied by one of these two results (RCAT or M ⇒ M) but not by the other,
or by both. Figure C.4 illustrates the relations between the model class satisfying
the M ⇒ M property and that satisfying RCAT conditions, and examples of models
belonging to theses classes.

From a practical point of view, we have taken advantage from these theoretical
results in order to define a possible framework for a hybrid modeling formalism
in which product-forms can be identified. The main ideas can be summarized as
follows:

• The product-form analysis is based on the M ⇒ M property or RCAT theorem
(or both when possible).

• We map every formalism that is used in the hybrid model into an appropriate
GSPN. The choice of GSPN as the base formalism has at least two motivations.
First, GSPNs (with inhibitor arcs) are Turing-complete and they are very
expressive. For example, there exist GSPN models with a finite structure that
model systems with infinite state space. This can be difficult to do in practice
with other formalisms such as PEPA (that requires a recursive definition, or

168 Conclusions

RCAT modelsM=>M mode ls

G-queues

GSPN-EXP models
with single serverGSPN-EXP models

with mult iple servers

Figure C.4: Relation between M ⇒ M models and RCAT models.

a truncation of the derivatives). Moreover, GSPNs have important structural
properties and there are several tools for structural analysis, simulation, or
exact analysis (e.g. GreatSPN [35], TimeNET [124], PIPE [23]).

We have addressed the problem of representing multiclass product-form queueing
networks by product-form GSPNs. This is not a trivial problem because if single
class queueing networks are known to be equivalent to state machine SPNs this is
not true for multiclass ones. In fact, BCMP theorem [17] proved that for multiclass
QNs the queueing disciplines affect the performance measures and the product-form
conditions of the queueing model. We have defined a set of GSPN models that
represent the BCMP queueing disciplines satisfying the following properties:

• The models are defined using standard GSPN formalism, without the need
of extensions such as colors or the definition of queueing disciplines for the
tokens.

• The models have a finite structure, i.e., they can be actually used in existing
GSPN tools.

• The GSPN models preserve the average performance indices of the associated
queueing system with the considered queueing discipline.

• The GSPN models can be composed by the M ⇒ M property originating
BCMP-like product-form GSPNs.

• The defined models do not belong to any of the class of well-known product-
form for GSPNs.

Figure C.5 graphically illustrates the relations among various product-form models
that can be derived by these results. The label GSPN-x identifies the set of GSPN
models defined in Chapter 6 where x stands for EXP, COX, IS, PS. In the figure

Conclusions 169

QUEUEING
NETWORKS

GSPN

PRODUCT-FORM
GSPN (Balbo et al.)

BCMP NETWORKS

PRODUCT-FORM
SPN
(Coleman et al.)

GSPN-x MODELS

Figure C.5: Relations among (G)SPNs product-form stochastic models.

we show that the BCMP queueing networks are mapped into GSPN models that do
not belong to any of the well-known product-form model classes.

Defining new product-form GSPNs using M ⇒ M is not an easy task, however
we have shown that GSPNs can be used to model some BCMP extensions satisfying
M ⇒ M studied in other works [1, 86]. In this context we have proved a new
result on the product-form of probabilistic queueing disciplines. If we consider a
probabilistic queueing discipline with exponential distributed service time, without
preemption and class independent Poisson arrivals, we have proved that the following
two sentences are equivalent:

• The station satisfies M ⇒ M property.

• The choice of the customer in the queue to be served after a job completion is
done according to a uniform distribution.

In other words, after a job completion every customer in the queue must have the
same probability to enter the service in order to guarantee that the station fulfils
the M ⇒ M property.

The analysis of GSPNs based on RCAT has lead to several results. The first
one, as we mentioned above, has been the definition of a relation between Coleman,
Henderson et al. product-form SPN [63, 39] and RCAT models as illustrated by
Figure C.6. This has allowed us to prove the product-form for a class of SPNs
without verifying the set of global balance equations. Moreover, RCAT enhances
the compositional property of the product-form models, i.e., we have shown that two
product-form SPNs based on RCAT can be composed obtaining a new product-form
model and that the new model still satisfies RCAT conditions.

Then, we have applied RCAT to study a set of GSPN models (with some re-
strictions) equivalent to the BCMP station types presented in Chapter 6. RCAT

170 Conclusions

RCAT PRODUCT
FORMS

PRODUCT-FORM
GSPNs

Coleman et al.
product-forms

Coleman et al.
product-forms
without batch token
movements and
with constant rates
(CHC-SPN)

Figure C.6: Relations among (G)SPNs product-form stochastic models and RCAT.

composition for product-form models is very versatile. In fact, several product-form
models have been proved to satisfy RCAT analysis (e.g., G-networks with several
extensions [60]). RCAT is a powerful framework to study product-form models. We
have shown that we can apply RCAT in order to derive new product-form GSPNs.
This can be done by following two approaches. First, we can consider a specific
model that arises from the analysis of a real system, e.g., in our example we proved
a product-form solution for an interaction between two GSPN models, one repre-
senting a queueing station and the other one representing a communication channel
with collisions. Another approach is considering a model that is known to be not in
product-form and modifying its behavior in order to meet the RCAT conditions. In
this latter case the modeler should carefully study the effects of the changes on the
desired performance indices.

Using these results we have presented several examples of hybrid modeling that
combines various stochastic models with product-form. The formalisms that are
combined are queueing stations, G-queues, SPNs and GSPNs. The product-form is
proved without the analysis of the global balance equations of the composed model.
Each of these models has been mapped into a GSPN and hence we have been able
to formally specify the semantic of the composed model.

Chapter 8 presents an algorithm that transforms a BCMP queueing network
into a GSPN using the models presented in Chapter 6. The algorithm is based on a
modular approach. In other words, every queueing discipline is transformed into a
parameterizable GSPN block that has an input and an output interface. Such block
interfaces make the modeling of the routing among the GSPN blocks independent of
the internal definition of the block. As a consequence one can define GSPN blocks
that are different from those defined in Chapter 6 and then embed them within a
BCMP queueing network as long as the new block fulfils the M ⇒ M property. The
idea of using interfaces and modules perfectly matches with the recent developments
of languages defined to describe Petri net models, such as the Petri Net Markup
Language (PNML) [122].

Conclusions 171

Future works. Starting from the results presented in this thesis, further research
can be done in several directions:

• We have applied RCAT to a subclass of Coleman, Henderson et al. stochastic
Petri nets (CH-SPNs). It is likely that an extension of RCAT can be defined in
order to deal with state dependent firing rates. In fact, for CH-SPN the tran-
sition firing rates have to be in the form (3.5) and the product-form solution is
given by Equation (3.8). Note that function φ affects the steady state solution
only as a multiplicative factor. In practice, one ignores the load dependent
factor when studying the product-form conditions. As function φ does not
affect the product-form conditions, we think that it is reasonable that RCAT
could be extended in order to include this class of state dependent transition
rates. Another possible extension of the SPN class to which RCAT can be
applied is considering batch movements of tokens.

• Another promising research line is defining sufficient structural conditions for
(G)SPNs that lead to RCAT or M ⇒ M product-form models. This is interest-
ing because it would be the base to develop a very general hybrid product-form
analyzer that uses GSPNs as underlying formalism. In fact, by the results pre-
sented in this thesis, a modeler has to know that he is composing submodels
that satisfy M ⇒ M property or RCAT. We think that an interesting improve-
ment of the proposed approach is to embed this information in the XML-based
definition of the submodels. Using this information and by the inspection of
the routing the analyzer can decide if the whole model is in product-form.

• We think that a special attention should be devoted to clearly identify and
distinguish between the conditions for a product-form solution and the condi-
tions required to define appropriate and possibly efficient algorithms to derive
the performance measures of a product-form model. In fact, it is worthwhile
recalling that product-form models define and allow for an efficient computa-
tion of the unnormalized steady state probabilities. However, this does not
necessary leads to efficient solution algorithms. In particular, it can be nec-
essary to build the whole set of reachable states of the model to derive the
normalizing constant and a set of performance measures. This is a major lim-
itation of the product-form SPN class, for which efficient solution algorithms
such as MVA [111] and Convolution [39] can be applied only under further
conditions. However, even in the BCMP queueing networks, that have been
studied for many years and for which several solution algorithms have been
defined, there are some models that, although in product-form, cannot be effi-
ciently solved analytically. This especially happens for models with nodes with
some state dependent service rate functions, such as those that depend on the
state of a subset of places of the network. This problem is also evident for
those product-form models that require the solution of nonlinear traffic equa-
tion systems, such as the G-Networks. We think that a strong effort should

172 Conclusions

be devoted to the research of algorithms that extend the class of product-form
models that can be efficiently studied for practical purposes.

A
Proves of lemmas and theorems

In this section we present the proves of theorems and lemmas enunciated in this
thesis. Hereafter, for the sake of helping the intuition, we use some of the queueing
network concepts for the GSPN analysis. For example, we can say waiting customers
to denote the tokens in places P1, . . . PR for the GSPN-EXP model and similarly we
use customers being served or customer arrivals or free servers. From our point
of view this description should make the following proves easier to read. In the
following we denote by ei a vector whose components are all equal to 0 but the i-th
which is 1.

A.1 Proof of Lemma 4

The proof is based on verifying that Equation 6.2 satisfies the GBEs of the stochastic
process defined by GSPN-EXP model. As this stochastic process has infinite states
we cluster them in classes that are characterized by four cases.

Case 1) Suppose that all the servers are busy and at least one customer is waiting
in queue, so m2R+1 = 0 and mi > 0 for some i = 1, . . . , R. Consider state m =
(m1, . . . ,mR,mR+1, . . . ,m2R, 0). Clearly we have that

∑2R
i=R+1 mi = K, that is,

the number of servers. Consider the tangible markings from which m is reachable
possibly through the firing of sequences of immediate and timed transitions and the
corresponding transition rates:

• Mα = {m′ = m − ei|mi > 0} with rate λi

• Mβ = {m′ = m + ei|mR+i > 0} with rate (mR+i)µpi(m
′)

• Mγ = {m′ = m + ei − eR+i + eR+j|mR+i > 0, i 6= j} with rate (mR+j +
1)µpi(m

′).

The set of markings reachable from state m and the correspondent transition rates
can be classified as follows:

• Ma = {m′ = m + ei} with rate λi

174 A. Proves of lemmas and theorems

• Mb = {m′ = m − ei|mR+i > 0,mi > 0} with rate (mR+i)µpi(m)

• Mc = {m′ = m − ei + eR+i − eR+j|mR+j > 0, mi > 0, i 6= j} with rate
(mR+j)µpi(m).

We have to prove that Equation (6.2) satisfies the GBEs. The proof algebraically
verifies the following relation:

∑
m′∈Mα

π(m′)ξ(m′,m) = π(m)
∑

m′∈Mb∪Mc

ξ(m,m′)

∧
∑

m′∈Mβ∪Mγ

π(m′)ξ(m′,m) = π(m)
∑

m′∈Mα

ξ(m,m′)

=⇒
∑

m′∈Mα∪Mβ∪Mγ

π(m′)ξ(m′,m) = π(m)
∑

m′∈Ma∪Mb∪Mc

ξ(m,m′),

where ξ(a,b) represents the transition rate from marking a to marking b. The
effective leaving rate from state m due to a job completion is:

π(m)
[∑

mj+k>0

(mj+k)µ
]

= π(m)(Kµ).

The effective arrival rate to state m due to arrivals to the system is:

∑
m′∈Mα

π(m′)ξ(m′,m) = π(m)
[∑

i∈X

(1

λi

mi∑R
j=1 mj

µ
(2R∑

j=1

mj

)
λi

)]
= π(m)(Kµ)

[∑
i∈X

mi∑R
j=1 mj

]
= π(m)(Kµ),

where X = {i|mi > 0, 1 ≤ i ≤ R} is the set of the indices corresponding to the
states in which there is at least one customer in queue. Recalling that, by hypothesis,∑2R

i=1 mi ≥ K then:

µ
(2R∑

i=1

mi

)
= Kµ.

Consider m and set Y = {j|mR+j > 0, 1 ≤ j ≤ R}. The effective leaving rate from

state m due to customer arrivals is π(m)
∑R

i=1 λi. The effective arrival rate to state

A.1. Proof of Lemma 4 175

m is:

π(m)
[∑

j∈Y

λj
(
∑R

i=1 mi) + 1

mj + 1

1

µ((
∑2R

i=1 mi) + 1)
mR+jµ

mj + 1∑R
i=1 mi + 1

+
R∑

j=1

∑
i∈Y
i 6=j

λj
mR+i

mR+j + 1

(
∑R

g=1 mg) + 1

mi + 1

1

µ((
∑2R

g=1 mg) + 1)
(mR+j + 1)µ

· mi + 1

(
∑R

g=1 mg) + 1

]
= π(m)

[∑
j∈Y

λj
1

Kµ
mR+jµ +

R∑
j=1

∑
i∈Y
i 6=j

λjmR+i
1

Kµ
µ
]

= π(m)
[∑

j∈Y

λj
mR+j

K
+

R∑
j=1

∑
i∈Y
i6=j

λj
mR+i

K

]

= π(m)
[R∑

i=1

λi

]
.

Case 2) Consider now the case in which all the servers are busy, but places
P1, . . . , PR are empty. Consider a generic state m = (0, . . . , 0,mR+1, . . . ,m2R, 0),
i.e., all the servers are busy, but the queue is empty. The markings from which m
is reachable are classified as:

• Mα = {m′ = m − eR+i + e2R+1|mR+i > 0 with rate λi

• Mβ = {m′ = m + ei|mR+i > 0} with rate (mR+i)µpi(m
′)

• Mγ = {m′ = m+ei−eR+i+eR+j|mR+i > 0, j 6= i} with rate (mR+j+1)µpi(m
′)

The markings reachable from m and their effective rates are exactly those described
for case 1). Let Y be the set defined in case 1). Let us prove that the effective
arrival rate to state m from marking in Mα is equal to the effective leaving rate
from state m due to a job completion which is π(m)(Kµ).

π(m)
[∑

i∈Y

(
1

λi

mR+i

K
µ(K)λi)

]
= π(m)

[∑
i∈Y

mR+iµ
]

= π(m)(Kµ).

176 A. Proves of lemmas and theorems

Let us prove that the effective arrival rate from the markings in Mβ ∪Mγ is equal
to the effective leaving rate from m.

π(m)
[∑

j∈Y

(λj
1

µ(K + 1)
mR+jµ) +

R∑
j=1

∑
i∈Y
i 6=j

λj
mR+i

mR+j + 1

1

µ(K + 1)
(mR+j + 1)µ

]

= π(m)
[∑

j∈Y

λj
mR+j

K
+

R∑
j=1

∑
i∈Y
i6=j

λj
mR+i

K

]
= π(m)

[R∑
j=1

λj

]
.

Case 3) Assume that there are not tokens in places P1, . . . , PR and that at least
one server is free and at least one is busy, (that is 0 < m2R+1 < K). The effective
leaving rate from m is simply π(m)[µ

∑R
j=1 mR+j + sumR

j=1λj]. The states from
which m is reachable and the corresponding rates are:

• Mα = {m′ = m − eR+i + e2R+1|mR+i > 0} with rate λi

• Mβ = {m′ = m + eR+i − e2R+1} with rate (mR+i + 1)µ

Let Y be defined as in case 1). We now prove that the effective arrival rate to state
m is equal to the effective leaving rate from state m.

π(m)
[∑

i∈Y

1

λi

mR+i∑R
j=1 mR+j

µ(
R∑

j=1

mR+j)λi

+
R∑

i=1

λi

∑R
j=1 mR+j + 1

mR+i + 1

1

µ(
∑R

j=1 mR+j + 1)
(mR+i + 1)µ

]
= π(m)

[∑
i∈Y

1

λi

mR+i∑R
j=1 mR+j

(
R∑

j=1

mR+j)µλi

+
R∑

i=1

λi

∑R
j=1 mR+j + 1

mR+i + 1

1

(
∑R

j=1 mR+j + 1)µ
(mR+i + 1)µ

]
= π(m)

[
(

R∑
j=1

mR+j)µ +
R∑

i=1

λi

]
.

Case 4) Assume that the system is empty, i.e., m2R+1 = K. This case is trivial.
In fact the effective leaving rate from m is π(m)[

∑R
i=1 λi]. The effective arrival rate

to m can just be due to a job completion and it is easy to show that is equal to the
leaving rate. ♠

A.2. Proof of Theorem 5 177

A.2 Proof of Theorem 5

In order to derive Equation (6.3) we prove that:

πa(n) =
∑

m|mi+mR+i=ni
1≤i≤R

π(m), (A.1)

for n ∈ NR and m in the reachability set of model GSPN-EXP. Consider the two
following cases: case 1)

∑R
i=1 ni > K and case 2)

∑R
i=1 ni < K.

Case 1)
∑R

i=1 ni ≥ K. Consider any possible combination of ji with 1 ≤ i ≤ r
and 0 ≤ ji ≤ ni. Then, by Formula (6.2), the right-hand side of Equation (A.1) can
be written as:∑

j1+...,+jR=K
ji≤ni

π(n1 − j1, n2 − j2, . . . , nR − jR, j1, . . . , jR, 0)

= π0

R∏
j=1

λ
nj

j

PR
i=1 nj∏
j=1

1

µ(j)

∑
j1+...+jr=K

ji≤ni

K!∏R
i=1 ji!

(
∑R

i=1 ni − K)!∏R
i=1(ni − ji)!

= π0

R∏
j=1

λ
nj

j

PR
i=1 nj∏
j=1

1

µ(j)

(
∑R

i=1 ni − K)!∏R
i=1 ni!

K!
∑

j1+...+jR=K
ji≤ni

∏R
i=1 ni!∏R

i=1(ni − ji)!

1∏R
i=1 ji!

= π0

R∏
j=1

λ
nj

j

PR
i=1 ni∏
j=1

1

µ(j)

(
∑R

i=1 ni − K)!∏R
i=1 ni

K!
∑

j1+...+jR=K
ji≤ni

R∏
i=1

(
ni

ji

)
,

where the last sum is a Vandermonde convolution, thus we can write:

π0

R∏
j=1

λ
nj

j

PR
i=1 ni∏
j=1

1

µ(j)

(
∑R

i=1 ni − K)!∏R
i=1 ni!

K!

(∑R
i=1 ni

K

)

= π0

R∏
j=1

λ
nj

j

PR
i=1 ni∏
j=1

1

µ(j)

(
∑R

i=1 ni)!∏R
i=1 ni!

,

that is Formula (6.3).

Case 2)
∑R

i=1 ni < K, that corresponds to the behavior of the queueing system
where all the customers are being served and in GSPN-EXP every place Pi with
1 ≤ i ≤ R is empty. Note that ni = mR+i so, by Equation (4) we can write:

π(0, . . . , 0,mR+1, . . . ,m2R, l) = π0

R∏
i=1

λni
i

PR
i=1 ni∏
i=1

1

µ(i)

(
∑R

i=1 ni)!∏R
i=1 ni!

,

178 A. Proves of lemmas and theorems

that yields Formula (6.3) as required. ♠

A.3 Proof of Lemma 5

The proof is based on verifying that formula (6.4) satisfies the set of global balance
equations (GBEs) of the Markov process associated with the model. We work by
cases: first we consider 1) the case of mR+1 = 0 and mR+r,l > 0 for some r = 1, . . . , R
and 1 ≤ l ≤ Lr, then 2)the case mR+1 = 0 and mR+r,l = 0 for all r = 1, . . . , R and
1 ≤ l ≤ Lr, then 3) the case 1 ≤ mR+1 < k, and finally 4) the case mR+1 = k. The
M ⇒ M property, (that is Equation (7.4)) is immediately verified by the chosen
partial balance.

Case 1) Consider tangible state m where mR+1 = 0 and mR+r,l > 0 for some
r = 1, . . . , R. State m can be reached from the following set of states:

• A = {m′ : m′ = m + er,l−1 − er,l, mr,l > 0, 1 ≤ r ≤ R, 1 < l ≤ Lr} with rate
µr,l−1ar,l−1(mr,l−1 + 1).

• B = {m′ : m′ = m − es,1 + er,l − eR+r,l, 1 ≤ r, s ≤ R, ms,1 > 0, mR+r,l > 0}
with rate λs(mr,l + 1)/(

∑R
r′=1

∑Lr′
l′=1 mr′,l′).

• C = {m′ = m+es,` +eR+r,l−er,l, 1 ≤ r, s ≤ R, 1 ≤ l ≤ Lr,mr,l > 0 with rate

µs,mbs,m(ms,m + 1)(mR+r,l + 1)/(1 +
∑R

r′=1

∑Lr′
l′=1 mR+r′,l′).

The leaving rate from state m is:

R∑
r=1

λr +
R∑

r=1

Lr∑
l=1

mr,lµr,l, (A.2)

so we have to prove that:

∑
m′∈A∪B∪C

π(m′)ξ(m′ → m) = π(m)
[R∑

r=1

λr +
R∑

r=1

Lr∑
l=1

mr,lµr,l

]
, (A.3)

where ξ(m′ → m) denotes the transition rate from state m′ to state m. In the
following we write π(m′) as product of π(m) and an opportune factor.

We verify the GBEs considering the effective arrival rates from states belonging
to different sets A,B, C separately. Let m′ ∈ A, thus mr,l > 0 and l > 1, then we
can write the effective arrival rate to state m as follows:

π(m)
[mr,l

1 + mr,l−1

µr,l

Ar,l

Ar,l−1

µr,l−1

]
µr,l−1ar,l−1(1 + mr,l−1) = π(m)[mr,lµr,l]. (A.4)

A.3. Proof of Lemma 5 179

Let m′ ∈ B thus ms,1 > 0, and let us define Y = {(r, l)|1 ≤ r ≤ R, 1 ≤ l ≤
Lr,mR+e,l > 0}. Then we can write the effective arrival rate to state m as follows:

π(m)
[∑

(r,l)∈Y

1

λs

ms,1

1 + mr,l

mR+r,l∑R
r′=1

∑
l′=Lr′

mR+r′,l′

][µs,1

As,1

kλs
1 + mr,l∑R

r′=1

∑Lr′
l′=1 mr′,l′

]
= π(m)

[
ms,1µs,1

1∑R
r′=1

∑Lr′
l′=1 mR+r′,l′

∑
(r,l)∈Y

mR+r

]
= π(m)[ms,1µs,1]. (A.5)

Consider now m′ ∈ C. The effective arrival rate to state m can be written as follows:

π(m)
[Ls∑

`=1

∑
(r,l)∈Y

λs
mr,l

ms,` + 1

1 +
∑R

r′=1

∑Lr′
l′=1 mR+r′,l′

1 + mR+r,l

As,`

µs,`

1

k
µs,`bs,`(ms,` + 1)

1 + mR+r,l

1 +
∑R

r′=1

∑Lr′
l′=1 mR+r′,l′

]
= π(m)[λs

Ls∑
`=1

As,`bs,`

∑
(r,l)∈Y

mr,l

k

]
= π(m)λs. (A.6)

Note that summing over all the possible m′ ∈ A ∪ B ∪ C equations (A.4), (A.5),
(A.6) we obtain the total arrival rate to state m which equates the effective leaving
rate from state m given by expression (A.2).

Case 2) Consider the tangible state m where mR+1 = 0 and mR+r,l = 0 for all
r = 1 . . . , R and 1 ≤ l ≤ Lr. The only difference with respect to case (a) is that set
B has to be redefined as: B = {m′|m′ = m − es,1 + eR+1, 1 ≤ r, s ≤ R,ms,1 > 0}.
Hence the effective arrival rate to state m from a state in B can be written as follows:

π(m)[
1

λs

ms,1∑R
r′=1

∑Lr′
l′=1 mr′,l′

µs,1kλs] = π(m)[µs,1ms,1]. (A.7)

Noting that the right hand side of equation (A.7) is equal to the right hand side of
equation (A.5) and summing over all the possible states m′ we verify the GBEs.

Case 3) Consider the tangible state m where 1 ≤
∑R

r=1

∑Lr

l=1 mr,l < k thus we

have
∑R

r=1

∑Lr

l=1 mR+r,l = 0. We partition the set of states from which state m can
be reached as follows:

• A is defined as done in case (a).

• B = {m′|m′ = m − es,1, 1 ≤ r, s ≤ R,ms,1 > 0} with rate λs.

180 A. Proves of lemmas and theorems

• C = {m′|m′ = m+es,`−eR+1, 1 ≤ s ≤ R, 1 ≤ ` ≤ Ls} with rate µs,`bs,`(ms,` +
1).

The calculations for states in A ∪ B are the same as those of the previous case.
Consider m′ ∈ C, the effective arrival rate to m can be written as follows:

π(m)
[Ls∑

`=1

λs
1 +

∑R
r′=1

∑Lr′
l′=1 mr′,l′

1 + ms,`

As,`

µs,`

µs,`bs,`

· (ms,` + 1)
1

1 +
∑R

r′=1

∑Lr′
l′=1 mr′,l′

]
= π(m)λs. (A.8)

Noting that the right hand side of equation (A.8) is equal to the right hand side of
equation (A.6) and summing over all m′ ∈ A ∪ B ∪ C we verify the the GBEs.

Case 4) . The proof is trivial. ♠

A.4 Proof of Lemma 6

In order to prove Lemma 6 we calculate the aggregation as follows. Given n, the
aggregation is obtained in 2R steps. We first sum over m such that m1 = n1, that
is, we aggregate class 1 customers in service, obtaining an intermediate state mα1 ,
where πα1(mα1) is given by the sum:

πα1(mα1) =
∑

m:m1=n1

π(m). (A.9)

The subsequent step aggregates class 1 customers in the queue, obtaining the inter-
mediate state mβ1 , whose stationary probability is given by:

πβ1(mβ1) =
∑

mα1 :m
α1
R+1=nR+1

πα1(mα1). (A.10)

Proceeding with the aggregation for all classes 1 . . . R, we have that: mβR = n and
πβR(mβR) = πa(n).

In order to simplify the notation, in the following we write
∑

αr
and

∑
βr

to

denote the sums which give intermediate states mαr and mβr respectively.
Hence we can simplify what we have to prove as follows:

∑
βR

∑
αR

· · ·
∑
β1

∑
α1

[(
∑R

r=1 mr)!∏R
r=1

∏Lr

`=1 mr,`!

(
∑R

r=1 mR+r)!∏R
r=1

∏Lr

`=1 mR+r,`!

]
·
[R∏

r=1

LR∏
`=1

(Ar,`

µr,`

)mR+r,`+mr,`
]

=
(
∑R

r=1 nr)!∏R
r=1 nr!

(
∑R

r=1 nR+r)!∏R
r=1 nR+r!

R∏
r=1

(1

µr

)nr+nR+r

. (A.11)

A.5. Proof of Lemma 7 181

Let us consider the inner sum of the left hand side of equation (A.11):∑
α1

[(
∑R

r=1 mr)!∏R
r=1

∏Lr

`=1 mr,`

(
∑R

r=1 mR+r)!∏R
r=1

∏LR

`=1 mR+r,`

[R∏
r=1

Lr∏
`=1

(Ar,`

µr,`

)mR+r,`+mr,`
]

=
(
∑R

r=1 mr)!∏R
r=2

∏Lr

`=1 mr,`

(
∑R

r=1 mR+r)!∏R
r=1

∏LR

`=1 mR+r,`

L1∏
`=1

(A1,l

µ1,`

)mR+1,`
R∏

r=2

Lr∏
`=1

(Ar,`

µr,`

)mR+r,`+mr,`

·
∑
α1

[1∏L1

`=1 m1,`

L1∏
`=1

(A1,`

µ1,`

)m1,`
]

=
(
∑R

r=1 mr)!∏R
r=2

∏Lr

`=1 mr,`

(
∑R

r=1 mR+r)!∏R
r=1

∏LR

`=1 mR+r,`

L1∏
`=1

(A1,l

µ1,`

)mR+1,`
R∏

r=2

Lr∏
`=1

(Ar,`

µr,`

)mR+r,`+mr,` 1

m1!

·
∑
α1

[(m1

m1,1 . . .m1,L1

) L1∏
`=1

(A1,`

µ1,`

)m1,`
]

that by applying the binomial theorem, and noting that
∑L1

`=1(
A1,`

µ1,`
) is the mean of

the Coxian distributed service time, i.e., 1/µ1, the previous result can be rewritten
as follows:

=
[(

∑R
r=1 mr)!

m1!
∏R

r=2

∏Lr

`=1 mr,`

(
∑R

r=1 mR+r)!∏R
r=1

∏LR

`=1 mR+r,`

]
·
[R∏

r=2

Lr∏
`=1

(Ar,`

µr,`

)mR+r,`+mr,`
L1∏
`=1

(A1,`

µ1,`

)mR+1,`

·
(1

µ1

)m1
]

(A.12)

Summing expression (A.12) to obtain mβ1 , by similar calculations, gives:[(
∑R

r=1 mr)!

m1!
∏R

r=2

∏Lr

`=1 mr,`

(
∑R

r=1 mR+r)!

mR+1!
∏R

r=2

∏LR

`=1 mR+r,`

]
·
[R∏

r=2

Lr∏
`=1

(Ar,`

µr,`

)mR+r,`+mr,`
(1

µ1

)m1+mR+1
]

(A.13)

Expression (A.13) can be similarly summed over α2 and then β2, and so on. Noting
that mr = nr and mR+r = nR+r for r = 1, . . . , R we have proved equation (A.11)
and the lemma. ♠

A.5 Proof of Lemma 7

Let us consider model GSPN-EXP. Let Θi = {(m′,m) : |m′|i = |m|i + 1} for
i = 1, . . . , R. Intuitively |m|i is the number of customers of class i for state m.

182 A. Proves of lemmas and theorems

In order to verify Equation (7.4) let us consider a generic tangible marking m. We
consider two cases: 1) m2R+1 = 0 and 2) m2R+1 > 0 that correspond to the situation
of all the servers busy and at least one server free, respectively.

Case 1) Let m be a reachable tangible state with m2R+1 = 0, then:

Θi(·,m) = {m′ : m′ = m + eR+i + ej − eR+j,mR+j > 0, j 6= i}
∪ {m′|m′ = m + ei,mR+i > 0}, 1 ≤ i, j ≤ R.

Let sgn(mi) be the indicator function defined as follows: sgn(mi) = 1 if mi > 0 and
sgn(mi) = 0 otherwise. Let Y = {j : mR+j > 0, 1 ≤ j ≤ R}. Then the left hand
side of Equation 7.4 can be rewritten as follows:

π(m) = [
∑
j∈Y
j 6=i

λi
1 +

∑R
a=1 ma

mj + 1

mR+j

mR+i + 1
1Kµ(mr+i + 1)µ

mj + 1

1 +
∑R

a=1 ma

+ sgn(mi)λi
1 +

∑R
a=1 ma

mi + 1
· 1

Kµ
mR+iµ

mi + 1

1 +
∑R

a=1 ma

]

= π(m)
[
λi

(∑
j∈Y
j 6=i

mR+j

K
+

mR+i

K

)]
= π(m)λi,

which gives the right-hand side of Equation (7.4).

Case 2) Let m be a reachable tangible state with m2R+1 > 0. Then Θi(·,m) =
{m + eR+i − e2R+1}. Thus Equation 7.4 holds, in fact:

π(m)
[
λi

1 +
∑R

a=1 mR+a

mR+i + 1

1

(1 +
∑R

a=1 mR+a)µ
(1 + mR+i)µ

]
= π(m)λi.

This proves that the traffic processes associated with Θi, 1 ≤ i ≤ R, are point-
wise independent Poisson processes, i.e., the departure processes for each class of
customers are independent Poisson processes under independent Poisson arrivals.

A.6 Proof of Theorem 7

In order to prove Theorem 7 we introduce some definitions related to the GSPN
CTMC. Then we prove that the stationary distribution is uniquely determined if it
has to satisfy the M ⇒ M property.

The following definitions introduce some useful notions which will be used in the
following proofs. First of all we call GSPN-EXP-1 a model GSPN-EXP with one
server and a general weight function for the immediate transitions:

w(tr,m) = wr(m),

A.6. Proof of Theorem 7 183

where wr is a function such that wr(m) = 0 if and only if mr = 0.

Definition 10 Let m and m′ be two tangible states of GSPN-EXP-1’ model. We
say that m ≤ m′ if for all r = 1, . . . , R we have that mr + mR+r ≤ m′

r + m′
R+r. In

this case we say that dist(m′,m) =
∑2R

r=1 m′
r −

∑2R
r=1 mr.

Note that relation ≤ induces a partial order of states. Intuitively we use m ≤ m′ if
m has less or the same number of customers of m′ and dist(m′,m) represents the
number of customers in m′ more than in m.

Definition 11 (MM-step and MM-path) Let m be a tangible state. Then we
define a MM-step as:

(m + eR+r′ + er − eR+r)
(r′) r−→ m(r) if m = m(r)

(m + eR+r′ − m2R+1)
(r′) ε−→ m0 if m = m0,

with 1 ≤ r, r′ ≤ R. A MM-path is a sequence of MM-steps.

Intuitively if we have a step m
(r′)
1

r−→ m
(r)
2 , we can say that state m

(r)
2 can be

reached by m
(r′)
1 by a class r′ job completion, and a selection of a job of class r for

the service. An MM-path can be seen as the vector of the labels of the arrows and
the initial state.

Example 13 (MM-path example) Consider a GSPN-EXP-1’ model with two
classes of customers, and the state m(2) = (2, 1, 0, 1, 0), a possible MM-Path α from
m(2) to m0 is:

α : (2, 1, 0, 1, 0)
1−→ (1, 1, 1, 0, 0)

2−→ (1, 0, 0, 1, 0)
1−→ (0, 0, 1, 0, 0)

ε−→ m0.

In this case α = (2, 1, 0, 1, 0), (1, 2, 1, ε). In general, given a state m, the number of

MM-pathes from m to m0 is given by the multinomial coefficient
(PR

a=1 ma

m1,...,mR

)
.

Definition 12 (Function Ψ) Given two states mA and mB with mA < mB and
an MM-path α from mB to mA, we define the function Ψ on α as follows:

Ψ(α) =

{
1 if α = mB, () ∨ α = mB, (ε)

Ψ(α) =
PR

a=1 wa(mB)

wr(mB)
Ψ(β) otherwise ,

where β is the MM-path α with the first MM-step removed.

The following lemmas state that if a GSPN-EXP-1 has a M ⇒ M product-form
then function Ψ is uniquely determined. In the following we use this result to prove
that also the weight functions wr are in the form wr = kmr with k an arbitrary
positive constant.

184 A. Proves of lemmas and theorems

Lemma 11 If model GSPN-EXP-1 satisfies the M ⇒ M property, then:

• if m
(r)
1

s−→ m
(s)
2 we have that:

π(m
(r)
1)

π(m
(s)
2)

=
λr

µ

∑R
a=1 wa(m

(r)
1)

ws(m
(r)
1)

.

• if m
(r)
1

ε−→ m0 we have that:

π(m
(r)
1)

π(m0)
=

λr

µ
.

Proof 2 The proof is trivial after noting that if m
(r)
1

s−→ m
(s)
2 , state m

(r)
1 is the only

state with a customer of class r added to state m
(s)
2 from which m

(s)
2 is reachable.

Writing M ⇒ M equation (7.4) for state γ = m
(s)
2 the result follows immediately

by noting that γr+ = {m(r)
1 } and qη→γ = µ

ws(m
(r)
1)

PR
a=1 wa(m

(r)
1)

. The second relation can be

derived in a similar way.

The following lemma is crucial for the proof. Let α be a MM-path from m(r) to
m0. It basically states that if a GSPN-EXP-1 model holds M ⇒ M property then
the values assumed by function Ψ must not depend on the whole path α but only
on the first state of the path m(r).

Lemma 12 System GSPN-EXP-1 fulfils the M ⇒ M property if and only if for all
states m(r) and MM-pathes α from m(r) to m0, function Ψ(α) = ψ(m(r)). In this
case the stationary probability for state m(r) is given by:

π(m(r)) = π(m0)

∏R
a=1 λ

ma+mR+a
a

µm
ψ(m(r)), (A.14)

where m =
∑2R

a=1 ma.

Proof 3 Suppose the system fulfils the M ⇒ M property. Then let us choose an
arbitrary MM-path α from m(r) to m0. We first prove that:

π(m(r)) = π(m0)

∏R
a=1 λ

ma+mR+a
a

µm
Ψ(α), (A.15)

Let us proceed by induction. If m(r) ε−→ m0, then by Lemma 11 and Definition 12,
equation (A.15) is verified. Suppose α = m(r)(s, β) with s 6= ε. Then, by Lemma 11
we can write:

π(m(r))

π
(
(m(r) − eR+r + rR+s − ms)(s)

) =
λr

µ

∑R
a=1 wa(m

(r))

ws(m(r))
. (A.16)

A.6. Proof of Theorem 7 185

Noting that
PR

a=1 wa(m(r))

ws(m(r))
Ψ(β) = Ψ(α) by Definition 12 and by using inductive hy-

pothesis to make π
(
(m(r) − eR+r + rR+s −ms)

(s)
)

explicit, we prove relation (A.15).

In order to prove that Ψ(α) = ψ(m(r)) for a function ψ which depends only on the
state m(r) it suffices to consider the fact that the ratio π(m(r))/π(m0) cannot depend
on a path between the states.

Suppose Equation (A.14) is satisfied and Ψ(α) = ψ(m(r)) for any state m(r) and
MM-path α from m(r) and m0. In order to prove Equation (7.4), i.e., the system

satisfies M ⇒ M , consider a generic state m
(s)
2 and m

(r)
1 = m

(s)
2 +es−eR+s +eR+r.

We have to prove that:

π(m
(r)
1)µ

ws(m
(r)
1)∑R

a=1 wa(m
(r)
1)

= π(m
(s)
2)λr, (A.17)

by the same consideration used to prove Lemma 11. By replacing π with (A.14) in
(A.17), and by Definition 12, we have:

π(m0)

∏R
a=1 λ

m1,a+m1,R+a
a λs

µm1+1
ψ(m

(s)
2)

∑R
a=1 wa(m

(r)
1)

ws(m
(r)
1)

µ
ws(m

(r)
1)∑R

a=1 wa(m
(r)
1)

= π(m0)

∏R
a=1 λ

m1,a+m1,R+a
a

µm1
ψ(m

(s)
2)λr.

which is clearly an identity.

Corollary 2 A necessary and sufficient condition for GSPN-EXP-1 to fulfil the
M ⇒ M property is that for any state m there exists a function ψ depending only
on m such that ψ(m) = Ψ(α) for any MM-Path α from m to m0.

Note that even if Corollary 2 is quite simple, checking its proposition requires a
number of operations which grows exponentially with the number of customers in
the system. The following theorem avoids this problem by explicitly determining
function ψ and by giving strict necessary and sufficient structural conditions for
M ⇒ M .

We are now ready to prove the main result, i.e. Theorem 7, state in Section 7.3.

Proof 4 Basically we have to prove that function ψ is uniquely determined as fol-
lows:

ψ(m(t)) =
(
∑R

a=1 ma)!∏R
a=1 ma!

. (A.18)

In fact, by substitution in (A.15) we obtain (A.14). First of all note that in case of
a state m(r) with |A| = 1 we have that ψ(m(r)) = 1 follows by the definition of Ψ.

The proof is by induction on dist(m(t),m0).

186 A. Proves of lemmas and theorems

Base. Let m(t) = er + es + eR+t, with 1 ≤ r, s, t ≤ R, and then A = {r, s}. The
pathes from m(t) to m0 are the following:

α : m(t) s−→ eR+s + er
s−→ eR+r

ε−→ m0

β : m(t) r−→ eR+r + es
r−→ eR+s

ε−→ m0

Hence,

Ψ(α) = 1 · 1 · ws(m
(t)) + wr(m

(t))

ws(m(t))

and

Ψ(β) = 1 · 1 · ws(m
(t)) + wr(m

(t))

wr(m(t))
.

By Corollary 2 the system satisfies the M ⇒ M property if and only if wr(m
(t)) =

ws(m
(t)). Consequently ψ(m(t)) = 2.

Induction step. Consider a generic state m(v) with A ⊆ {1, . . . , R} and |A| ≥
2. Let t ∈ A. Then we have the following possible MM-path to m(v):

α : m(v) t−→ m′(t) → . . . → m0.

Let A′ = {r : m′
r > 0, 1 ≤ r ≤ R}, and consider the case |A′| ≥ 2, then by inductive

hypothesis, we have that:

ψ(m′(t)) =
(
∑R

a=1 m′
a)!∏R

a=1 m′
a

=
(
∑R

a=1 ma − 1)!∏R
a=1,a 6=t(mt − 1)!

.

Hence, we have that:

Ψ(α) =
(
∑R

a=1 ma − 1)!∏R
a=1,a 6=t(mt − 1)!

·
∑R

a=1 wa(m
(v))

wt(m(v))
.

By Corollary 2 we have that M ⇒ M holds if and only if Ψ is independent of the
MM-Path. Hence function Ψ must be independent of the choice of t ∈ A. It is easy
to see that this is the case if and only if wt(m

(v)) = f(m(v))mt. If |A′| = 1 we have
that Ψ(m′(t)) = 1 and the same result holds.

In other words, when there are customers of two or more classes waiting for the
server, function wr must be wr(m) = mr (the multiplier factor is not really important
for obvious algebraic reasons). Actually for the states where customers of just one
class r are in queue, the definition of wr is irrelevant important because it does
not influences the system stochastic behavior. So we can conclude that the only
reasonable definition for functions wr is wr(m) = mr for every class r and every
state m. This concludes the proof. ♠

B
Solution of examples

B.1 Stochastic Petri net models of Chapter 5

In this section we study the product-form SPN models of Chapter 5 using Theorem
2 introduced in [63, 39].

B.1.1 Solution of model depicted in Figure 5.15

First of all we fuse transitions T1 and T2 in a transition named T12 with rate χ12 =
χ1 + χ2. Transition T12 has two possible output vectors O1(T12) = (1, 1, 0, 0, 0) with
probability χ1/(χ1 + χ2) and O2(T12) = (0, 1, 0, 0, 0) with probability χ2/(χ1 + χ2).
Similarly transitions T4 and T5 must be fused into one transition T45 with rate
χ45 = χ4 + χ5. The output vector O1(T45) = (0, 0, 0, 0, 1) occurs with probability
χ4/(χ4 + χ5) while O2(T45) = (0, 0, 1, 0, 0) with probability χ5/(χ4 + χ5).

The system of traffic equations is:

(χ1 + χ2)f12 = χ7f7 + χ3f3

χ3f3 = χ2f12

(χ4 + χ5)f45 = χ1f12 + χ8f8

χ6f6 = χ5f45

χ7f7 = χ4f45

χ8f8 = χ6f6

,

whose solution is:

f12 = 1

f3 = χ2

χ3

f45 = χ1

χ4

f6 = χ5χ1

χ4χ6

f7 = χ1

χ7

f8 = χ5χ1

χ4χ8

.

188 B. Solution of examples

Vector C = (c1, . . . , c8)
T defined in (3.7) is:

c1 = log
(χ4

χ1

)
c2 = log

(χ3

χ2

)
c3 = log

(χ2

χ3

)
c4 = log

(χ7

χ4

)
c5 = log

(χ6

χ5

)
c6 = log

(χ8

χ6

)
c7 = log

(χ1

χ7

)
c8 = log

(χ5

χ8

)
The incidence matrix A of the net is:

A =

1 1 0 0 0
0 1 0 0 0
0 −1 0 0 0
−1 −1 0 0 1
−1 −1 1 0 0
0 0 −1 1 0
0 0 0 0 −1
1 1 0 −1 0

.

We have that rank(A) = 5. In order to have rank([A|C]) = 5 we have to check that:
c2 = −c3

c1 = −(c4 + c7)

c5 = −(c6 + c8)

,

that are trivially verified for any value of χi. We now solve the system (3.10) and
we obtain:

y1 =
χ1χ3

χ4χ2

y2 =
χ2

χ3

y3 =
χ1χ5

χ4χ6

y4 =
χ1χ5

χ4χ8

y5 =
χ1

χ7

.

The steady state proabilities π1(m) are given by:

π1(m) ∝
(χ1χ3

χ4χ2

)m1
(χ2

χ3

)m2
(χ1χ5

χ4χ6

)m3
(χ1χ5

χ4χ8

)m4
(χ1

χ7

)m5

.

B.1.2 Solution of model depicted in Figure 5.16

First of all we fuse transitions T1 and T2 in a transition named T12 with rate χ12 =
χ1 + χ2. Transition T12 has two possible output vectors O1(T12) = (1, 1, 0, 0, 0) with
probability χ1/(χ1 + χ2) and O2(T12) = (0, 1, 0, 0, 0) with probability χ2/(χ1 + χ2).
All the other transitions have different input vectors. The system of traffic equation
(3.6) is:

(χ1 + χ2)f12 = χ6f6 + χ8f8

χ3f3 = χ1f12

χ4f4 = χ7f7

χ5f5 = χ2f12

χ6 = χ3f3

χ7f7 = χ4f4

χ8f8 = χ5f5

,

B.1. Stochastic Petri net models of Chapter 5 189

whose solution is:

f12 = 1

f3 = χ1

χ3

f4 = 1

f5 = χ2

χ5

f6 = χ1

χ6

f7 = χ4

χ7

f8 = χ2

χ8

.

Note that the traffic process consists of two communicating class, i.e., the set of
transitions {T12, T3, T6, T5, T8}, and the set of transitions {T4, T7}. Vector C =
(c1, . . . , c8)

T is given by:

c1 = log
(χ3

χ1

)
c2 = log

(χ5

χ2

)
c3 = log

(χ6

χ3

)
c4 = log

(χ7

χ4

)
c5 = log

(χ8

χ5

)
c6 = log

(χ1

χ6

)
c7 = log

(χ4

χ7

)
c8 = log

(χ2

χ8

)
.

The incidence matrix A is:

A =

1 1 0 0 0 0
0 1 1 0 0 0
−1 −1 0 1 0 0
0 −1 0 0 1 0
0 −1 −1 0 0 1
0 0 0 −1 0 0
0 1 0 0 −1 0
0 0 0 0 0 −1

.

We have that rank(A) = 5, therefore in order to have rank([A|C]) = 5 the following
conditions are needed:

c4 = −c7

c6 = −(c1 + c3)

c2 = −(c5 + c8)

,

that are unconditionally satisfied.
One solution of system (3.10) is:

y1 =
χ1

χ3

y2 = 1 y3 =
χ2

χ5

y4 =
χ1

χ6

y5 =
χ4

χ7

y6 =
χ2

χ8

.

Hence, the steady state solution of the model is:

π(m) ∝
(χ1

χ3

)m1
(χ2

χ5

)m3
(χ1

χ6

)m4
(χ4

χ7

)m5
(χ2

χ8

)m6

.

190 B. Solution of examples

B.2 Product-form GSPN models composition of

Chapter 7

B.2.1 Analysis of the GSPN shown by Example 12

. In this section we study the GSPN illustrated by Figure 7.9. Recall that:{
χ6 = χ2

χ5 = χ1

,

Let us call x1 the (constant) reversed rate of the departures by the first block,
and x2 the (constant) reversed rates of the departures from the second block. By
the analysis of model SIMPLE we have that:{

x1 = χ7 + x2
χ3

χ3+χ4

x2 = χ1

,

that gives:

x1 = x2 = χ7
χ3 + χ4

χ4

.

{P1, P2, P4} is a sufficient place set, in fact P3 = K−P4 where K is the total number
of token in P3 and P2 of the initial state (the total number of servers). Therefore
the product-form solution is given by:

π(m1,m2,m4) ∝
(χ7(χ3 + χ4)

χ1χ4

)m1
(χ1

χ2

)m2
(χ7

χ4

)m4

.

The analysis is completed.

The global balance equations. Since the analysis approach is rather new, as a
check we show that the solution satisfies the global balance equations of the stochas-
tic process associated with the GSPN. Therefore the following calculations have not
to be considered part of the analysis.

As the model has an infinite state space we cluster the spaces as follows:

• m1 can be either 0 or N > 0,

• m2 can be 0, ` with 1 ≤ ` < K, or K,

• m4 can be either 0 or M > 0.

The twelve combinations of these cases give all the possible states of the net.

1. [0, 0, 0]: π(0, 0, 0)[χ7+χ1] = π(0, 0, 1)χ4+π(0, 1, 0)χ2 = π(0, 0, 0)[χ7

χ4
χ4+ χ1

χ2
χ2].

B.2. Product-form GSPN models composition of Chapter 7 191

2. [0, 0,M]:

π(0, 0,M)[χ7+χ1+χ3+χ4] = π(0, 0,M+1)χ4+π(0, 1, 0)χ2+π(1, 1,M−1)χ2

= π(0, 0,M)[
χ7

χ4

χ4 +
χ1

χ2

χ2 +
χ7(χ3 + χ4)

χ4χ1

χ1

χ2

χ4

χ7

χ2].

3. [0, `, 0]:

π(0, `, 0)[χ7 + χ2 + χ1] = π(0, `, 1)χ4 + π(0, ` − 1, 0)χ1 + π(0, ` + 1, 0)χ2

= π(0, `, 0)[
χ7

χ4

χ4 +
χ2

χ1

χ1 +
χ1

χ2

χ2].

4. [0, `,M]:

π(0, `,M)(χ7 + χ2 + χ1 + χ3 + χ4) = π(0, `,M + 1)χ4

+π(0, ` − 1,M)χ1 + π(0, ` + 1, 0)χ2 + π(1, ` + 1,M − 1)χ2

= π(0, `,M)[
χ7

χ4

χ4 +
χ2

χ1

χ1 +
χ1

χ2

χ2 + +
χ7(χ3 + χ4)

χ4χ1

χ1

χ2

χ4

χ7

χ2].

5. [0, K, 0]:

π(0, K, 0)[χ7 +χ2] = π(0, K−1, 0)χ1 +π(0, K, 1)χ4 = π(0, K, 0)[
χ2

χ1

χ1 +
χ7

χ4

χ4].

6. [0, K,M]:

π(0, K,M)[χ7 + χ2 + χ3 + χ4] = π(0, K − 1, M)χ1 + π(0, K,M + 1)χ4

+ π(1, K − 1, M − 1)χ2 = π(0, K,M)[
χ2

χ1

χ1 +
χ7

χ4

χ4 +
χ7(χ3 + χ4)

χ4χ1

χ1

χ2

χ4

χ7

χ2].

7. [N, 0, 0]:

π(N, 0, 0)[χ7 + χ1] = π(N − 1, 0, 1)χ3 + π(N, 0, 1)χ4 + π(N − 1, 0, 0)χ7

= π(N, 0, 0)[
χ4χ1

χ7(χ3 + χ4)

χ7

χ4

χ3 +
χ7

χ4

χ4 +
χ4χ1

χ7(χ3 + χ4)
χ7].

8. [N, 0,M]:

π(N, 0,M) = [χ7 + χ1 + χ3 + χ4] = π(N − 1, 0,M + 1)χ3

+π(N − 1, 0,M)χ7 + π(N + 1, 1,M − 1)χ2 + π(N, 0,M + 1)χ4

= π(N, 0,M)[
χ4χ1

χ7(χ3 + χ4)

χ7

χ4

χ3 +
χ4χ1

χ7(χ3 + χ4)
χ7

+
χ7(χ3 + χ4)

χ4χ1

χ1

χ2

χ4

χ7

χ2 +
χ7

χ4

χ4].

192 B. Solution of examples

9. [M, `, 0]:

π(N, `, 0)[χ7 + χ1 + χ2] = π(N − 1, `, 1)χ3 + π(N, `, 1)χ4

+π(N − 1, `, 0)χ7 + π(N, ` − 1, 0)χ1

= π(N, `, 0)[
χ4χ1

χ7(χ3 + χ4)

χ7

χ4

χ3 +
χ7

χ4

χ4 +
χ4χ1

χ7(χ3 + χ4)
χ7 +

χ2

χ1

χ1].

10. [M, `,N]:

π(N, `,M)[χ7 + χ1 + χ2 + χ3 + χ4] = π(N − 1, `,M + 1)χ3 + π(N + 1, ` + 1, N − 1)χ2

+π(N − 1, `,M)χ7 + π(N, ` − 1,M)χ1 + π(N, `,M + 1)χ4

= π(N, `,M)[
χ4χ1

χ7(χ3 + χ4)

χ7

χ4

χ3 +
χ7(χ3 + χ4)

χ4χ1

χ1

χ2

χ4

χ7

χ2 +
χ1χ4

χ7(χ3 + χ4)
χ7

+
χ2

χ1

χ1 +
χ7

χ4

χ4].

11. [M,K, 0]:

π(M,K, 0)[χ7 + χ2 + χ1] = π(M − 1, K, 1)χ3 + π(M − 1, K, 0)χ7

+π(M,K, 1)χ4 + π(M,K − 1, 0)χ1 =

π(M,K, 0)[
χ1χ4

χ7(χ3 + χ4)

χ7

χ4

χ3 +
χ1χ4

χ7(χ3 + χ4)
χ7 +

χ7

χ4

χ4 +
χ2

χ1

χ1].

12. [M,K,N]:

π(M,K,N)[χ7 + χ2 + χ1 + χ3 + χ4] = π(M − 1, K,N + 1)χ3 + π(M − 1, K,N)χ7

+π(M,K,N + 1)χ4 + π(M,K − 1, N)χ1 + π(M + 1, K,N − 1)χ1 =

π(M,K,N)[
χ1χ4

χ7(χ3 + χ4)

χ7

χ4

χ3 +
χ1χ4

χ7(χ3 + χ4)
χ7 +

χ7

χ4

χ4

+
χ2

χ1

χ1 +
χ7(χ3 + χ4)

χ1χ4

χ4

χ7

χ1].

Bibliography

[1] P. V. Afshari, S. C. Bruell, and R. Y. Kain. Modeling a new technique for
accessing shared buses. In Proc. of the Computer Network Performance Symp.,
pages 4–13, New York, NY, USA, 1982. ACM Press.

[2] I. F. Akyildiz. Exact product form solution for queueing networks with block-
ing. IEEE Trans. on Computer, C-36-1:122–125, 1987.

[3] F. Baccelli, W.A. Massey, and D. Towsley. Acyclic fork-join queueing net-
works. J. ACM, 36(3):615–642, 1989.

[4] G. Balbo. Introduction to Generalized Stochastic Petri Nets in Formal Methods
for Performance Evaluation, chapter 3, pages 33–131. M. Bernardo and J.
Hillston (Eds), LNCS, Springer, 2007.

[5] G. Balbo, S. C. Bruell, and S. Ghanta. Combining queueing network and
generalized stochastic Petri nets for the solution of complex models of system
behavior. IEEE Trans. on Computers, 37:1251–1268, 1998.

[6] G. Balbo, S. C. Bruell, and M. Sereno. Product form solution for Generalized
Stochastic Petri Nets. IEEE Trans. on Software Eng., 28:915–932, 2002.

[7] G. Balbo, S. C. Bruell, and M. Sereno. On the relations between BCMP
Queueing Networks and Product Form Solution Stochastic Petri Nets. Proc.
of 10th Int. Workshop on Petri Nets and Performance Models, 2003., pages
103–112, 2003.

[8] S. Balsamo, V. De Nitto Persone’, and R. Onvural. Analysis of Queueing
Networks with Blocking. Kluwer Academic Publishers, 2001.

[9] S. Balsamo, F. de Riz, and A. Marin. Product form queueing networks and
product form Stochastic Petri Nets: relations and transformation algorithms.
Technical Report CS-2004-12, Dip. Informatica, Università Ca’ Foscari Venice.

[10] S. Balsamo and G. Iazeolla. Product-form synthesis of queueing networks.
IEEE Trans. on Software Eng., SE-11(2):194–199, 1985.

[11] S. Balsamo and A. Marin. On representing multiclass M/M/k queues by
generalized stochastic Petri nets. Technical Report CS-2007-1, Università Ca’
Foscari, Venice, Italy, 2007.

194 Bibliography

[12] S. Balsamo and A. Marin. Queueing Networks in Formal methods for perfor-
mance evaluation, chapter 2, pages 34–82. M. Bernardo and J. Hillston (Eds),
LNCS, Springer, 2007.

[13] S. Balsamo and A. Marin. From BCMP Queueing Networks to Generalized
Stochastic Petri Nets: An Algorithm and an Equivalence Definition. In Proc.
of ESM, pages 447–455, Le Havre, FR, 2008.

[14] S. Balsamo and A. Marin. Determining product-form steady state solutions
of Generalized Stochastic Petri Nets by the analysis of the reversed process.
In Proc. of ACS/IEEE AICCSA, Rabat, Marocco, 2009, to appear.

[15] S. Balsamo and A. Marin. On representing multiclass M/M/k queues by
generalized stochastic Petri nets. In Proc. of ECMS/ASMTA-2007 Conf.,
pages 121–128, Prague, Czech Republic, 4-6 June 2007.

[16] S. Balsamo and A. Marin. Representing LCFSPR BCMP service centers with
Coxian service time distribution. In Proc. of Valuetools ’07 Conf., Nantes,
France, October 23-25, 2007.

[17] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios. Open, closed,
and mixed networks of queues with different classes of customers. J. ACM,
22(2):248–260, 1975.

[18] F. Bause. Queueing Petri nets: A formalism for the combined qualitative and
quantitative analysis of systems. In Proc. of 5th Int. Workshop on Petri Nets
and Performance Models, pages 14–23, Toulouse (France), 1993.

[19] F. Bause and P. Buchholz. Product form queueing Petri nets: A combination
of product form queueing networks and product form stochastic Petri nets.
Perform. Eval., Elsevier, 32:265–299, 1998.

[20] M. Bernardo, L. Donatiello, and R. Gorrieri. Modelling and Analyzing Con-
current Systems with MPA. In Proc. of 2nd Process Algebra and Performance
Modelling Workshop, pages 175–189, 1994.

[21] M. Bernardo, R. Gorrieri, and M. A. Zamboni. A tutorial on EMPA: A
theory of concurrent processes with nondeterminism, priorities, probabilities
and time. Theoretical Computer Science, 202:1–54, 1998.

[22] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi. Queueing networks and
Markov chains. John Wiley, 1998.

[23] P. Bonet, C. Llado, R. Puijaner, and W. Knottenbelt. Pipe v2.5.: a Petri net
tool for performance modelling. In Proc. of 23rd Latin American Conference
on Informatics, San Jose, Costa Rica, October, 2007.

Bibliography 195

[24] R. Boucherie and N. M. van Dijk. Product-form queueing networks with state
dependent multiple job transitions. Advances in Applied Prob., 23:152–187,
1991.

[25] R. J. Boucherie. A characterisation of independence for competing Markov
chains with applications to stochastic Petri nets. IEEE Tran. on Software
Eng., 20(7):536–544, 1994.

[26] S. C. Bruell and G. Balbo. Computational Algorithms for Closed Queueing
Networks. The Computer Science Library. Elsevier North Holland, 1980.

[27] S. C. Bruell, G. Balbo, and P. V. Afshari. Mean Value Analysis of mixed,
multiple class BCMP networks with load dependent service stations. Perform.
Eval. Elsevier, 4:241–260, 1984.

[28] P. J. Burke. The output of a queueing system. Operations Research, 4(6):699–
704, 1956.

[29] J. P. Buzen. Computational algorithms for closed queueing networks with
exponential servers. Commun. ACM, 16(9):527–531, 1973.

[30] M. Calzarossa and S. Tucci, editors. Performance Evaluation of Complex
Systems: Techniques and Tools, Performance 2002, Tutorial Lectures, London,
UK, 2002. Springer-Verlag.

[31] K. M. Chandy, U. Herzog, and L. Woo. Parametric analysis of queueing
networks. IBM Journal of Res. and Dev., 1(1):36–42, 1975.

[32] K. M. Chandy, Jr. J. H. Howard, and D. F. Towsley. Product form and local
balance in queueing networks. J. ACM, 24(2):250–263, 1977.

[33] K. M. Chandy and A. J. Martin. A characterization of product-form queuing
networks. J. ACM, 30(2):286–299, 1983.

[34] K. M. Chandy and C. H. Sauer. Computational algorithms for product form
queueing networks. Commun. ACM, 23(10):573–583, 1980.

[35] G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo. Greatspn 1.7: Graph-
ical editor and analyzer for timed and stochastic petri nets. Perform. Eval.,
Elsevier, 24:47–68, 1995.

[36] G. Chiola, M. A. Marsan, G. Balbo, and G. Conte. Generalized stochastic
Petri nets: a definition at the net level and its implications. IEEE Trans. on
Software Eng., 19(2):89–107, 1993.

[37] A. Chockalingam and M. Zorzi. Analysis of link-layer backoff algorithms on
point-to-point markov fading links: effect of round-trip delays. In Proc. IEEE
ICC’05, volume 5, pages 3117–3121, Seul, Korea, 30 May - 1 Jun. 2005.

196 Bibliography

[38] J. W. Cohen. The single server queue. Wiley-Interscience, 1969.

[39] J. L. Coleman, W. Henderson, and P. G. Taylor. Product form equilibrium
distributions and a convolution algorithm for Stochastic Petri nets. Perform.
Eval., Elsevier, 26:159–180, 1996.

[40] A. E. Conway, E. de Souza e Silva, and S. S. Lavenberg. Mean Value Analysis
by chain of product form queueing networks. IEEE Trans. Comput., 38(3):432–
442, 1989.

[41] A. E. Conway and N. D. Georganas. Recal - a new efficient algorithm for the
exact analysis of multiple-chain closed queuing networks. J. ACM, 33(4):768–
791, 1986.

[42] A. E. Conway and N. D. Georganas. Queueing Networks - Exact Computa-
tional Algorithms: A unified Theory Based on Decomposition and Aggregation.
The MIT Press, Cambridge, MA, 1989.

[43] P.J. Courtois. Decomposability. Academic Press, New York, 1977.

[44] E. de Souza e Silva and S. S. Lavenberg. Calculating joint queue-length dis-
tributions in product-form queuing networks. J. ACM, 36(1):194–207, 1989.

[45] E. De Souza e Silva and R. R. Muntz. Stochastic Analysis of Computer and
Communication Systems, chapter Queueing Networks: Solutions and Appli-
cations, pages 319–399. H. Takagi Ed., North Holland, 1990.

[46] J. Fourneau, E. Gelenbe, and R. Suros. G-networks with multiple class neg-
ative and positive customers. In MASCOTS ’94: Proc. of the Second Int.
Workshop on Modeling, Analysis, and Simulation On Computer and Telecom-
munication Systems, pages 30–34, Washington, DC, USA, 1994. IEEE Com-
puter Society.

[47] J. M. Fourneau, B. Plateau, and W. J. Stewart. Product form for stochastic
automata networks. In ValueTools ’07: Proc. of the 2nd international confer-
ence on Performance evaluation methodologies and tools, pages 1–10, ICST,
Brussels, Belgium, 2007. ICST.

[48] J. M. Fourneau, B. Plateau, and W. J. Stewart. An algebraic condition for
product form in stochastic automata networks without synchronizations. Per-
form. Eval., Elsevier, 65:854–868, 2008.

[49] J. M. Fourneau and D. Verchere. G-networks with triggered batch state-
dependent movement. In MASCOTS ’95: Proc. of the Third Int. Workshop
on Modeling, Analysis, and Simulation On Computer and Telecommunication
Systems, pages 33–37, 1995.

Bibliography 197

[50] E. Gelenbe. Product form networks with negative and positive customers.
Journal of Applied Prob., 28(3):656–663, 1991.

[51] E. Gelenbe. G-networks: a unifying model for neural and queueing networks.
Annals of Operations Research, 48(5):433–461, October, 1994.

[52] E. Gelenbe and J. M. Fourneau. G-networks with resets. Perform. Eval.,
Elsevier, 49(1-4):179–191, 2002.

[53] E. Gelenbe and I. Mitrani. Analysis and Synthesis of Computer Systems.
Academic Press, New York, 1980.

[54] W. J. Gordon and G. F. Newell. Cyclic queueing networks with exponential
servers. Operations Research, 15(2):254–265, 1967.

[55] W. J. Gordon and G. F. Newell. Cyclic queueing networks with restricted
length queues. Operations Research, 15(2):266–277, 1967.

[56] S. Haddad, P. Moreaux, M. Sereno, and M. Silva. Product-form and stochastic
Petri nets: a structural approach. Perform. Eval., Elsevier, 59(4):313–336,
2005.

[57] P. Harrison and J. Hillston. Exploiting quasi-reversible structures in Marko-
vian process algebra models. The Computer Journal, 38(7):510–520, 1995.

[58] P. G. Harrison. Reversed processes, product forms, non-product forms and a
new proof of the BCMP theorem. In Int. Conf. on the Numerical Solution of
Markov Chains (NSMC 2003), Urbana IL, USA, September 2-5 2003, pages
289–304, September 2003.

[59] P. G. Harrison. Turning back time in Markovian process algebra. Theoretical
Computer Science, 290(3):1947–1986, January 2003.

[60] P. G. Harrison. Compositional reversed Markov processes, with applications
to G-networks. Perform. Eval., Elsevier, 57(3):379–408, 2004.

[61] P. G. Harrison. Reversed processes, product forms and a non-product form.
Linear Algebra and Its Applications, 386:359–381, July 2004.

[62] P. G. Harrison and T. T. Lee. Separable equilibrium state probabilities via
time reversal in markovian process algebra. Theoretical Computer Science,
346(1):161–182, 2005.

[63] W. Henderson, D. Lucic, and P. G. Taylor. A net level performance analysis
of Stochastic Petri Nets. J. Austral. Math. Soc. Ser. B, 31:176–187, 1989.

[64] W. Henderson and P. Taylor. Product form in networks of queues with batch
arrivals and batch services. Queueing Systems, 6:71–88, 1990.

198 Bibliography

[65] W. Henderson and P. Taylor. Some new results on queueing networks with
batch movements. Journal of Applied Prob., 28:409–421, 1990.

[66] H. Hermanns, U. Herzog, and J. P. Katoen. Process algebra for performance
evaluation. Theor. Comput. Sci., 274(1-2):43–87, 2002.

[67] H. Hermanns, U. Herzog, and V. Mertsiotakis. Stochastic process algebras:
between LOTOS and Markov chains. Comp. Netw. and ISDN Syst, 30:901–
924, 1998.

[68] J. Hillston. A Compositional Approach to Performance Modelling. PhD thesis,
Department of Computer Science, University of Edimburgh, 1994.

[69] J. Hillston and N. Thomas. A syntactical analysis of reversible PEPA mod-
els. In Proc. 6th Process Algebra and Performance Modelling Workshop, Nice,
September 11-12 1998. University of Verona, Italy.

[70] J. Hillston and N. Thomas. Product form solution for a class of PEPA models.
Perform. Eval., Elsevier, 35(3–4):171–192, 1999.

[71] C. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[72] K. P. Hoyme, S. C. Bruell, P. V. Afshari, and R. Y. Kain. A tree-structured
Mean Value Analysis algorithm. ACM Trans. Comput. Syst., 4(2):178–185,
1986.

[73] J. R. Jackson. Jobshop-like queueing systems. Management Science, 10:131–
142, 1963.

[74] K. Kant. Introduction to Computer System Performance Evaluation. McGraw-
Hill, 1992.

[75] K. Kant. Introduction to Computer System Performance Evaluation, chapter
4 and 9. McGraw-Hill, 1992.

[76] F. Kelly. Reversibility and stochastic networks. Wiley, New York, 1979.

[77] L. Kleinrock. Queueing Systems, volume 1 (Theory). John Wiley and Sons,
1975.

[78] S. S. Lam. Queueing networks with capacity constraints. IBM Journal of Res.
and Dev., 21(4):370–378, 1977.

[79] S. S. Lam. Dynamic scaling and growth behavior of queuing network normal-
ization constants. J. ACM, 29(2):492–513, 1982.

[80] S. S. Lam and Y. L. Lien. A tree-convolution algorithm for the solution of
queueing networks. Commun. ACM, 26(3):203–215, 1983.

Bibliography 199

[81] S. S. Lavenberg. Computer Performance Modeling Handbook. Academic Press,
New York, 1983.

[82] A. M. Law and W. D. Kelton. Simulation modeling and analysis. McGraw-Hill,
3rd edition, 2000.

[83] A. A. Lazar and T. G. Robertazzi. Markovian Petri Net Protocols with Prod-
uct Form Solution. In IEEE INFOCOM’87, The Conf. on Computer Com-
munications, Proc., Sixth Annual Conference - Global Networks: Concept to
Realization, pages 1054–1062, Washington, DC, 1987. IEEE Computer Society
Press.

[84] A. A. Lazar and T. G. Robertazzi. Markovian Petri Net Protocols with Prod-
uct Form Solution. Perform. Eval., Elsevier, 12(1):67–77, Jan 1991.

[85] E. D. Lazowska, J. L. Zahorjan, G. S. Graham, and K. C. Sevcick. Quantitative
system performance: computer system analysis using queueing network models.
Prentice Hall, Englewood Cliffs, NJ, 1984.

[86] J. Y. Le Boudec. A BCMP extension to multiserver stations with concurrent
classes of customers. In SIGMETRICS ’86/PERFORMANCE ’86: Proc. of
the 1986 ACM SIGMETRICS Int. Conf. on Computer performance modelling,
measurement and evaluation, pages 78–91, New York, NY, 1986. ACM Press.

[87] R. Marie. An approximate analytical method for general queueing networks.
IEEE Trans. on Software Eng., 5(5):530–538, 1979.

[88] M. A. Marsan, G. Balbo, and G. Conte. Performance Models of Microprocessor
Systems. MIT Press, 1986.

[89] M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Mod-
elling with generalized stochastic Petri nets. Wiley, 1995.

[90] B. Melamed. On Poisson traffic processes in discrete-state markovian systems
with applications to queueing theory. Advances in Applied Prob., (11):218–239,
1979.

[91] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[92] M. K. Molloy. Performance analysis using stochastic petri nets. IEEE Trans.
Comput., 31(9):913–917, 1982.

[93] R. Muntz and J. Wong. Efficient computational procedures for closed queueing
network models. In Proc. 7th Hawaii Int. Conf. on System Science, pages 33–
36, January 1974.

200 Bibliography

[94] R. R. Muntz. Poisson departure processes and queueing networks. Technical
Report IBM Research Report RC4145, Yorktown Heights, New York, 1972.

[95] T. Murata. Petri nets: Properties, analysis and applications. Proc. of the
IEEE, 77(4):541–580, 1989.

[96] R. Nelson. The mathematics of product-form queueing networks. ACM Com-
puting Survey, 25(3):339–369, 1993.

[97] M. F. Neuts. Matrix Geometric Solutions in Stochastic Models. John Hopkins,
Baltimore, Md, 1981.

[98] A. S. Noetzel. A generalized queueing discipline for product form network
solutions. J. ACM, 26(4):779–793, 1979.

[99] D. C. Petriu, J. E. Neilson, C. M. Woodside, and S. Majumdar. Software
bottlenecking in client-server systems and rendezvous networks. IEEE Trans.
on Software Eng., 21(9):776–782, 1995.

[100] B. Plateau. On the stochastic structure of parallelism and synchroniza-
tion models for distributed algorithms. SIGMETRICS Perform. Eval. Rev.,
13(2):147–154, 1985.

[101] M. Raiser. Mean Value Analysis and Convolution method for queue-dependent
servers in closed queueing networks. Perform. Eval. Elsevier, 1(1):7–18, 1981.

[102] M. Reiser and C. H. Sauer. Queueing network models: Methods of solution
and their program implementation. In (K. M. Chandy and R. T. Yeh), editor,
Current Trends in Programming Methodology. Prentice-Hall Inc., 1978.

[103] M. Resiser and S. S. Lavenberg. Mean Value Analysis of closed multichain
queueing network. J. ACM, 27(2):313–320, 1980.

[104] J.A. Rolia and K.C. Sevcick. The methods of layers. IEEE Trans. on Software
Eng., 21(8):682–688, 1995.

[105] S. M. Ross. Stochastic Processes. John Wiley & Sons, 2nd edition, 1996.

[106] R. Sahner, K. Trivedi, and A. Puliafito. Performance and Reliability Analy-
sis of Computer Systems - An Example-Based Approach Using the SHARPE
Software Package. Kluwer Academic Publishers, 1996.

[107] C. H. Sauer. Computational algorithms for state-dependent queueing net-
works. ACM Trans. Comput. Syst., 1(1):67–92, 1983.

[108] C. H. Sauer and K. M. Chandy. Computer Systems performance modeling.
Prentice-Hall, Englewood Cliffs, 1981.

Bibliography 201

[109] M. Sereno. On closed support T-invariant and the traffic equations. J. Appl.
Probab., 35(2):473–481, 1988.

[110] M. Sereno. Towards a product form solution for stochastic process algebras.
The Computer Journal, 38(7):622–632, December 1995.

[111] M. Sereno and G. Balbo. Mean Value Analysis of stochastic Petri nets. Per-
form. Eval. Elsevier, 29:35–62, 1997.

[112] R. Shassenberger. The insensitivity of stationary probabilities in networks of
queues. Journal of Applied Prob., 10:85–93, 1978.

[113] C. U. Smith. Performance Engineering of Software Systems. Addison-Wesley,
1990.

[114] J. Strelen. A generalization of Mean Value Analysis to higher moments: mo-
ment analysis. In SIGMETRICS ’86/PERFORMANCE ’86: Proc. of 1986
ACM SIGMETRICS Int. Conf. on computer performance modelling, measure-
ment and evaluation, pages 129–140, New York, NY, 1986. ACM Press.

[115] R. Suri. Robustness of queuing network formulas. J. ACM, 30(3):564–594,
1983.

[116] H. M. Taylor and S. Karlin. An Introduction To Stochastic Modeling. Academic
Press, 3rd edition, 1998.

[117] D. Towsley. Queuing network models with state-dependent routing. J. ACM,
27(2):323–337, 1980.

[118] K. S. Trivedi. Probability and statistics with reliability, queuing and computer
science applications. Wiley-Interscience, second edition, 2002.

[119] S. Tucci and C. Sauer. The tree MVA algorithm. Perform. Eval. Elsevier,
(5(3)):187–196, August 1985.

[120] N. van Dijk. Queueing networks and product forms. John Wiley, 1993.

[121] M. Vernon, J. Zahorjan, and E. D. Lazowska. A comparsion of performance
Petri Nets and queueing network models. Proc. 3rd Int. Workshop on Mod-
elling Techniques and Performance Evaluation, pages 181–192, 1987.

[122] M. Weber and E. Kindler. Petri Net Technology for Communication-Based
Systems, chapter The Petri Net Markup Language, pages 124–144. H. Ehrig,
W. Reisig, G. Rozenberg, H. Weber, 2003.

[123] P. Whittle. Partial balance and insensitivity. Journal of Applied Prob., 22:168–
175, 1985.

202 Bibliography

[124] A. Zimmermann, J. Freiheit, R. German, and G. Hommel. Petri net modelling
and performability evaluation with timenet 3.0. In TOOLS ’00: Proc. of the
11th Int. Conf. on Computer Performance Evaluation: Modelling Techniques
and Tools, pages 188–202, London, UK, 2000. Springer-Verlag.

Index

algorithm
input/output transitions, 155
routing, 155
supported extensions, 160
translation from BCMP QN to GSPN,

154
approximation of non-product-form GSPN

model by product-form model,
136

basic queueing system, 16
BCMP theorem, 27
BCMP-like composition, 121
birth and death process, 5
Building block, 72

characterization of probabilistic queue-
ing discipline, 129

CHC-SPN
composition, 96
decomposition into building blocks,

92
definition, 92
identification of the bulding blocks,

101
Coleman, Henderson et al. SPN (CH-

SPN), 47
composition of GSPN models by M ⇒

M , 125
Coxian random variable, 20

derivation graph, 55

extended BCMP-like composition, 121
extended reversed coumpund agent the-

orem (ERCAT), 65

G-queue, 144
generalized stochastic Petri net (GSPN)

analysis, 45

Balbo et al. product-form, 47
Boucherie’s product-form, 46
Coleman, Henderson et al. product-

form, 46
GSPN-COX model, 113
GSPN-EXP model, 110
GSPN-IS model, 117
GSPN-PS model, 117

hybrid model, 126

Kendall’s notation, 17

local balance, 33

Markov implies Markov (M ⇒ M), 34
application to GSPNs, 123

Markov process, 3
continuous time Markov chain (CTMC),

4
discrete time Markov chain (DTMC),

3
ergodic, 4
global balance equations (GBE), 4
homogeneous process, 4
infinitesimal generator, 4
irreducible, 4
Markov chain, 3
Markov property, 4
steady state, 4

Melamed’s equation, 125
MSCCC station, 163

Non BCMP-like composition, 122

performance evaluation process alge-
bra (PEPA)

analysis, 55
Boucherie’s product-form, 58

204 Index

Coleman, Henderson et al. product-
form, 58

definition, 54
ERCAT, 65
MARCAT, 68
quasi-reversible model in product-

form, 56
RCAT, 60
reversible model in product-form,

56
Petri net, 40

behavioral property, 41
coverability tree, 41
incidence matrix, 40
minimal support T-invariant, 42
P-invariant, 42
reachability graph, 41
reachability set, 40
structural property, 41
sufficient place set, 43
syphon, 43
T-invariant, 42
trap, 43

process algebra
agent, 51
bisimulation, 52
ccs, 51
csp, 51

product-form
Boucherie class, 6
definition, 5
interacting Markov chains, 6
stochastic automata network, 10

Quasi-reversibility, 34
queueing network, 22

BCMP models, 27
BCMP theorem, 27
chain, 23
class, 23
definition, 22
Markovian, 26
routing probability matrix, 23

well-formed, 23
queueing system

basic, 16
M/M/∞, 19
M/M/1, 18
M/M/m, 19
scheduling discipline, 21

reversed compound agent theorem (RCAT),
60

scheduling discipline, 17, 21
work-conserving, 17

state machine, 106
station balance, 35
stochastic automata network, 10
stochastic model, 3
stochastic process, 3
symmetric disciplines, 35

timed process algebra, 53

List of PhD Theses

TD-2004-1 Moreno Marzolla
”Simulation-Based Performance Modeling of UML Software Architectures”

TD-2004-2 Paolo Palmerini
”On performance of data mining: from algorithms to management systems for
data exploration”

TD-2005-1 Chiara Braghin
”Static Analysis of Security Properties in Mobile Ambients”

TD-2006-1 Fabrizio Furano
”Large scale data access: architectures and performance”

TD-2006-2 Damiano Macedonio
”Logics for Distributed Resources”

TD-2006-3 Matteo Maffei
”Dynamic Typing for Security Protocols”

TD-2006-4 Claudio Silvestri
”Distributed and Stream Data Mining Algorithms for Frequent Pattern Dis-
covery”

TD-2007-1 Marco Giunti
”Secure Implementations of Typed Channel Abstractions”

TD-2007-2 Francesco Lelli
”Bringing Instruments to a Service-Oriented Interactive Grid”

TD-2007-3 Matteo Mordacchini
”Grid and Peer-to-Peer Resource Discovery Systems”

TD-2008-1 Claudio Lucchese
”High Performance Closed Frequent Itemsets Mining inspired by Emerging
Computer Architectures”

TD-2008-2 Giulio Manzonetto
”Models and theories of lambda-calculus”

TD-2009-1 Fernando José Braz
”Warehousing and Mining Aggregate Measures Over Trajectories of Moving
Objects”

206 Index

TD-2009-2 Andrea Marin
”On the relations among product-form stochastic models”

TD-2009-3 Samuel Rota Bulò
”A game-theoretic framework for similarity-based data clustering”

