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1 Stochastic Finite State Automata (SFSA)

In this section we analyse the Hidden Markov Models (HMM) as part of a larger
theory, the automata theory, as suggested in [2]. This allows us to show on
one hand the relations between these models and others which are well-known
pointing out similar and different aspects, on the other to point intuitively out
the main advantages and the application fields of HMM.

Before introducing formally Stochastic Finite State Automata we consider
useful, especially for the clearness of the notation, recalling the classic definition
of finite state automaton as given in [6].

Definition 1 (Finite State Automata) A Finite State Automaton (FSA)M
is an abstract machine consisting of:

– A set of states Q = {I, 1, . . . , k, . . . , K, F} including the initial state I and
the final state F (accepting state)1

– A set Y of input symbols.
– A set Z of output symbols.
– A state transition function f . If qt is the state of the automaton M at time

t then qt = f(yt, qt−1).
– An emission function g. In the Mealy automata the emission function de-

pends on the transition between states, i.e. if zt is the automaton output at
time t, zt = g(qt, qt−1); In the Moore automata the emission function depends
only on the current automaton state, i.e. zt = g(qt). Clearly we know that
the Mealy automata class is equivalent to the Moore automata one.

We just add some notes on the given definition. In the automata theory it is
usually introduced a more accurate definition than the one we have just given,
for example by the definition of the input and output alphabet. In this paper,
considering the applications we are going to explore, we try to pay our attention
1 The definition can be extended considering more initial states and/or more final

states.



just on the main aspects. For example in the speech recognition applications, the
input and the output symbols are vectors with real number components which
are the result of the spectral analysis of an acoustic signal at a given time, while
in the pattern recognition applications we still have a discrete input and output
alphabet.

Another important note, is that the determinism of the automata is given by
the determinism of the transition function f and the emission function g. When
the emission function or the transition function are probabilistic, then we are
treating a stochastic automaton.

Markov Models (MM) In [2] the authors suggests that the classic Markov
Models can be seen as SFSA with a probabilistic transition function and a de-
terministic emission function (the identity) depending on the current state. The
probability of observing the automaton in the state q at time t depends only on
the state of the model at time t − 1. This feature of the transition law means
that the MM are memoryless2. We can consider the state of the chain as the
emission function.

With MM we can introduce and give the solution of two interesting problems:

1. Given a sequence consisting of T states X = x1 . . . xT and a Markov Model
M, which is the probability that, starting from the initial state I, M gives
X as sequence of output symbols and then it terminates3?

2. Let us consider the Markov Model M with K states. We can represent the
transition probability between states as a K×K dimension matrix P whose
element pij represents the probability of observing the state j just after i.
Formally if λ represents the parameters associated to M, i.e. the probability
transition matrix, then the problem consists in estimating, given one or more
training sequences as training set, λ∗ = arg maxλ p(X|M, λ).

Both these problems have an easy solution. In the first case, noting that the
requested sequence is the exact sequence of states of the Markov Model, we have
that the probability of observing X = x1x2 . . . xT is:

p(X) = p(F |xT )p(x1|I)
T∏

t=2

p(xt|xt−1)

To solve the second problem we have to find the estimation of the parameter λ
such that the probability of observing the training set is maximum. The solutions
usually achieve the result by optimising a maximum likelihood criterion, which
for the memoryless property is easily:

P (xt = l |xt−1 = k) =
nkl

nk
,

2 This restriction can be relaxed by the introduction of Markovian Models of order t.
In this paper we don’t treat them because it is always possible to associate to a MM
of order t a simple MM

3 The idea of termination is strictly related to the choice of the introduction of the
MMs based on automata theory.



where nkl represents the number of times which the state l follows the state k
in the training set, while nk represents the number of times which the state k is
visited. Thus we can use P (xt = l |xt−1 = k) as estimation for λ∗.

Hidden Markov Models (HMM) From the automata theory point of view,
a Hidden Markov Model differs from a Markov Model for two features:

1. It is not possible to observe the state of the model, i.e. qt is not given;
2. The emission function is probabilistic.

We have to think that somehow there are two dependent stochastic processes,
for the emission symbols we know the law which regulates the process and we
can observe the process itself, while the other process is not observable and all
we know is the law which regulates it.

So an Hidden Markov Model has all the parameters of a Markov Model with
the addition of the stochastic emission function, which means the probability
that, given the state qt, the symbol xt is observed.

For the HMM we can point out three problems which are extremely important
and interesting ([10]):

1. Given the sequence X = x1 . . . xT which is the probability to observe it on
the model M?

2. Given the sequence X = x1 . . . xT , which is the optimal4 sequence of states
of M which produces X?

3. given a training set X, how can we estimate the parameters of the model M
to maximise P (X|M)?

Now the solutions of the problems are not trivial. In the following sections we
analyse how to efficiently solve these problems. Before going on, we formally give
a definition for HMM which is no more strictly related to the automata theory,
which is the classical definition introduced in the famous Rabiner tutorial [10].

Definition 2 (Hidden Markov Model) An Hidden Markov Model consists
of:

– N , the number of states in the model; we denote each state with Si where
1 ≤ i ≤ N and let S be the set of the states;

– M , the number of distinct observation symbols. We denote individual symbols
as V = {v1, . . . , vM};

– A, the state transition probability matrix, which is a N×N matrix; we denote
with qt the state of the model at time t, so aij = P (qt+1 = Sj |qt = Si) with
1 ≤ i, j ≤ N ;

– B, the observation symbol probability distribution for each state: B = {bj(k), 1 ≤
j ≤ N, 1 ≤ k ≤ M}, where bj(k) is the probability to observe vk at a certain
time t when the state of the model at the same time is Sj;

4 Later we explore better the meaning of this request



– π, the initial state distributions π = {πi, 1 ≤ i ≤ N} where πi is the
probability that the initial state of the model is Si

5.

M denotes an Hidden Markov Model, λ = (A,B, π) denotes the model para-
meters.

2 The evaluation problem

Let us formally define the problem: let M be a given HMM and a X = x1 . . . xT

an observations sequence, it is requested to calculate the probability p that the
automaton M generates X.

A brute-force approach requires to evaluate the probability to obtain X con-
sidering all the possible sequences of T length and then sum their probabilities.
However an HMM with N states requires to consider NT possible sequences
which is non acceptable for the computational complexity even for trivial mod-
els.

An efficient solution for the evaluation problem is given in [1] and it’s called
forward and backward procedure. Let αt(i) be the observation probability of the
sequence O1 · · ·Ot and let qt = Si be the final state of the model λ:

αT (i) = Pr(O1O2 . . . OT , qt = Si|λ).

The probability of observing just O1 and the system being at his first step in
the state Si is:

α1(i) = Pr(O1, qt = Si|λ) = Pr(O1|qt = Si, λ)Pr(qt = Si|λ) = πibi(O1).

Imagine we want to calculate αt+1(j); we can reach the state qj at time t + 1
from every other state at time t with probability aij , thus we have the following
recursive relation:

αt+1(j) =
[ N∑

i=1

αt(i)aij

]
bjOt+1 1 ≤ t ≤ T − 1 ∧ 1 ≤ j ≤ N.

In this way we can calculate P (O|λ), i.e. the sum of the probabilities to recognise
the sequence for every final state:

P (O|λ) =
N∑

i=1

αT (i).

The algorithm computational complexity is N2T .
To solve the first problem we can also use the backward procedure. The re-

cursive relation is similar to the one given and the computational complexity is

5 Note the definition is slightly different from the previous but equivalent



obviously the same. If αt(i) was the observation probability of the first t sym-
bols and terminating in the state i, βt(i) is the probability of observing the last
t symbols of the sequence given the state i:

βt(i) = P (Ot+1 · · ·OT |qt = Si, λ).

So the recursive relation, is:

βt(i) =

{
1 t = T ∧ 1 ≤ i ≤ N∑N

j=1 aijbj(Ot+1)βt+1(j) 1 ≤ t ≤ T − 1 ∧ 1 ≤ i ≤ N

3 Finding the optimal state sequence

Formally, the problem requires to find the optimal state sequence Q which max-
imizes P (Q|O, λ) given the observation sequence O and the model λ. Note that:

P (Q|O, λ) =
P (Q,O|λ)
P (O|λ)

.

It follows that the problem is equivalent to the maximization of P (Q, O|λ). Let
γt(i) be the probability to find the model λ in the state i at time t while the
sequence O is produced. Then:

γt(i) =
αt(i)βt(i)
P (O|λ)

,

thus the solution for the given problem is, locally, for every t:

qt = arg max
1≤i≤N

[γt(i)].

Unlukily this approach works just locally, i.e. it allows one to find the state
qt which maximizes the probability of observing Ot, but we are not sure that
obtaining qt for 1 ≤ t ≤ T we get a sequence which is acceptable for the model
λ (for example some aij could be zero-components).

The Viterbi algorithm is a solution for the problem of maximization which
consider only acceptable sequences, and it is introduced in [5]. This algorithm
is very similar to the forward procedure with the main difference of a recursive
maximization of the paths. Let δt(i) be the probability of the optimal state
sequence which produced O1, · · · , Ot terminating with qt = i, then we can state
the following recursive relation:

δt+1 = [max
i

δt(i)aij ]bj(Ot+1),

where δ1(i) = πibi(O1). In this way we can calculate both the probability of the
optimal state sequence and the effective state sequence by keeping track in a
vector of the choices done for maximizations.



4 HMM training

The third problem concerns the training of a Hidden Markov Model. We have
to estimate the parameters of the model λ = (A,B, π) which maximise P (O|λ)
given a finite sequence of observation symbols O (i.e. the training set).

We can achieve the result by descent gradient methods obtaining a local
minimum (maximum). The computation of a gradient method is often hard, so
the descent is usually approximated by specific algorithms such as the random
direction descent or the line search described for example in [9].

The most common algorithm, which just gives local minimum (maximum), is
based on Expectation-Maximization or simply EM, and it is called Baum-Welch
introduced in [4].

Let ξt(i, j) be the probability to find the model in the state Sj at time t
and the state Sj al time t + 1, given the model and the observation sequence.
Formally:

ξt(i, j) = Pr(qt = Si, qt+1 = Sj |O, λ).

We can express this probability as:

ξt(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)

P (O|λ)
,

where P (O|λ) =
∑

i

∑
j αt(i)aijbj(Ot+1)βt+1(j). For the definition of γt(i) we

can state the relation:

γt(i) =
N∑

j=1

ξt(i, j)

We can iteratively estimate the parameters observing that
∑T−1

t=1 γt(i) can be
seen as the average number of visits at the state i, while

∑T−1
t=1 ξt(i, j) is the

number of transitions from the state Si to the state Sj . Then we obtain the
parameters for the model λ′ as:

π′ = γ1(t)

a′ij =
∑T−1

t=1 ξt(i, j)∑T−1
t=1 γt(i)

b′j(k) =

∑T
t=1∧Ot=vk

γt(j)∑T
t=1 γt(j)

It is possible to prove that the iterative application of this method converges to
a local maximum.

When we have a very complex model, the training algorithm performace can
be improved by using the Viterbi Learning : both for the gradient methods and
EM ones, the main idea is to consider just one path, or a group of paths, instead
of all possible paths.

However the Viterbi Learning is often not very useful because the improve-
ment of the performances (in practice it is possible to double the calculation



speed) leads to a much lower result quality than the one obtained by the ana-
lysis of all paths.

5 Overview on HMM applications

HMM are often used for speech recognition purposes as shown in [10] and [2], and
for bioinformatic purposes. There are some attempts of using them for images
classification purposes but the computational complexity of the algorithms and
the obtained results lead us to think that there is still much research to do in
this field (for example with modifications to the algorithms to fit new needs).
In [8] the authors show that the bi-dimensional classification with HMM does
not suffer the problems of local minimum or maximum6 as much as algorithms
based on CART and VQ.

As regards to bioinformatic, HMM are used for data mining purposes in two
ways:

– Database mining and sequence classification
– Pattern discovery

5.1 Introduction

HMM are often used for data mining in bioinformatic. The following sections
review the state of the art in this field with a special attention to the recognition
and comparison of proteic sequence. Each protein is fully described by an amino
acid sequence. The amino acid set can be considered a finite symbols alphabet;
however we are not sure that the sequence obtained from biology is without
errors, and moreover, if we have two proteins with the same function it can hap-
pen that an amino acid takes the place of another. This does not allow an exact
algorithm to solve the problems concerned to proteins comparison or recognition
and it leads to the use of probabilistic algorithms. There are two probabilistic
approaches: probabilistic grammars based algorithm and HMM based algorithm
(there are also a few specific algorithms for bioinformatic problems which are
able to catch the affinity between amino-acid as input).

5.2 Database Mining and classification

Suppose we have a trained HMM with sequence of a protein or a protein set
with same function. Then we can use it to look for similar amino acid sequences
in a sequences database. This can be done thanks to the assumption said in the
introduction, i.e similar function proteins have similar amino acid sequence. In
this case the required steps are the following:

6 This means a classification with a low rate of noise. On the other hand HMM based
algorithms can hit less details



– Training the model with well-known amino acid sequence of proteins belong-
ing to the same family (i.e. with similar function). EM algorithm can be used
for this purpose.

– Searching in the database with amino acid sequences (or part of them) cor-
responding to unknown proteins, the ones similar to the training set. Viterbi
algorithm can be used for this purpose.

Note that the use of the Viterbi algorithm give an affinity probability which
tends lo be lower as the analysed sequence becomes longer: this is not a problem
if all sequences have the same length but often this is not true. In these cases a
formula which weights the Viterbi score on the length of the sequence is used.
The formula depends on the analysed data.

As regards the classification issues, it is possible to train a model for each
well-known proteins family and then to associate to each sequence a score which
basically is the probability that the sequence is part of a protein family. In this
case we should have a training set which must be wide enough to carry this
classification on with good results. If this is not the case, we can use unsuper-
vised clustering algorithms and then train the models on the extracted clusters.
Finally we consider an hybrid method which is successfully used in bioinform-
atic. Suppose we have N classes of objects in a database, where N is unknown,
and suppose we have a training set which represents only M classes of objects.
Consider without loss of generality M < N . We can train the HMMs on the
known classes, thus we are able of course to classify the objects in the database
on the well-known classes but also group the remaining sequences according to
the normalized score respect to each model; the main idea is that if two amino
acid sequences are far in a similar way from the well-known classes there’s a high
probability that they belong the same new class. The algorithms based on this
method work better when N is not much greater than M .

The results obtained in bioinformatic are very good (see for example [9])
especially because it seems that HMM works well with the specific structure of
analysed data, i.e. the amino acid sequences building the proteins.

In the report [11] the authors compare HMM based algorithms performances
with the well-known Learning Vector Quantization and Template Matching per-
formances: they work on a generic bi-dimensional pattern recognition on images.
In this test, the models are trained on the same training set which was treated
with K-Mean, and then they study the error rate in function of the introduced
noise. The result is that the performances are almost the same for the three
algorithms when the noise level is low, but for increasing rate of it, HMM al-
gorithms are less efficient than the other two.

5.3 Two examples taken from Biology

In this section we try to answer this question: why are HMM very appreciated in
bioninformatic when other algorithms with same functions seem to have better
performance?



Let us consider two examples. The first one is very simple, taken from the
work of Churchill [3]: DNA consists of a sequence of bases which can be labelled
with the elements of the set A,C,G,T. In many sequencing analysis it can be
noted that there are some DNA segments where the bases A-T (state 1) are
strongly present, and other ones where the bases G-C are strongly present. The
interesting problem is to understand whether we are in the state 1 or 2 among a
DNA sequence. Churchill developed, on the base of experimental data and other
biological information the following model (see 1):

1 2

0.01

0.1

0.9
0.99

A 0.4
C 0.1
G 0.1
T 0.4

A 0.05
C 0.4
G 0.5
T 0.05

Fig. 1. HMM for the DNA classification made by Churchill. Initial and final states are
omitted as in the original work.

In this case the Hidden Markov Model is useful because it allows the re-
searcher to combine the experimental results and other theoretical notions in an
easy understandable model which has a strong foundations and can be directly
manipulated by well-known algorithms.

The second example shows that HMM are useful when the researcher needs
to have a strong control on the intersection penalties or the deletion penalties
on an amino acid sequence analysis. Intuitively, by the use of HMM, we can
treat each different variation on the pattern in a specific way. As already said, a
protein is coded by amino acids: these are an alphabet of twenty symbols. For
biological reasons, or for sampling errors, two proteins with the same function
can differs in their sequence for:

– the substitution of an amino acid with a similar one (biologists have tables
which give the affinity score of amino acids)

– insertion of an amino acid in the sequence
– deletion of an amino acid in the sequence

Of course, two proteins which belongs to the same family are expected to have
less differences than two proteins belonging to different families. Figure 2 shows
the model introduced in [7] to recognise amino acid sequences. For each matching
the authors define a deletion state and an insertion state. For each transition



leading to these states they set a low probability; Finally for the matching states
they define the amino acid emission probabilities for that proteins family. In this
way for each new state of the sequence we have to add 49 parameters (20 for the
emitting probabilities for the state M, 20 for the state D, and 9 for the transition
probabilities). This model is very flexible: for example we can represent the fact
that insertions at the beginning of the sequence are not important as the ones in
the middle (because they could represent an alignment problem) assuming not
very low probabilities for the transition leading to I0.

In [7] the authors show the experimental results given by the application of
the model and the results of the training.

Fig. 2. HMM introduced by Krogh et al. to recognise and classify proteins.

5.4 Pattern discovery

The previous section topics did not take in exam an important matter. How do
we set up the initial structure of a HMM? We know that the training can modify
the parameters of the model, i.e. the transition probabilities, the symbol emitting
probabilities and the initial distribution. We have the need to understand how
to build the initial model structure (see for example the number of states) and
its initial parameterization7.
7 Remember that both descent gradient based algorithm and EM based algorithm can

find local minimum or maximum thus they are influenced by the initial state



To understand the relation between this note and the pattern discovery prob-
lem, we have to go back to the bioinformatic field where these techniques are
successfully used. In fact biologists know some protein structures; this means
that they do not know the full amino acid sequence but they know the way they
alternate. For example there usually is an initial segment of amino acids, then
some sequences which are repeated more times and a final segment. Among this
regularity, the amino acid sequences can be quite different and they determ-
ine the protein function. Similar proteins have similar sequences. The protein
structure is very important for the structure of the HMM; so the result of the
application of the training algorithm starting from a well-known model, gives us
information on the similarity score between the protein structures; however this
job must be supervised.

5.5 Conclusion

The main benefits which data mining can obtain by the use of HMM are related
to their solid stochastic-theoretical foundation which stays behind the known
algorithms and their efficiency. Moreover these models are useful in the following
contexts, and they are essential for many bioinformatic applications:

– they can perform sequence matching for sets where elements differs for in-
sertions, deletions and they can evaluate the associated penalty;

– the model training can be unsupervised;
– they can work with variable length sequences;
– they can be used for alignment purposes, data mining and classification,

structural analysis and pattern discovery;
– they can be used for recognition purposes in hierarchical processes.

HMM applications have two main limits. The first one concerns the growth
of the number of parameters of the model when the number of the states or the
input alphabets grows. This leads to bad algorithm performances due to time
issues and bad results depending on the growth of local maximum and minimum.

The second limit is that the emission function and the transition function are
independent and both depends only on the hidden state. A typical example of a
correlation which can’t be caught by a HMM is the following: suppose that the
emission of the symbol X in the state Si is often followed by the emission of the
symbol Y in the state Sj and that X ′ in the state Si is often followed by Y ′ in
the state Sj : it is clear that this situation cannot be represented by a first order
Markov chain and consequently disinformation is lost in the HMM analysis.
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