
HET-NETs 2010
ISBN XXX–XXX

pp. xx–xx

A tool for the numerical solution of cooperating Markov chains in
product-form

SIMONETTA BALSAMO GIAN-LUCA DEI ROSSI ANDREA MARIN a

aUniversità Ca’ Foscari di Venezia
Dipartimento di Informatica

via Torino, 155 Mestre
Italy

{balsamo,deirossi,marin}@dsi.unive.it

Abstract:
Performance modelling of complex and heterogeneous systems basedon analytical models are often solved

by the analysis of underlying Markovian models. We consider performance models based on Continuous Time
Markov Chains (CTMCs) and their solution, that is the analysis of the steady-state distribution, to efficiently
derive a set of performance indices. This paper presents a tool thatis able to decide whether a set of cooperating
CTMCs yields a product-form stationary distribution. In this case, the tool computes the unnormalised steady-
state distribution. The algorithm underlying the tool has been presented in [10] by exploiting the recent advances
in the theory of product-form models such as the Reversed Compound Agent Theorem (RCAT) [5]. In this paper,
we focus on the peculiarities of the formalism adopted to describe the interacting CTMCs and on the software
design that may have interesting consequences for the performance community.

Keywords: : Product-form, queueing networks, numerical solution of Markov chains

1. Introduction

Markovian models have proved to be a robust and versatile support forthe performance
analysis community. Performance modeling of complex heterogeneous systemsand net-
works based on analytical model usually describes a system using a high-level formalism,
such as Stochastic Petri Nets (SPNs), Performance Evaluation ProcessAlgebra (PEPA),
queueing systems or networks, from which its underlying Continuous Time Markov Chain
(CTMC) is derived. The desired performance indices, at steady-state, are computed by the
analysis of the model CTMC. This computation is usually a hard task, when notunfeasible,
because the solution of the CTMC usually requires to solve the system of Global Balance
Equations (GBEs) (with a computational complexity ofO(Z3), whereZ is the number of
states of the model) to derive the stationary probability of each state. Some algorithms that



2

numerically solve the GBEs more efficiently for special cases or using approximations have
been defined.

Product-form models take a different approach. They apply thedivide et impera
paradigm to efficiently solve complex models. Informally, a modelS is seen as consist-
ing of several interacting sub-modelsS1, . . . , SN so thatm = (m1, . . . , mN ) is a state of
S andmi is a state ofSi. S is in product-form with respect toS1, . . . , SN if its stationary
distributionπ(m) satisfies the following property:

π(m) ∝
N
∏

i=1

gi(mi),

wheregi is the stationary distribution of sub-modeli considered in isolation and oppor-
tunely parametrised. Roughly speaking, from the point of view of a single sub-modelSi,
the parametrisation abstracts out the interactions with all the other sub-modelsSj , j 6= i. It
should be clear that, since the state space of a sub-modelSi is much smaller than that ofS the
solution of its GBEs may be computed efficiently. Note that modularity becomes a key-point
both for the analysis and the description of the model, since it is a good engineering practice
to provide modular models of systems.

Exploiting the product-form solutions requires to address two problems: 1)Deciding if
modelS is in product-form with respect to the given sub-modelsS1, . . . ,SN ; 2) Computing
the parametrisation of the sub-modelsS1, . . . , SN in order to study them in isolation. Note
that we have not listed the solution of the sub-model CMTCs as a problem because we sup-
pose that the cardinalities of their state spaces are small enough to directly solve the GBEs. If
this is not the case, a product-form analysis of the sub-models may be hierarchically applied.
In literature, the first problem has been addressed in two ways. The first consists in proving
that a composition of models that yield some high-level characteristics is in product-form.
For instance the BCMP theorem [2] is based on this idea because the authors specify four
type of queueing disciplines with some service properties and prove that a network of such
models has a product-form solution. The second way is more general, i.e., the properties
for the product-form are defined at the CTMC level. Although this can leadto product-form
conditions that are difficult to interpret, this approach really enhances thecompositionality of
the models. In this paper, we often refer to a recent result about product-forms: the Reversed
Compound Agent Theorem (RCAT) [5]. This theorem has been extensively used to prove
a large set of product-form results previously known in literature (BCMPproduct-form [4],
G-networks with various types of triggers [6], just to mention a few). Problem 2 is usually
strictly related to Problem 1. In general, the parametrisation of the sub-modelsrequires the
solution of a system of equations that is called system of traffic equations. For several years
the fact that product-form solutions must be derived from linear systemsof traffic equations
has been considered true, but the introduction of G-networks has shown that this is not nec-
essary.

Contribution. This paper illustrates a tool that given the description of a set of coop-
erating CTMCs (i.e., when some transitions in one chain force transitions in other chains)



3

it decides whether the model is in product-form and, in this case, computes itsstationary
distribution. The tool is based on the algorithm presented in [10] which is briefly resumed
in Section 2.. Since the analysis of the product-form is performed at the CTMC level, it is
able to study product-form models that are originated form different formalisms, such as ex-
ponential queueing networks, G-networks or queueing networks with blocking. To this aim,
we observe that it is important to decouple the analyser and the model specification interface
(MSI). We propose both a Java implementation of the analyser and of a general MSI (note
that multiple specification interfaces may be implemented according to the modeller needs).
With this tool, a modeller has a library of product-form models that, even if they were cre-
ated using some (possibly high-level) formalism, are stored as stochastic automata (basically
a CTMC with labelled transitions allowing self-loops or multiple arcs between states). Using
the MSI (which acts as a client with respect to the analyser), the various sub-models can be
instantiated and their interactions be specified. The operations that the modeller performs in
the MSI are translated into commands for the server side, i.e., the analyser. The analysis is
requested from the MSI, computed by the analyser and displayed by the MSI. We have also
developed a textual interface that will not be presented in this paper to allowthe usage of the
analyser from non-graphical clients.

Paper structure.The paper is structured as follows. Section 2. briefly illustrates the for-
malism used to describe the interactive CTMCs, the idea underlying RCAT andthe algorithm
presented in [10]. Section 3. gives the details of the software implementation.In particular,
Section 3.1. presents the naming conventions which are an important matter to enhance the
modularity of the tool, Section 3.2. the client server architecture, and finally Section 3.3.
gives a brief idea of some use-cases. Section 4. shows an instance of implemented MSI.
Some final remarks conclude the paper in Section 5..

2. Theoretical background

In this section we briefly recall some basic definitions and models to keep the paper self-
contained. We present the topics in a way that allows us to simplify the description of the
tool algorithm, features and architecture in what follows.

Let us suppose to haveN modelS1, . . . , SN that cooperate, i.e., some transitions in a
modelSi force other transitions in a modelSj , i 6= j. At a low-level we can describe each
model by a set of labelled matrices:Ma

i is the matrix with labela associated with model
Si. Labels may be chosen arbitrarily when a model is defined. However, we always assume
that every model has at least one label calledǫ. We consider, at first, models with a finite
number of states,Zi. Ma

i is aZi × Zi matrix with non-negative elements that represent the
transition rates between two states of the model. Note that self-loops, i.e., transitions from
a state to itself, are allowed. The infinitesimal generatorQi can be easily computed as the
sum of all the matrices associated with a model, where the diagonal elements arereplaced
with the opposite of the sum of the extra-diagonal row elements. If the stationary distribution
π exists (and hereafter we will work under this hypothesis) then it can be computed as the



4

unique solution ofπQ = 0 subject toπ1 = 1. Fromπ we can compute the rates in the
reversed process associated with each label [9, 5] in a straightforward way. Suppose that
Ma

i [α, β] > 0, with 1 ≤ α, β ≤ Zi and1 ≤ i ≤ N , then the reversed rate of this transition,
denoted byMa

i [α, β] is defined as follows:

Ma
i [α, β] =

π(α)

π(β)
Ma

i [α, β]. (1)

Let us show how we specify the interaction of two models. According to RCATre-
strictions, we just deal with pairwise interactions, i.e., a transition in a model may cause a
transition just for another model. The cooperation semantics used in this paper (but also in
[5]) is very similar to that specified by PEPA, i.e., a Markovian stochastic process algebra
introduced by Hillston in [8]. Consider sub-modelsSi andSj and suppose that we desire
to express the fact that a transition labelled witha in Si can occur only ifSj performs a
transition labelled withb, and vice-versa. Specifically, ifSi andSj are in statessi, sj such
that they are able to perform a transition labelled witha andb, respectively, that take the
sub-models to states′i ands′j , then they can move simultaneously to states′i ands′j . The rate
at which this joint transition occurs is decided by the active sub-model that can beSi or Sj .
We express such a cooperation betweenSi andSj , with Si active, as follows:

Si

y
×

(a+,b−)
Sj ,

which means that transitions labelled bya isSi are active with respect to the cooperation with
transitions labelled byb of Sj and originate a models where the joint transitions are labelled
with y. The fact that the resulting model is still Markovian should be obvious because the
synchronisation inherits the properties derived for that of PEPA. Note that the major differ-
ence is that we can synchronise different labels and assign a different name to the resulting
transitions. This happens because we would like a modeller to be able to use a library of
models whose labels have a local scope. In this way the library items can be created inde-
pendently and instantiated several times in the same model.

Example 1 (Example of cooperation) Suppose we would like to model within the presented
framework the trivial queueing network depicted in Figure 1 where two identical exponential
queues with finite capacitiesB are composed in tandem. When the first queue if saturated,
arrivals are lost. When the second queue is saturated at a job completion ofthe first queue,
the customer is served again (repetitive service blocking). Customers arrive to the first queue
according to a Poisson process with rateλ. A queue can be described by three matrices with
dimensionB ×B:

• Mǫ = 0 that describes the transitions that cannot synchronise (something like the
private part of the model).

• Ma whereMa[α, β] = λ if β = α + 1 or Ma[α, β] = 0, otherwise. This matrix
describes the transitions corresponding to arrival events.



5

QUEUE 1 QUEUE 2

Fig. 1. Tandem of two exponential finite capacity queues.

• Md, whereMd[α, β] = µ if β = α − 1 or Md[α, β] = 0, otherwise. This matrix
describes the transitions corresponding to job completion events.

Consider two instances of this model,S1 andS2. The tandem network of Figure 1 can be
described by the modelS1×

y
(d+,a−)

S2.

A pairwise cooperation may involve more than one label. In this case we may write:

S1

y1

×
(a+

1
,b−

1
)

y2

×
(a−

2
,b+

2
)

S2

to specify thatS1 (S2) is active ony1 (y2) and passive ony2 (y1) with transitions labelleda1

(b1) anda2 (b2), respectively.
The following operator allows us to change all the rates of a matrix labelled bya:

S1{a ← λ} is the sub-modelS1 with only matrix Ma modified so that all its non-zero
elements are set toλ.

RCAT.Theorem RCAT [5] gives sufficient conditions to decide and derive theproduct-
form solution of pairwise interactions (possibly involving more than one label)between two
sub-models. Le us consider the following synchronisation:

S = S1

y1

×
(a∗

1
,b∗

1
)
. . .

yT

×
(a∗

T
,b∗

T
)
S2,

where symbol∗ stands either for a+ or a−. The conditions to apply RCAT are:

1. If at is active (passive) inS1 andbt is passive (active) inS2 thenMat

1 [·, z] (Mat

1 [z, ·])
has exactly one non-zero element for every1 ≤ z ≤ Z1, andM bt

2 [z, ·] (M bt

2 [·, z]) has
exactly one non-zero element for every1 ≤ z ≤ Z2

1.

2. Suppose that for every pair(a+
t , b−t ) ((a−t , b+

t )) we know a valueβt (αt) such that:

S′

1 = S1{at ← αt} for all at passive in the cooperation

S′

2 = S2{bt ← βt} for all bt passive in the cooperation

and given an active labelat (bt) in S1 (S2) all the transitions with that label have the
same reversed rateβt (αt).

1M
at

1 [z, ·] represents thez-th row vector of the matrix, and analogouslyM
at

2 [·, z] represents thez-th column
vector.



6

If these conditions are satisfied, then the stationary distributionπ of S is π ∝ π1π2 (for
each positive recurrent state ).

Basically, the first condition says that every state of a model which is passive (active)
with respect to a label must have one outgoing (incoming) transition with that label. To un-
derstand the second condition, suppose that(a+

t , b−t ) is a pair in the synchronisation between
S1 andS2. Then, we must determine a rateβt to assign to all the transitions labelled bybt

that is also the constant reversed rate of the active transitionsat in S1. Note that, in general,
this task is not easy, and is shown to be equivalent to the solution of the traffic equations in
Jackson networks and G-networks. The algorithm proposed in [10] aimsto give an iterative,
numerical and efficient way to perform this computation.

Although it is out of the scope of this paper discussing the modelling implications of
RCAT conditions, it is worth pointing out that several works in literature have proved that
this result has not only a theoretical relevance but can be actually used tocharacterise the
product-form solutions for models that may be used for practical case-studies.

The underlying algorithm.The algorithm that underlies our tool has been presented in
[10]. It takes the matrices that describe modelsS1, . . . , SN and the synchronisations as input,
and computes as output a boolean value which is true if a product-form hasbeen identified,
false otherwise. In case of product-form, the unnormalised stationary distribution is output.
In its simplest formulation (two sub-models and without optimisations) it can be summarised
in the following steps:

1. Generate randomlyπ1 andπ2

2. Compute the reversed rates of the active transitions using Equation (1)

3. Use the mean of the reversed rates for each label to set the rates of thecorresponding
passive transitions. For instance leta be active forS1 andb passive forS2. Then letx
be the mean of the reversed rates of the non-zero elements inMa

1. Mb
2 is updated by

setting all the non-zero elements tox

4. Computeπ1 andπ2 as solution of the GBEs of the underlying CTMCs ofS1 andS2

5. Are the reversed rates of the transitions constant for each active label?

• true ⇒ product-form found and the stationary distribution isπ ∝ π1π2 and
terminate.

• false and the maximum number of iterations has been reached⇒ product-form
not found and terminate.

• false and the maximum number of iterations has not been reached⇒ go to step
3

The algorithm is extended in order to include the possibility of multiple pairwise syn-
chronisations (as proposed in [7]) and several optimisations: an efficient way to define an
order in the solution of the sub-models (based on Tarjan’s algorithm [12]), a parallel imple-
mentation, and a special technique to deal with self-loops.



7

3. Tool

In this section we describe some salient characteristics of the proposed tool. First, we
explain our approach in the specification of the interactions between the sub-models. Then,
we describe the client-server architecture and illustrate its strengths.

3.1. Specifying the interactions

In order to better understand the motivations of this section, let us consideragain the
model depicted by Figure 1 with a variation, i.e., after a job completion at the firststation the
customer may exit the system with probabilityp or go to the second station with probability
1 − p, as depicted by Figure 2. We note that the processes underlying the firstand second

QUEUE 1 QUEUE 2

p

1-p

Fig. 2. Probabilistic routing in the model of Figure 1.

p

1-p

a b a

b

c

a

b
c

(A) (B) (C)

Fig. 3. Types of connections between labels.

queue are different, and we could not use two instances of the same modelanymore. Indeed,
in the first queue the transition corresponding to a job completion from statej to statej −
1 must be split in two: one synchronising with the arrivals in the second queuewith rate
(1 − p)µ1 and one without synchronisation with ratepµ1. We decided that this splitting of
transitions should be done automatically by our tool, so that the library of sub-models can be
defined without any knowledge about the future usage and connections.

From the modeller point of view, a sub-model is seen just as a black box where the labels
are exported, i.e., a model specification consists of a set of connections about instances of
modules. The simplest possible connection between two labels is that depicted by Figure 3-
(A). Note that in this Figure we use a graphical representation of the connections which is
coherent with the MSI that we developed, however different approaches are possible (such
as a PEPA-like syntax). Figure 3-(A) illustrates a labela of a sub-model that interacts with a
labelb of another sub-model. The arrow is oriented, meaning thata is active andb is passive.
This specification of synchronisation does not require any modification to the structure of
the active or passive sub-models. Let us now consider Figure 3-(B).In this case the active
actiona of one sub-model synchronises with passive actionsb (with probabilityp) or c (with
probability1−p) of other sub-models. In this case, we need to alter the structure of the active
model. Recall that matrixMa represents the transitions labelled bya. Then we defineMa′

=
pMa andMa′′

= (1−p)Ma. Hence, in the active sub-model, matricesMa′

andMa′′

replace
matrix Ma. Note that this technique can be applied to an arbitrary number of probabilistic
synchronisations under the obvious constraint that the synchronisationprobabilities must sum



8

to a value which is less or equal to1. Suppose that the sum of the probabilitiesp1, . . . , pK is
pt < 1 (see Figure 2 for an example). In this case we haveMak

= pkM
a for k = 1, . . .K,

andMǫ (which is always present in a model description an represents the transition that
cannot synchronise) is replaced byMǫ + Ma(1 − pt). We use the notationS1×

y,p
(a+,b−)

S2

to denote thata in S1 is active in the synchronisation withb in S2, and the synchronisation is
calledy and occurs with probabilityp. The latter case is depicted by Figure 3-(C) where two
active labelsa andb (that can belong to the same or different sub-models) synchronise with
the same passive labelc. In this case we simply replace matrixMc of the passive model with
two matricesMc′ andMc′′ identical to the former (we do not need to modify the rates since
they are replaced with the rate of the corresponding active transitions).

Example 2 (Application to the model of Figure 2) Let us show how we model the tandem
of exponential queues with finite capacitiesB depicted by Figure 2. We still consider two
identical instances of the same sub-model which is described in Example 1. The user specifies
in some way the interactions. The model corresponding to the second queue does not change,
while that corresponding to the first queue becomes the following:

• Mǫ = pMd that describes the transitions that cannot synchronise

• Ma,

• Md′ = (1− p)Md,

whereMa andMd are the matrices defined in Example 1.

It may be worth pointing out some notes about this approach to the specification of the
sub-model interactions: 1) Its scope is to allow the specification of a model despite to the syn-
chronisations it will be involved in. For instance, if we have a model of a simpleexponential
queue, we can straightforwardly define a Jackson queueing network with probabilistic rout-
ing by simply instantiating several copies of the same model. Moreover, connections have a
simple and intuitive meaning. 2) When an active label is split the infinitesimal generator of
the sub-model does not change, i.e., its stationary distribution does not change. Moreover, if
the revered rates of the transitions corresponding to active labela are constant in the original
model, then also the transitions corresponding to a split label associated witha have constant
reversed rates. 3) The effects of the replication of passive label matrices on the algorithmic
analysis of the product-form is that the rate associated with the passive transition is the sum
of the (constant) reversed rates of every associated active transition.4) Specifying pairwise
interactions where the same label is simultaneously active and passive with respect to two or
more synchronisations is not allowed. This characteristic is inherited from the semantics of
the cooperation given in the theoretical paper which this tool is based on.

3.2. Client-server architecture

The tool consists of two parts: the analyser (the server) and the MSI (theclient). The
idea is that although we propose a graphical client side that exploits the strengths of our



9

modular approach and the specification of the module synchronisation, onecould write his
own MSI in order to make it compatible with the favourite formalism.

The server opens an independent session for each MSI connected.It provides a character
interface which is used by the MSI to: 1) Create/Import a sub-model, 2) Specify a synchro-
nisation between two labels of two sub-models, 3) Require the solution of a model given a
precision and a maximum number of iterations. In the first and second case the server just
answers the client if the required operation has been executed correctly, while the latter one
returns the following data: 1) A flag that specifies if the product-form hasbeen identified,
2) The steady-state probabilities of each sub-model, 3) The reversed rates of all the active
transitions. Note that knowing the reversed rates of the active transitions means knowing
the solution of the system of traffic equations. In [10] it is proved that when the algorithm
analyses a Jackson queueing network, the iterations are equivalent to the Jacobi scheme for
the solution of the model linear system of traffic equations. Similarly, when it is applied to a
G-network it is equivalent to iterative scheme proposed by Gelenbe et al.for the solution of
the non-linear system of traffic equations [3].

3.3. Use cases

In this section we illustrate some examples of case studies. We give a description of the
model which is independent of the MSI that will be adopted. We just focus our attention
on three well-known results about product-form that have been widely used in the commu-
nication networks performance evaluation analysis, although several other instances may be
easily produced.

Jackson networks.Jackson networks are easy to study because they are characterised by
a linear system of traffic equations. However, in our framework, they require some attention
since each sub-model (i.e., each exponential queue) has an infinite state space. In many
cases in which the sub-model is known to have a geometric steady-state distribution and the
transitions between statesn andn + 1 are the same for alln ≥ 0, we can simply represent
the sub-model using just a pair of adjacent states [10]. We apply this technique to reduce the
infinite state space of a sub-model we must disable the RCAT structural check (Condition
1) because some transitions that are present in the real model, are omitted in thefinite one.
Figure 4 shows the truncation of an exponential queue. If the synchronisations it will be
involved in imposea to be passive andd to be active, we note that Condition 1 of RCAT
is satisfied for the infinite model but is not satisfied for the reduced one (e.g., staten + 1
does not have any incoming active transition or outgoing passive transition). Nevertheless,
the algorithm may still be applied, so the structural check for this model must bedisabled.

Example 3 (Jackson network) Consider the Jackson network depicted by Figure 5. A sub-
model of an exponential queue consists of three matrices (states are in the ordern andn+1):

Mǫ = 0 Ma =

[

0 λ

0 0

]

Md =

[

0 0
µ 0

]



10

n-1 n n + 1 n + 2

a a a a a

d d d d d

Fig. 4: Truncation of the birth and death process under-
lying an exponential queue.

QUEUE1 QUEUE2

QUEUE3

λ2

p

q

1− p

1− q

λ2

Fig. 5. Jackson network of Example 3.

We also use a single-state sub-model to represent the external Poissonarrivals withMǫ = 0

andMa = [λ]. Supposing the service rates for Queue1, 2 and3 areµ1, µ2 andµ3, let S be
the library model for the queue andA that for the external arrivals, then we have:

Si = S{d← µi} i = 1, 2, 3 At = A{a← λ1 + λ2}

The synchronisations are specified with the following commands to the server:

At

y1,λ1/(λ1+λ2)
×

(a+,a−)
S1, At

y2,λ2/(λ1+λ2)
×

(a+,a−)
S2, S1

y3,q
×

(d+,a−)
S2, S1

y4,1−q
×

(d+,a−)

y5,1−p
×

(a−,d+)
S3.

G-networks.G-networks can be modelled in our frameworks in an analogous way of
that presented for Jackson networks. Note that although the models are different both in the
specification and in the analysis, our tool treats them uniformly by exploiting theRCAT the-
oretical result. The truncation mechanism presented for Jackson queueing centers is applied
also for G-queues which consist of three matrices: the epsilon,A representing the transi-
tions for positive customer arrivals,d representing the transitions for the job completion and,
finally, a representing the transitions for the negative customer arrivals:

Mǫ = 0, MA =

[

0 λA

0 0

]

, Md =

[

0 0
µ 0

]

, Ma =

[

0 0
λa 0

]

.

Finite capacities queueing networks with blocking.Akyildiz’s product-form queueing
networks with blocking [1] can be analysed by this tool. Finite capacity queues have a finite
state space so the truncation mechanism is not needed. In order to reproduce Akyldiz’s results
on the reversible routing it suffices to synchronise a departure label ofa queue with an arrival
label of another queue considering the former passive and the latter active.

4. MSI implementation example

In this Section we illustrate a possible implementation of the MSI. Recall that the tool
client-server architecture allows for different MSIs according to the modeller’s needs. We



11

show a general-purpose MSI that is independent of the formalism used by the modeller.
As an example we model the Jackson network depicted by Figure 5. Each sub-model is
represented by a coloured circle and arcs represent the synchronisations. Each object, circle
or arc, has a name. In the former case it is the sub-model name, in the latter it has the form
y(a, b) that stands forS1×

y
(a+,b−)

S2, whereS1 is the sub-model from which the arc outgoes
from, andS2 is the destination sub-model. A screen-shot is shown in Figure 6. By clicking

Fig. 6: Screen-shot of the model corresponding to the
Jackson network of Figure 5.

Fig. 7: Screen-shot of the window for the synchronisation
details.

on a sub-model circle a window appears with its description in matrix-form andthe user
is allowed to perform changes (add or remove transitions or change rates). When a arc is
set between two sub-model the window shown in Figure 7 appears (the required parameters
should be clear). Note that, although one could point out that a standard tool for the analysis
of Jackson networks may present a more intuitive interface, we would like toremark that
this is the same interface we would use for any stochastic model that can be solved by the
algorithm presented in [10]. However, one could also decide to extend theMSI in order to
be able to associate a specific symbol to some sub-models of the library, but this is out of the
scope of this presentation.

5. Final remarks

We have presented a tool that we are developing for the analysis of product-form models.
It exploits some new results that appeared in product-form model theory and the algorithm
presented in [10]. It has proved to be able to identify and compute several product-form re-
sults based on pairwise synchronisations, such as Jackson networks,G-networks, Akyildiz’s
results about product-form networks with blocking and other that have been described in
[10]. Current research has three objectives: 1) allow for the specification of models with
multiple incoming active transitions, exploiting the result presented in [11], 2) allow for the



12

specification of models with multiple outgoing passive transitions, and 3) allow for the spec-
ification of models with regular but infinite structure. The last goal seems to bethe hardest
one. Indeed, an approximation is needed to truncate the model and we wouldlike it to be
decided dynamically in order to produce results which are correct within a specified bound.

References

[1] I. F. Akyildiz. Exact analysis of queueing networks with rejection blocking. In H. G.
Perros and T. Atliok, editors,Proc. of the 1st Internat. Workshop on Queueing Networks
with Blocking, pages 19–29, North-Holland, Amsterdam, 1989.

[2] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios. Open, closed, and mixed
networks of queues with different classes of customers.J. ACM, 22(2):248–260, 1975.

[3] E. Gelenbe. Product form networks with negative and positive customers. Journal of
Applied Prob., 28(3):656–663, 1991.

[4] P. G. Harrison. Reversed processes, product forms, non-product forms and a new proof
of the BCMP theorem. InInt. Conf. on the Numerical Solution of Markov Chains
(NSMC 2003), Urbana IL, USA, September 2-5 2003, pages 289–304, September 2003.

[5] P. G. Harrison. Turning back time in Markovian process algebra.Theoretical Computer
Science, 290(3):1947–1986, January 2003.

[6] P. G. Harrison. Compositional reversed Markov processes, with applications to G-
networks.Perform. Eval., Elsevier, 57(3):379–408, 2004.

[7] P. G. Harrison and T. T. Lee. Separable equilibrium state probabilitiesvia time reversal
in markovian process algebra.Theoretical Computer Science, 346(1):161–182, 2005.

[8] J. Hillston. A Compositional Approach to Performance Modelling. PhD thesis, Depart-
ment of Computer Science, University of Edimburgh, 1994.

[9] F. Kelly. Reversibility and stochastic networks. Wiley, New York, 1979.

[10] A. Marin and S. Rota Bulò. A general algorithm to compute the steady-state solution of
product-form cooperating Markov chains. InProc. of MASCOTS 2009, pages 515–524,
London, UK, September 2009.

[11] A. Marin and M. G. Vigliotti. A general result for deriving product-form solutions of
markovian models. InProc. of First Joint WOSP/SIPEW Int. Conf. on Perf. Eng., San
Josè, CA, USA, To appear.

[12] R. Tarjan. Depth-first search and linear graph algorithms.SIAM J. on Computing,
1(2):146–160, 1972.


