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Abstract:

Performance modelling of complex and heterogeneous systemsdraaedlytical models are often solved
by the analysis of underlying Markovian models. We consider perfoceanodels based on Continuous Time
Markov Chains (CTMCs) and their solution, that is the analysis of the ststadg distribution, to efficiently
derive a set of performance indices. This paper presents a tods thiale to decide whether a set of cooperating
CTMCs yields a product-form stationary distribution. In this case, the towlputes the unnormalised steady-
state distribution. The algorithm underlying the tool has been presented]ibyxploiting the recent advances
in the theory of product-form models such as the Reversed Compogeit Aheorem (RCAT) [5]. In this paper,
we focus on the peculiarities of the formalism adopted to describe the ititgy&&TMCs and on the software
design that may have interesting consequences for the performamoaunity.
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1. Introduction

Markovian models have proved to be a robust and versatile suppahiefgerformance
analysis community. Performance modeling of complex heterogeneous syeteinrset-
works based on analytical model usually describes a system using del@Hormalism,
such as Stochastic Petri Nets (SPNs), Performance Evaluation Prdigetsa (PEPA),
gueueing systems or networks, from which its underlying Continuous TintkdvaChain
(CTMC) is derived. The desired performance indices, at steady-staeomputed by the
analysis of the model CTMC. This computation is usually a hard task, whemnfieasible,
because the solution of the CTMC usually requires to solve the system odl@alance
Equations (GBEs) (with a computational complexity@fZ?3), whereZ is the number of
states of the model) to derive the stationary probability of each state. Sonrétatgothat



numerically solve the GBEs more efficiently for special cases or usinggjppations have
been defined.

Product-form models take a different approach. They applydivele et impera
paradigm to efficiently solve complex models. Informally, a mofdk seen as consist-
ing of several interacting sub-modéds, ..., Sy so thatm = (mq,...,my) is a state of
S andm; is a state ofS;. S is in product-form with respect t81, ..., Sy if its stationary
distribution7(m) satisfies the following property:

N
m(m) [ g:(mo).
=1

where g; is the stationary distribution of sub-modgekonsidered in isolation and oppor-
tunely parametrised. Roughly speaking, from the point of view of a singtensodel.S;,
the parametrisation abstracts out the interactions with all the other sub-ntgdgls- 7. It
should be clear that, since the state space of a sub-nSpemiuch smaller than that ¢fthe
solution of its GBEs may be computed efficiently. Note that modularity becomeg jpdiet
both for the analysis and the description of the model, since it is a good enigig@ractice
to provide modular models of systems.

Exploiting the product-form solutions requires to address two problemBediding if
modelS is in product-form with respect to the given sub-modgls. . ., Sy; 2) Computing
the parametrisation of the sub-modeéls ..., Sy in order to study them in isolation. Note
that we have not listed the solution of the sub-model CMTCs as a probleauseave sup-
pose that the cardinalities of their state spaces are small enough to dirdalyreoGBES. If
this is not the case, a product-form analysis of the sub-models may bechieedly applied.
In literature, the first problem has been addressed in two ways. Thedirsists in proving
that a composition of models that yield some high-level characteristics is ingréaim.
For instance the BCMP theorem [2] is based on this idea because thesaspleaify four
type of queueing disciplines with some service properties and prove trewank of such
models has a product-form solution. The second way is more general, @qrdperties
for the product-form are defined at the CTMC level. Although this canfeguoduct-form
conditions that are difficult to interpret, this approach really enhancesthpositionality of
the models. In this paper, we often refer to a recent result about giréahuns: the Reversed
Compound Agent Theorem (RCAT) [5]. This theorem has been extdygsiised to prove
a large set of product-form results previously known in literature (BGivtiluct-form [4],
G-networks with various types of triggers [6], just to mention a few). kR is usually
strictly related to Problem 1. In general, the parametrisation of the sub-mredgises the
solution of a system of equations that is called system of traffic equationsekeral years
the fact that product-form solutions must be derived from linear systéitnaffic equations
has been considered true, but the introduction of G-networks hasighaivthis is not nec-
essary.

Contribution. This paper illustrates a tool that given the description of a set of coop-
erating CTMCs (i.e., when some transitions in one chain force transitions in dta@s)



it decides whether the model is in product-form and, in this case, computsstitsnary
distribution. The tool is based on the algorithm presented in [10] which iflyoriessumed
in Section 2.. Since the analysis of the product-form is performed at theIEMEI, it is
able to study product-form models that are originated form differemiétisms, such as ex-
ponential queueing networks, G-networks or queueing networks witkiplg. To this aim,
we observe that it is important to decouple the analyser and the model cgigmifinterface
(MSI). We propose both a Java implementation of the analyser and of sagéh®l (note
that multiple specification interfaces may be implemented according to the modeliis) .nee
With this tool, a modeller has a library of product-form models that, even if thenewre-
ated using some (possibly high-level) formalism, are stored as stochasticaattbasically
a CTMC with labelled transitions allowing self-loops or multiple arcs between }taiesg
the MSI (which acts as a client with respect to the analyser), the varitimedels can be
instantiated and their interactions be specified. The operations that the mpéeltems in
the MSI are translated into commands for the server side, i.e., the analyseanalysis is
requested from the MSI, computed by the analyser and displayed by thaNd3$ave also
developed a textual interface that will not be presented in this paper to tiéusage of the
analyser from non-graphical clients.

Paper structureThe paper is structured as follows. Section 2. briefly illustrates the for-
malism used to describe the interactive CTMCs, the idea underlying RCAharadgorithm
presented in [10]. Section 3. gives the details of the software implementétiparticular,
Section 3.1. presents the naming conventions which are an important mattéatwerthe
modularity of the tool, Section 3.2. the client server architecture, and finakyig 3.3.
gives a brief idea of some use-cases. Section 4. shows an instancelehenped MSI.
Some final remarks conclude the paper in Section 5..

2. Theoretical background

In this section we briefly recall some basic definitions and models to keeppiee geif-
contained. We present the topics in a way that allows us to simplify the desorigftithe
tool algorithm, features and architecture in what follows.

Let us suppose to hav®¥ model Sy, ..., Sy that cooperate, i.e., some transitions in a
model S; force other transitions in a modsl;, i # j. At a low-level we can describe each
model by a set of labelled matricedd is the matrix with labek associated with model
S;. Labels may be chosen arbitrarily when a model is defined. Howeverlwayaassume
that every model has at least one label caledVe consider, at first, models with a finite
number of states/;. M is aZ; x Z; matrix with non-negative elements that represent the
transition rates between two states of the model. Note that self-loops, i.eitiorafom
a state to itself, are allowed. The infinitesimal gener&grcan be easily computed as the
sum of all the matrices associated with a model, where the diagonal elementplaced
with the opposite of the sum of the extra-diagonal row elements. If the statidisdribution
7 exists (and hereafter we will work under this hypothesis) then it can byuoted as the



unique solution ofrQ = 0 subject torl = 1. From=« we can compute the rates in the
reversed process associated with each label [9, 5] in a straightfbmiay. Suppose that
Mo, f] > 0, with 1 < o, 3 < Z; and1 < i < N, then the reversed rate of this transition,
denoted byM¢|a, /] is defined as follows:
Mo, B = 2 atla, ). @
Y 7'('(6) 1 Y

Let us show how we specify the interaction of two models. According to RGAT
strictions, we just deal with pairwise interactions, i.e., a transition in a model auageca
transition just for another model. The cooperation semantics used in this (bap&lso in
[5]) is very similar to that specified by PEPA, i.e., a Markovian stochasticqa® algebra
introduced by Hillston in [8]. Consider sub-modeds and.S; and suppose that we desire
to express the fact that a transition labelled witin S; can occur only ifS; performs a
transition labelled wittb, and vice-versa. Specifically, H; and.S; are in states;, s; such
that they are able to perform a transition labelled withnd b, respectively, that take the
sub-models to statg ands’, then they can move simultaneously to stgtands’. The rate
at which this joint transition occurs is decided by the active sub-model #mabes; or 5.
We express such a cooperation betwSgandsS;, with S; active, as follows:

S; xS
(at,b7)

which means that transitions labelledis S; are active with respect to the cooperation with
transitions labelled by of S; and originate a models where the joint transitions are labelled
with y. The fact that the resulting model is still Markovian should be obvioususscthe
synchronisation inherits the properties derived for that of PEPA. Naetietlie major differ-
ence is that we can synchronise different labels and assign a diffeaxare to the resulting
transitions. This happens because we would like a modeller to be able to usara tib
models whose labels have a local scope. In this way the library items caedteainde-
pendently and instantiated several times in the same model.

Example 1 (Example of cooperation) Suppose we would like to model within the presented
framework the trivial queueing network depicted in Figure 1 where two idalrdkponential
queues with finite capacitieB are composed in tandem. When the first queue if saturated,
arrivals are lost. When the second queue is saturated at a job completibe &ifst queue,

the customer is served again (repetitive service blocking). Customive & the first queue
according to a Poisson process with rateA queue can be described by three matrices with
dimensionB x B:

e M = 0 that describes the transitions that cannot synchronise (something like the
private part of the model).

e M“ whereM%[a, 3] = XN if 8 = o+ 1 or M%[er, 5] = 0, otherwise. This matrix
describes the transitions corresponding to arrival events.
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—O—O~

Fig. 1. Tandem of two exponential finite capacity queues.

o M9, whereM%[a, 3] = pif 3 = a — 1 or M?%a, 5] = 0, otherwise. This matrix
describes the transitions corresponding to job completion events.

Consider two instances of this mod#l, and S,. The tandem network of Figure 1 can be
described by the modé} xg(/d+ o) So.

A pairwise cooperation may involve more than one label. In this case we may write

Y1 Y2

Sl X X 52
(af by) (a3 b3)
to specify thatS; (S2) is active ony; (y2) and passive op. (y1) with transitions labelled,
(b1) andas (b2), respectively.
The following operator allows us to change all the rates of a matrix labelled: by
Si{a «— A} is the sub-model; with only matrix M* modified so that all its non-zero
elements are set th

RCAT.Theorem RCAT [5] gives sufficient conditions to decide and deriveptioguct-
form solution of pairwise interactions (possibly involving more than one |dimyeen two
sub-models. Le us consider the following synchronisation:

S=8 X ... %X S,
(a7 ,b7)  (afp.b})
where symbok stands either for & or a—. The conditions to apply RCAT are:
1. If a; is active (passive) ity; andb; is passive (active) i, thenMi" [, z] (M{*[z, ])
has exactly one non-zero element for every = < Z;, and Myt [z, -] (MY'[-, 2]) has
exactly one non-zero element for evarng z < Z,*.

2. Suppose that for every pdis;", b;) ((a; , b)) we know a valued; (o) such that:

S1 = Si{a; — oy} for all a; passive in the cooperation
St = So{b; — B¢} for all b; passive in the cooperation

and given an active label, (b;) in S (S2) all the transitions with that label have the
same reversed ratg (ay).

LMot [z, ] represents the-th row vector of the matrix, and analogousijst [-, z] represents the-th column
vector.



If these conditions are satisfied, then the stationary distributiar S is w o« w172 (for
each positive recurrent state ).

Basically, the first condition says that every state of a model which isyeaésttive)
with respect to a label must have one outgoing (incoming) transition with thelt [&b un-
derstand the second condition, suppose (At b, ) is a pair in the synchronisation between
S1 andS,. Then, we must determine a raieto assign to all the transitions labelled by
that is also the constant reversed rate of the active transiijoinsS;. Note that, in general,
this task is not easy, and is shown to be equivalent to the solution of the &gfiations in
Jackson networks and G-networks. The algorithm proposed in [10]taigige an iterative,
numerical and efficient way to perform this computation.

Although it is out of the scope of this paper discussing the modelling implicatibns o
RCAT conditions, it is worth pointing out that several works in literatureehproved that
this result has not only a theoretical relevance but can be actually usdrhtacterise the
product-form solutions for models that may be used for practical daskes.

The underlying algorithmThe algorithm that underlies our tool has been presented in
[10]. It takes the matrices that describe modgls. . . , Sy and the synchronisations as input,
and computes as output a boolean value which is true if a product-forimeleasidentified,
false otherwise. In case of product-form, the unnormalised stationaripdison is output.

In its simplest formulation (two sub-models and without optimisations) it can be stiseda
in the following steps:

1. Generate randomby; andms

2. Compute the reversed rates of the active transitions using Equation (1)

3. Use the mean of the reversed rates for each label to set the ratescofréngponding
passive transitions. For instance ddbe active forS; andb passive forS,. Then letz
be the mean of the reversed rates of the non-zero elemeMg ifVI} is updated by
setting all the non-zero elementsito

4. Computer; and, as solution of the GBEs of the underlying CTMCs%fand.S;
5. Are the reversed rates of the transitions constant for each actefe lab

e true = product-form found and the stationary distributionrisx 717y and
terminate.

o false and the maximum number of iterations has been reaehgmoduct-form
not found and terminate.

o false and the maximum number of iterations has not been reachgo to step
3

The algorithm is extended in order to include the possibility of multiple pairwise syn
chronisations (as proposed in [7]) and several optimisations: an effici@y to define an
order in the solution of the sub-models (based on Tarjan’s algorithm,[&ZJxrallel imple-
mentation, and a special technique to deal with self-loops.



3. Tool

In this section we describe some salient characteristics of the proposedriied, we
explain our approach in the specification of the interactions between thmadeéls. Then,
we describe the client-server architecture and illustrate its strengths.

3.1. Specifying the interactions

In order to better understand the motivations of this section, let us coregidén the
model depicted by Figure 1 with a variation, i.e., after a job completion at thet#tsbn the
customer may exit the system with probabilityr go to the second station with probability
1 — p, as depicted by Figure 2. We note that the processes underlying thanitstecond

p

b a
- 5 a b flp<: >C
QUEUE 1 QUEUE 2 ’ 1- . 0
2\ () (8) (©)
N >
S

Fig. 3. Types of connections between labels.

Fig. 2. Probabilistic routing in the model of Figure 1.

gueue are different, and we could not use two instances of the same anydebre. Indeed,
in the first queue the transition corresponding to a job completion from statstate; —
1 must be split in two: one synchronising with the arrivals in the second gquéherate
(1 — p)u1 and one without synchronisation with rate;. We decided that this splitting of
transitions should be done automatically by our tool, so that the library ofreadels can be
defined without any knowledge about the future usage and connections

From the modeller point of view, a sub-model is seen just as a black baevtelabels
are exported, i.e., a model specification consists of a set of connecbons iastances of
modules. The simplest possible connection between two labels is that depidtaglibe 3-
(A). Note that in this Figure we use a graphical representation of theections which is
coherent with the MSI that we developed, however different apjemare possible (such
as a PEPA-like syntax). Figure 3-(A) illustrates a labelf a sub-model that interacts with a
labelb of another sub-model. The arrow is oriented, meaningdh&tctive and is passive.
This specification of synchronisation does not require any modificationetsttiacture of
the active or passive sub-models. Let us now consider Figure 3r(B)is case the active
actiona of one sub-model synchronises with passive actiofwgth probabilityp) or ¢ (with
probability 1 — p) of other sub-models. In this case, we need to alter the structure of thie acti
model. Recall that matriv® represents the transitions labelleddbyThen we defin@1% =
pM?andM®” = (1—p)M*. Hence, in the active sub-model, matridds’ andM<" replace
matrix M“. Note that this technique can be applied to an arbitrary number of probabilistic
synchronisations under the obvious constraint that the synchronigatibabilities must sum



to a value which is less or equal to Suppose that the sum of the probabilitigs. . ., px is

pr < 1 (see Figure 2 for an example). In this case we Hede = pMefork =1,... K,

and M (which is always present in a model description an represents the tranito
cannot synchronise) is replaced M + M“(1 — p,). We use the notatiof; Xyﬂ,b—) S

to denote that in .Sy is active in the synchronisation within S5, and the synchronisation is
calledy and occurs with probability. The latter case is depicted by Figure 3-(C) where two
active labels: andb (that can belong to the same or different sub-models) synchronise with
the same passive labelln this case we simply replace matbA® of the passive model with
two matricesM¢ andM<” identical to the former (we do not need to modify the rates since

they are replaced with the rate of the corresponding active transitions).

Example 2 (Application to the model of Figure2) Let us show how we model the tandem
of exponential queues with finite capacitiBsdepicted by Figure 2. We still consider two
identical instances of the same sub-model which is described in Examfihe Liser specifies
in some way the interactions. The model corresponding to the second daes not change,
while that corresponding to the first queue becomes the following:

e M< = pM¢ that describes the transitions that cannot synchronise
o M¢%,
o M% = (1—p)M?,

whereM® andM¢ are the matrices defined in Example 1.

It may be worth pointing out some notes about this approach to the speciiicétibe
sub-model interactions: 1) Its scope is to allow the specification of a mogpitd¢o the syn-
chronisations it will be involved in. For instance, if we have a model of a simgb@nential
queue, we can straightforwardly define a Jackson queueing netwibriprebabilistic rout-
ing by simply instantiating several copies of the same model. Moreover, chong have a
simple and intuitive meaning. 2) When an active label is split the infinitesimalrgemeof
the sub-model does not change, i.e., its stationary distribution does mgecHdoreover, if
the revered rates of the transitions corresponding to active dadoe constant in the original
model, then also the transitions corresponding to a split label associated vétke constant
reversed rates. 3) The effects of the replication of passive label m&wit the algorithmic
analysis of the product-form is that the rate associated with the passisitita is the sum
of the (constant) reversed rates of every associated active trangi}i@pecifying pairwise
interactions where the same label is simultaneously active and passive sp#ttréo two or
more synchronisations is not allowed. This characteristic is inherited freragmantics of
the cooperation given in the theoretical paper which this tool is based on.

3.2. Client-server architecture

The tool consists of two parts: the analyser (the server) and the MStl{drg). The
idea is that although we propose a graphical client side that exploits theytbtseof our



modular approach and the specification of the module synchronisatiomoaftewrite his
own MSI in order to make it compatible with the favourite formalism.

The server opens an independent session for each MSI connkgiextides a character
interface which is used by the MSI to: 1) Create/Import a sub-model, Z)ifg@esynchro-
nisation between two labels of two sub-models, 3) Require the solution of al miwda a
precision and a maximum number of iterations. In the first and second aasertrer just
answers the client if the required operation has been executed cqrvdutky the latter one
returns the following data: 1) A flag that specifies if the product-formeen identified,
2) The steady-state probabilities of each sub-model, 3) The reverssdafaall the active
transitions. Note that knowing the reversed rates of the active transitioassnk@mowing
the solution of the system of traffic equations. In [10] it is proved thatnthe algorithm
analyses a Jackson queueing network, the iterations are equivaleatlacibbi scheme for
the solution of the model linear system of traffic equations. Similarly, when fipfied to a
G-network it is equivalent to iterative scheme proposed by Gelenbe feir éhe solution of
the non-linear system of traffic equations [3].

3.3. Use cases

In this section we illustrate some examples of case studies. We give a desooiftie
model which is independent of the MSI that will be adopted. We just focusatiention
on three well-known results about product-form that have been widsy in the commu-
nication networks performance evaluation analysis, although severaliogtances may be
easily produced.

Jackson networkslackson networks are easy to study because they are charactgrised b
a linear system of traffic equations. However, in our framework, thgyire some attention
since each sub-model (i.e., each exponential queue) has an infinite a2 9n many
cases in which the sub-model is known to have a geometric steady-stateutistrdnd the
transitions between statesandn + 1 are the same for alt > 0, we can simply represent
the sub-model using just a pair of adjacent states [10]. We apply thisiteehto reduce the
infinite state space of a sub-model we must disable the RCAT structurat ¢Geadition
1) because some transitions that are present in the real model, are omittedimit¢hene.
Figure 4 shows the truncation of an exponential queue. If the synislatans it will be
involved in imposex to be passive and to be active, we note that Condition 1 of RCAT
is satisfied for the infinite model but is not satisfied for the reduced one &agen + 1
does not have any incoming active transition or outgoing passive transitimvertheless,
the algorithm may still be applied, so the structural check for this model mwdishbled.

Example 3 (Jackson network) Consider the Jackson network depicted by Figure 5. A sub-
model of an exponential queue consists of three matrices (states aeedrdrn andn+1):

e a_ |0 A a_ 100
L
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Fig. 4: Truncation of the birth and death process under- —
lying an exponential queue.

Fig. 5. Jackson network of Example 3.

We also use a single-state sub-model to represent the external Paissa@is with M€ = 0
andM*“ = [\]. Supposing the service rates for Qudye@ and3 are p1, ue andpus, let.S be
the library model for the queue andithat for the external arrivals, then we have:

S; =8{d —pi}i=1,2,3 A= A{a — M\ + Ao}

The synchronisations are specified with the following commands to the:serve

y1,A1/(A1+A2) y2,A2/(A1+A2) Y3,q ya,1—q ys,1—p
t X Sl, At X SQ, Sl X SQ, Sl X X 53.
(at,a7) (at,a7) (dt,a7) (dt,a™) (a=.,dt)

G-networks. G-networks can be modelled in our frameworks in an analogous way of
that presented for Jackson networks. Note that although the modeldfarerd both in the
specification and in the analysis, our tool treats them uniformly by exploitinR@wT the-
oretical result. The truncation mechanism presented for Jacksoniggeaaters is applied
also for G-queues which consist of three matrices: the epsiorepresenting the transi-
tions for positive customer arrivalg representing the transitions for the job completion and,
finally, a representing the transitions for the negative customer arrivals:

. A [0 M g [0 0 . [0 0
M_O,M_[O 0],1\4_[“0,1\4_ oo |

Finite capacities queueing networks with blockingkyildiz's product-form queueing
networks with blocking [1] can be analysed by this tool. Finite capacity cuibaee a finite
state space so the truncation mechanism is not needed. In order touepAdd/Idiz’s results
on the reversible routing it suffices to synchronise a departure labajoéue with an arrival
label of another queue considering the former passive and the latter.acti

4. M Sl implementation example

In this Section we illustrate a possible implementation of the MSI. Recall that the tool
client-server architecture allows for different MSls according to theetiers needs. We
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show a general-purpose MSI that is independent of the formalism uséldebmodeller.

As an example we model the Jackson network depicted by Figure 5. Ehamilel is
represented by a coloured circle and arcs represent the synetiomés Each object, circle

or arc, has a name. In the former case it is the sub-model name, in the latiertitenform
y(a, b) that stands fof; xy(ﬁ,b, So, whereS; is the sub-model from which the arc outgoes
from, andS; is the destination sub-model. A screen-shot is shown in Figure 6. By clicking

r Create Synchronization x
File Problem Help
Input | Output Active Label: Passive Label

d ENE =

Synchronization label: |y3 |

52 Probability:

| Cancel ‘ |E|

51

Fig. 7: Screen-shot of the window for the synchronisation
Designer details.

Fig. 6: Screen-shot of the model corresponding to the
Jackson network of Figure 5.

on a sub-model circle a window appears with its description in matrix-formthadiser

is allowed to perform changes (add or remove transitions or changé. ratéen a arc is
set between two sub-model the window shown in Figure 7 appears (thieeggarameters
should be clear). Note that, although one could point out that a stanadifditehe analysis
of Jackson networks may present a more intuitive interface, we would likentark that

this is the same interface we would use for any stochastic model that catvbd by the

algorithm presented in [10]. However, one could also decide to extendl#ien order to

be able to associate a specific symbol to some sub-models of the libraryishatdht of the

scope of this presentation.

5. Final remarks

We have presented a tool that we are developing for the analysis afgirfidm models.
It exploits some new results that appeared in product-form model thedryha algorithm
presented in [10]. It has proved to be able to identify and compute $g@reduct-form re-
sults based on pairwise synchronisations, such as Jackson net@emksyorks, Akyildiz's
results about product-form networks with blocking and other that haen lescribed in
[10]. Current research has three objectives: 1) allow for the spatidn of models with
multiple incoming active transitions, exploiting the result presented in [11]ll@) dor the
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specification of models with multiple outgoing passive transitions, and 3) allothéospec-
ification of models with regular but infinite structure. The last goal seems thebbardest
one. Indeed, an approximation is needed to truncate the model and we hkeuldto be
decided dynamically in order to produce results which are correct withpeefseed bound.
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