
ON REPRESENTING MULTICLASS M/M/k QUEUES BY GENERALIZED
STOCHASTIC PETRI NETS

Simonetta Balsamo
Andrea Marin

Computer Science Department
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ABSTRACT

In this paper we study the relations between multi-
class BCMP-like service stations and generalized
stochastic Petri nets (GSPN). Representing queu-
ing discipline with GSPN models is not easy. We
focus on representing multi-class queuing systems
with different queuing disciplines by defining appro-
priate finite GSPN models. Note that queuing dis-
cipline in general affects performance measures in
multi-class systems. For example, BCMP-like service
centers with First Come First Served (FCFS) and
with Last Come First Served with Preemptive Re-
sume (LCFSPr) have a (different) product-form so-
lution under different hypotheses. We define struc-
turally finite GSPNs equivalent to the multi-class
M/M/k queuing system with FCFS, LCFSPR, Pro-
cessor Sharing (PS) and Infinite Servers (IS). Equiva-
lence holds in terms of steady state probability func-
tion and average performance measure. The main
idea is to define a finite GSPN model that simulates
the behavior of a given queue discipline with some
appropriate random choice. Moreover, we prove that
the combination of the introduced equivalent mod-
els has a closed-form steady state probability by the
M ⇒ M property. We consider queuing systems with
both a single server with load dependent service rate,
and multiple servers with constant service rate.

1 INTRODUCTION

Queuing theory and (Generalized) Stochastic Petri
Nets are important classes of stochastic models used
to evaluate system performances. Queuing systems
have been widely applied to represent resource con-
tention systems where a set of customers competes
for resource usage. Queuing networks (QN) extend
and combine various queuing systems to represent
more complex systems. Generalized Stochastic Petri
nets (GSPN) can be naturally used to represent sys-
tems with synchronization and concurrency and to
perform both qualitative and quantitative analysis.
Under some exponential and independence assump-
tions these models can be studied through the associ-
ated continuous-time Markov chain (CTMC). In or-
der to improve the algorithmic analysis efficiency for

restricted classes of QN and SPNs, product-form the-
orems have been introduced. BCMP theorem (Bas-
kett, Chandy, Muntz, & Palacios, 1975) is the main
result for QN while the papers of Henderson et al.
(Henderson, Lucic, & Taylor, 1989; Coleman, Hen-
derson, & Taylor, 1996) present the main results for
SPN and they have been extended to GSPN in the
paper (Balbo, Bruell, & Sereno, 2002).

In this paper we investigate the relations between
the BCMP queuing centers and GSPN models. The
problem is trivial when all the customers in the QN
are statistically identical (single class QN) thanks to
the insensitivity property, i.e., the performance mea-
sures depend on the average of the service time and
not on the queuing disciplines. Some difficulties arise
when the QN customers are clustered in different
classes which have different behaviors for each ser-
vice center. In (Baskett et al., 1975) it is proved that
in this case the queuing disciplines influence the QN
performance measures. Thus if we try to represent a
QN station by a GSPN we expect to have different
models according to the queueing disciplines. Most of
the works in this field devote a little attention to this
problem. To the best of our knowledge, representing
scheduling disciplines in multiclass models with finite
GSPNs is still an open problem. In (Vernon, Zahor-
jan, & Lazowska, 1987) the authors introduce a com-
parison between QN models and SPN models based
on the representation of multiclass features by col-
ored Petri nets. However the differences between dif-
ferent scheduling disciplines are not analyzed. Balbo
et al. in (Balbo, Bruell, & Ghanta, 1998) combine
GSPN and product-form QN by replacing subsys-
tem in a low-level model with their flow equivalent
models. Still little attention is devoted to schedul-
ing disciplines. In (Balbo, Bruell, & Sereno, 2003)
the authors observe how they can map each service
station of a BCMP QN to a complex GSPN which
does not hold the GSPN product-form conditions of
(Balbo et al., 2002). The GSPN model depends on
the scheduling disciplines but it has an infinite num-
ber of places and transitions for the FCFS and LCF-
SPR stations. Then they give a finite and remark-
ably compact representation by a GSPN equivalent
to the detailed model. The compact representation
holds the product-form conditions for GSPN showed
in (Balbo et al., 2002) but it does not distinguish
different queuing disciplines by mapping everything
in the PS discipline.



In this paper we present an equivalence result be-
tween two types of stochastic models. We propose a
finite GSPN representation of a set of queuing sys-
tems with various scheduling disciplines. According
to the BCMP-type service centers we analyze First
Come First Served (FCFS), Last Come First Served
with preemptive resume (LCFSPR), Processor Shar-
ing (PS) and Infinite Servers (IS) scheduling disci-
plines. The main idea behind these results is a prob-
abilistic model of the queue, i.e., all the customers
of the same class wait in the same place and when
a server becomes free the customer which gets the
service is chosen in a probabilistic way similarly to
what happens with the random queuing discipline. In
the LCFSPR discipline, we also choose probabilisti-
cally the customer that looses the server when a new
customer arrives to the system.

The advantage of having a finite representation
which is different for the various scheduling disci-
plines is twofold: first it makes the analysis easier
and it can be used for practical purposes. Second it
does not require the definition of new semantic for
the GSPN according to the queuing disciplines. Thus
existing analysis or simulation tools can be used with
the GSPN nets defined in this work. The proposed
results are interesting because they allow the rep-
resentation of an M/M/k queue with various queu-
ing disciplines by a compact GSPN, which is equiv-
alent to the queuing system in term of steady state
queue length distribution. A practical consequence
can be that it can extend a GSPN simulator or an-
alyzer for analyzing multiclass queue systems. The
only requirement is that the tool is able to model
state-dependent firing rates for timed transitions and
state-dependent weights for immediate transitions.
There is no need to support the colored model ex-
tension to represent different classes.

The paper is structured as follows. Section 2
briefly reviews the GSPN models recalling formal-
ism we chose, Section 3 reviews some results of the
queuing systems theory used later in the paper. In
Sections 4, 5 we introduce the GSPNs respectively
equivalent to the FCFS and LCFSPR multiclass
M/M/k queue. Section 6 discuss the GSPN models
for both PS scheduling and IS systems. Section 7
uses M ⇒ M property to state some considerations
on the form of the steady state probability for some
combinations of the GSPN models. Finally, Section
8 provides some concluding remarks.

2 GENERALIZED STOCHASTIC PETRI
NETS

In this section we briefly recall the Generalized
Stochastic Petri Nets (GSPN). We consider the nota-
tion for GSPN introduced in (Marsan, Balbo, Conte,
Donatelli, & Franceschinis, 1995). In order to allow
marking dependent probabilities for solving conflicts
among immediate transitions we use the techniques

discussed in (Chiola, Marsan, Balbo, & Conte, 1993).
Let us define a marked Stochastic Petri Net which
consists of a 8-tuple as follows:

GSPN = (P, T , I(·, ·), O(·, ·),H(·, ·),Π(·), w(·, ·),m0)

where:

– P = {P1, . . . , PM} is the set of M places,
– T = {t1, . . . , tN} is the set of N transitions (both

immediate and timed),
– I(ti, pj) : T × P → N is the input function,

1 ≤ i ≤ N , 1 ≤ j ≤ M ,
– O(ti, pj) : T × P → N is the output function,

1 ≤ i ≤ N , 1 ≤ j ≤ M ,
– H(ti, pj) : T ×P → N is the inhibition function,

1 ≤ i ≤ N , 1 ≤ j ≤ M ,
– Π(ti) : T → N is a function that specifies the

priority of transition ti, 1 ≤ i ≤ N ,
– m ∈ NM denotes a marking or state of the net,

where mi represents the number of tokens in
place Pi, 1 ≤ i ≤ N ,

– w(ti,m) : T × NM → R is the function which
specifies for each timed transition ti and each
marking m a state dependent firing rate, and for
immediate transitions a state dependent weight,

– m0 ∈ NM represents the initial state of the
GSPN, i.e. the number of tokens in each place
at the initial state.

We consider ordinary nets, i.e., functions I, O and
H take values in {0, 1}. For each transition ti let
us define the input vector I(ti), the output vec-
tor O(ti) and the inhibition vector H(ti) as fol-
lows: I(ti) = (i1, . . . , iM ) where ij = I(ti, Pj),
O(ti) = (o1, . . . , oM ) where oj = O(ti, Pj) and
H(ti) = (h1, . . . , hM ) where hj = H(ti, Pj). Func-
tion Π(ti) associates a priority to transition ti. If
Π(ti) = 0 then ti is a timed transition, i.e., it fires
after an exponentially distributed firing time with
mean 1/w(ti,m), where m is the marking of the
net. If Π(ti) > 0 then ti is an immediate transition
and its firing time is zero. We say that transition
ta is enabled by marking m if mi ≥ I(ta, pi) and
mi < H(ta, pi) for each i = 1, . . . , M and no other
transition of higher priority is enabled. We consider
just two priority levels, 0 and 1. Hence when an im-
mediate transition is enabled all the timed ones are
disabled. The firing of transition ti changes the state
of the net from m to m − I(ti) + O(ti). The reach-
ability set RS(m0) of the net is defined as the set
of all markings that can be reached in zero or more
firings from m0. We say that marking m is tangible
if it enables only timed transitions and it is vanishing
otherwise. For a vanishing marking m let Tα be the
set of enabled immediate transitions. Then the firing
probability for any transition ti ∈ Tα and any state
m is denoted by p(ti,m) and it is defined as follows:

p(ti,m) =
w(ti,m)∑

tj∈Tα
w(tj ,m)

. (1)



Given a tangible marking m the transition with the
lowest associated stochastic time fires.

A GSPN is represented by a graph with the fol-
lowing conventions: timed transitions are white filled
boxes, immediate transitions are black filled boxes,
places are circles, if I(ti, pj) > 0 we draw an arrow
from pj to ti labelled with I(ti, pj), if O(ti, pj) > 0 we
draw an arrow from ti to pj labelled with O(ti, pj),
if H(ti, pj) > 0 we draw an circle ending line from pj

to ti labelled with the value of H(ti, pj), the marking
m is represented by a set of mj filled circles repre-
senting the tokens in place pj for each j = 1, . . . ,M .

For ordinary nets we do not use labels for the ar-
rows.

GSPN analysis consists in finding the steady state
probability for each tangible marking of the reacha-
bility set. Some analysis techniques are presented in
(Marsan et al., 1995). Under general assumptions,
the stochastic process generated by the dynamic be-
havior of a standard SPN is a CTMC process. Mean
state sojourn times are computed from the mean
transition delays of the net. For GSPNs the distri-
bution of the sojourn time in any marking can be
expressed as a negative exponential and determinis-
tically zero distributions for tangible and vanishing
markings, respectively. Thus the marking process can
be studied as a semi-Markov random process.

The GSPN models introduced in this paper
present marking processes which allow us to easily
reduce the semi-Markov process to a CTMC. In fact
whenever a vanishing marking is reached, the next
marking is tangible. Thus we can simply obtain a
CTMC whose states are the tangible states of the
original process and the transition rates are com-
puted weighting the transitions rates of the original
process with the firing probabilities of the immediate
transitions.

Finally let us introduce some other notations: let
ei be an M -dimensional vector with all zero compo-
nents but the i-th which is 1. We use the lower case
t to name immediate transitions, the upper case T
to name timed transitions, t̃ to name a generic timed
or immediate transition.

3 SINGLE QUEUING SYSTEMS WITH
DIFFERENT CLASSES OF CUSTOMERS

In this section we briefly recall single queuing sys-
tems with different classes of customers classifying
them on the number of servers and scheduling disci-
plines. Let us consider an open queuing system with
external arrivals, a queue, a set of identical servers
and a set of R customer classes. Customers of class
r arrive at the system according to a Poisson pro-
cess with rate λr and require an exponentially dis-
tributed random service time with parameter µr,
r = 1, . . . , R. The system has a set of independent
servers, possibly infinite.

We consider the following disciplines: First Come
First Server (FCFS), Last Come First Server with
Preemptive Resume (LCFSPR), Processor Sharing
(PS). Let’s start by considering a multiclass PS queu-
ing system with a single server with load dependent
service rate. Following the BCMP (Baskett et al.,
1975) conventions, assume that the service rate can
be expressed by a combination of a capacity function
x(n) depending on the total number of customers n
at the station, and a class dependent capacity func-
tion yr(nr), where nr is the number of customers of
class r at the station and a constant class dependent
service rate µr. So the effective service rate for a cus-
tomer of class r is given by the product x(n)yr(nr)µr.
Note that x(1) = yr(1) = 1. Under stability con-
ditions, the steady state probability of this service
center is given by:

π′(n) = π′0
n!∏R

i=1 ni!

R∏

i=1

λni
i

n∏

b=1

1
x(b)

R∏
r=1

[( 1
µr

)nr

nr∏
a=1

1
yr(a)

]
. (2)

Formula (2) holds also for single server LCFSPR
with load dependent service rate. In order to obtain
the steady state probabilities for M/M/k mutliclass
system it suffices to set appropriate capacity func-
tion. An LCFSPR or PS center with k load inde-
pendent servers requires to set x(n) = min(n,k)

n and
yr(nr) = nr.

Formula (2) still holds for FCFS scheduling dis-
cipline if the service rate is class independent, i.e.,
µr = µ and yr(nr) = 1 for 1 ≤ r ≤ R and nr ≥ 1.
In order to study the M/M/k/FCFS queuing system
we have to set x(n) = min{n, k}, and formula (2)
becomes:

π′(n) = π′0
n!∏R

i=1 ni!

R∏

i=1

λni
i

n∏
a=1

1
µ(a)

, (3)

where µ(a) = x(a)µ.

4 REPRESENTING M/M/k/FCFS QUEUE
BY GSPN

In this section we define a GSPN that represents an
R-multiclass M/M/k/FCFS queue. Then we prove
that the GSPN model is equivalent to the queuing
system in terms of the steady state probability. Given
the M/M/k/FCFS models defined as in Section 3 let
us define the model called GSPN-1.

Definition 1 (GSPN-1). According to GSPN def-
inition given in Section 2:

– P = Pq ∪ Ps ∪ {P2R+1} with Pq = {P1, . . . , PR}
and Ps = {PR+1, . . . , P2R},

– T = Tw ∪ Tq where Tq = {t1, . . . , tR} and Tw =
{TR+1, . . . , T2R},



– function Π defined as follows:

Π(t̃i) =
{

0 if R + 1 ≤ i ≤ 2R
1 if 1 ≤ i ≤ R

,

– input and output vectors for transition ti, 1 ≤
i ≤ R: I(ti) = ei + e2R+i and O(ti) = eR+i.
Input and output vector for transition TR+i:
I(TR+i) = eR+i and O(TR+i) = e2R+1,

– H(ti) = (0, . . . , 0) for all ti ∈ T ,
– w(TR+i,m) = mR+iµ for 1 ≤ i ≤ R and

w(ti,m) = mi for 1 ≤ i ≤ R,
– m0 = (0, . . . , 0, k) .

Tokens arrive to places Pi, 1 ≤ i ≤ R according to
Poisson stochastic processes.

Figure 1 illustrates the graphical representation of
GSPN-1 model where t1, . . . , tR are immediate tran-
sitions and TR+1, . . . , T2R are exponential transi-
tions.

Let m be a valid vanishing state of the GSPN-1,
and let Ta ⊆ Tq be the set of immediate transitions
enabled by m, then the probability of firing of ti ∈ Ta

can be written as:

p(ti,m) = pi(m) =
mi∑

j∈{j|tj∈Ta}mj
(4)

We shall now derive a closed form solution for
the steady state probability of GSPN-1 model by
considering the set of reachable markings m =
(m1, . . . , m2R+1). This is given by Lemma 1. Then we
introduce a state aggregation by defining the aggre-
gate state n = (n1, . . . , nR) where ni = mi + mR+i,
1 ≤ i ≤ R. This state corresponds to the number of
customers of class i in the queuing model. Theorem 1
provides the closed form solution for model GSPN-1
in terms of aggregated stationary probability of state
n. Finally the GSPN-1 model is shown to be equiva-
lent to the M/M/k FCFS multiclass queuing system
in terms of stationary probability.

Lemma 1. Let m = (m1, . . . , m2R+1) be a reach-
able tangible state of the GSPN-1. Then if the sta-
bility condition holds, the stationary state probability
can be written as follows:

π(m) = π0

R∏

i=1

λ
mi+mR+i

i

(
∑2R

i=R+1 mi)!∏2R
i=R+1 mi!

· (
∑R

i=1 mi)!∏R
i=1 mi!

P2R
i=1 mi∏

j=1

1
µ(j)

. (5)

where π0 is a normalizing constant, µ(j) = x(j)µ
following the BCMP conventions.

The proof is given in appendix in the technical report
(Balsamo & Marin, 2007) and is based on verifying
the set of the CTMC global balance equations.

Theorem 1. Consider model GSPN-1 and let ni =
mi + mR+i, 1 ≤ i ≤ R and n = (n1 . . . , nR) be an
aggregated state. Let πa(n) be the steady state prob-
ability of ni for i = 1, . . . , R. Then we can write:

πa(n) = π0
(
∑R

i=1 ni)!∏R
i=1 ni!

R∏

i=1

λni
i

PR
i=1 ni∏

i=1

1
µ(i)

∀n ∈ NR.

(6)

The proof is based on a convolution formula for bi-
nomial coefficients and can be found in (Balsamo &
Marin, 2007).

Corollary 1. The M/M/k queuing system with
FCFS discipline, R customer classes, arrival rates
λi, 1 ≤ i ≤ R, single server rate µ and steady
state probability π′(n) is equivalent to the GSPN-1 in
terms of steady state probability, i.e., πa(n) = π′(n)
for all n ∈ NR where πa(n) is the aggregated proba-
bility of GSPN given by formula (6).

Proof. It follows immediately from equation (3) and
Theorem 1. ut
Note it can be shown by trivial counterexamples that
GSPN-1 does not hold the steady state distribution
(2) when the service rate is class dependent.

GSPN-1 can as well simulate a single server FCFS
service station with an BCMP-like load dependent
service rate as proved in the technical report (Bal-
samo & Marin, 2007). The net structure complexity
is linear on R, the number of customer classes.

5 REPRESENTING M/M/k/LCFSPR
QUEUE BY GSPN

In this section we introduce a GSPN which can be
considered equivalent, for steady state probability,
to a multiclass M/M/k queue with LCFS with pre-
emptive resume scheduling discipline. As we consider
just exponentially distributed service times, we do
not consider the problem of representing the resume.
We provide a model for this queue system whose
structure is finite and depends only on the number
of classes of customers, i.e., not on the number of
servers.

Definition 2 (GSPN-2). According to GSPN def-
inition given in Section 2:

– P = Pq ∪ Pw ∪ Pa ∪ {P3R+1} where Pq =
{P1, . . . , PR} and Pw = {PR+1, . . . , P2R} and
Pa = {P2R+1, . . . , P3R},

– T = Tq ∪ Tw ∪ Tf ∪ Tg where Tq =
{t1, . . . , tR} and Tw = {TR+1, . . . , T2R} and Tf =
{t2R+1, . . . , t3R} and Tg = {tij , 1 ≤ i, j ≤ R},

– function Π is defined as follows:

Π(t̃) =
{

1 if t̃ ∈ Tq ∪ Tf ∪ Tg

0 if t̃ ∈ Tw
,



Fig. 1. (a) Graphical representation of model GSPN-1. (b) Queuing station associated

– Let 1 ≤ i, j ≤ R. The input and output vectors
of ti ∈ Tq: I(ti) = ei + e3R+1 and O(ti) = eR+i.
The input and output vectors for TR+i ∈ Tw:
I(tR+i) = eR+i and O(tR+i) = e3R+1. The input
and output vectors for t2R+i ∈ Tf : I(t2R+i) =
e2R+i + e3R+1 and O(t2R+i) = eR+i. The in-
put and output vectors for tij ∈ Tg: I(tij) =
e2R+i + eR+j and ej + eR+i,

– H(ti) = (0, . . . , 0) for ti ∈ Tq ∪ Tw ∪ Tf and
H(tij) = e3R+1 for tij ∈ Tg,

– for 1 ≤ i, j ≤ R let w(TR+i,m) = mR+iµi,
w(ti,m) = mi, w(t2R+i,m) = 1 and w(tij ,m) =
mR+j,

– m0 = (0, . . . , 0, k).

Tokens arrive to places P2R+i, 1 ≤ i ≤ R, according
to Poisson stochastic processes.

Figure 2 shows a graphical model for R = 2 classes
LCFSPR queue where dotted lines are introduced
for the sake of readability and they do not have ant
particular meaning. Note that when a token arrives
to the place P2R+i it is temporally (i.e. the state is
vanishing) stored in P2R+i and we have two cases:

– there is at least one free server, i.e. m3R+1 > 0,
thus the customer goes immediately in service.
This is modelled by the immediate transition set
Tf

– all the servers are busy, i.e. m3R+1 = 0, so a
customer is preempted and put in queue and the
new customer goes in service. This is modelled by
R2 transitions, Tg. The inhibitor arcs are needed
to avoid pre-emption when there is at least one
free server.

By the structure analysis of the network we can
solve the conflicts on immediate transitions introduc-
ing just one simple function. When one or more tran-
sitions of Tq are enabled, the probability of firing for

the i-th transition is:

p(ti,m) = pi(m) =
mi∑R
l=1 ml

. (7)

When one or more transitions of Tg are enabled, the
probability of firing is:

p(tij ,m) = pij(m) =
mR+j∑R
l=1 mR+l

. (8)

Now we can state a main lemma for model GSPN-2
representation:

Lemma 2. Let m = (m1, . . . , m3R+1) be a reachable
tangible marking of GSPN-2 model. Then if the sta-
bility condition holds, the stationary state probability
can be written as follows:

π(m) = π0

R∏

i=1

λ
mi+mR+i

i

(
∑R

i=1 mi)!∏R
i=1 mi!

(
∑R

i=1 mR+i)!∏R
i=1 mR+i!

·
R∏

i=1

( 1
µi

)mi+mR+i

P2R
i=1 mi∏

j=1

1
min(j, k)

. (9)

where µi is the average service rate for one customer
of class i when there are no other customers in the
system, k is the number of servers, π0 is a normal-
izing constant.

The proof is given in the technical report (Balsamo
& Marin, 2007).

Theorem 2. Consider model GSPN-2 and let ni =
mi + mR+i, 1 ≤ i ≤ R and n = (n1, . . . , nR) be an
aggregated state. Let πa(n) be the steady state prob-
ability of ni for i = 1, . . . , R. Then we can write:

πa(n) = π0
(
∑R

i=1 ni)!∏R
i=1 ni!

R∏

i=1

λni
i

R∏

i=1

( 1
µi

)ni

·
PR

i=1 ni∏

i=1

1
min(k, i)

∀n ∈ NR. (10)



Fig. 2. (a) Graphical representation of model GSPN-2 for two classes of customers. (b) Queuing station associated.

The proof is based on the Vandermonde formula and
it is similar the one given for Theorem 1 in (Balsamo
& Marin, 2007).

Corollary 2. The M/M/k queuing system with
LCFSPR discipline, R customer classes, arrival
rates λi, single server rate µi for class i customers
and steady state probability π′(n) is equivalent to
model GSPN-2 in terms of steady state probabil-
ity, i.e., πa(n) = π′(n) for all n ∈ NR, where
πa(n) is the aggregated probability of GSPN given
by formula (10). The normalizing constant is π0 =
π(0, . . . , 0, k) = π′(0, . . . , 0, k).

Proof. It follows immediately from queuing theory
and Theorem 2. ut
The net GSPN-2 can as well simulate a single server
LCFSPR service station with a BCMP-like load de-
pendent service rate as proved in technical report
(Balsamo & Marin, 2007).

By defining ni = mi + mR+i we can aggregate
the states and we can prove that the steady state
probability πa of the aggregated CTMC is identical
to probability π′ defined by equation (2). For what
concerns the net structure complexity, the number of
places grows as O(R) and the number of transitions
grows as O(R2).

6 REPRESENTING M/M/k/PS QUEUE
AND M/M/∞ QUEUE BY GSPN

The processor sharing discipline can be easily repre-
sented considering that the k processors are shared
among the users in the system. Different classes of
users can have different average time services, but all
modelled by exponentially distributed random vari-
ables. We can think that the k servers are shared

among the R classes in proportion to the number of
customers of the classes.

Definition 3 (GSPN-3). Let us define the model
GSPN-3 as follows:

– P = {P1, . . . , PR},
– T = {T1, . . . , TR},
– Π(Ti) = 1 for each Ti ∈ T ,
– I(Ti) = ei and O(Ti) = (0, . . . , 0) for each

Ti ∈ T ,
– H(Ti) = (0, . . . , 0) for each Ti ∈ T ,
– w(Ti,m) = mi

m min(k,m) where m =
∑R

j=1 mj

for each Ti ∈ T ,
– m0 = (0, . . . , 0).

Note that this model is equivalent to a queuing sys-
tem with PS discipline and one server with load-
dependent exponential service time to simulate the
multi-server feature. Therefore it immediately fol-
lows the theorem:

Theorem 3. Consider model GSPN-3. Then if sta-
bility condition holds the stationary state probability
can be written as follows:

π(m) = π0
(
∑R

i=1 mi)!∏R
i=1 mi!

R∏

i=1

λmi
i

R∏

i=1

( 1
µi

)mi

·
PR

i=1 mi∏

i=1

1
min(k, i)

, (11)

where µi is the average service rate for one customer
of class i when there are no other customers in the
system, k is the number of servers, π0 is a normal-
izing constant.



This model is similar to the compact model intro-
duced in (Balbo et al., 2003), the only difference is
that we allow a whole state dependent firing rate
thus we don’t need a place whose tokens represent
the total number of customers in the system.

Model GSPN-3 can easily represent also the IS
center. It suffices to set the firing rates of each tran-
sition Ti as miµi, 1 ≤ i ≤ R.

7 M ⇒ M PROPERTY ON THE GSPN
REPRESENTATION

Markov implies Markov property is introduced and
studied by Muntz (Muntz, 1972). In that paper he
shows that if a queuing system with Poisson ar-
rivals presents departures according to a Poisson pro-
cess (M⇒M property) then a combination of ser-
vice centers of this type in a queuing network has a
product-form solution. As we are considering GSPNs
we will prove that a combination of GSPN-1, GSPN-
2 and GSPN-3 models still holds a closed-form steady
state probability by defining appropriate traffic pro-
cesses over the CTMC associated to each of the mod-
els and using the results given in (Melamed, 1979)
which generalize Muntz’s work. We now briefly re-
view Melamed’s results limited to a CTMC in steady
state. Consider an ergodic CTMC with state space
Γ and a set of traffic transitions denoted by Θ1,
. . . , ΘR, where Θi ⊆ Γ × Γ , Θi 6= ∅. Let us de-
fine Ki(t) as the process which counts the num-
ber of transitions (α, β) ∈ Θi up to t. Let mi =∑

γ∈Γ

∑
η∈Θi(·,γ) π(η)ξ(η → γ) and for each state

γ ∈ Γ let mi(γ) =
∑

η∈Θi(·,γ) π(η)ξ(η → γ) where
Θi(·, γ) = {β|(β, γ) ∈ Θi} and ξ(η → γ) is the tran-
sition rate between states η and γ.
Then we can state that Ki(t) are mutually indepen-
dent Poisson processes if and only if the following
equation holds:

∀γ ∈ Γ,

R∑

i=1

mi(γ) = π(γ)
R∑

i=1

mi (12)

We aim to study the departure traffic processes from
our models. Take for example model GSPN-1, we can
define R traffic processes as follows:

Θi = {(m′,m) : |m′|i = |m|i + 1}, i = 1, . . . , R,
(13)

where |m|i = mi + mR+i. In our case, in order to
prove that Ki(t) are independent Poisson processes
when there are Poisson arrivals, it suffices to prove
that:

∀γ ∈ Γ,
∑

η∈Θi(·,γ)

π(η)ξ(η → γ) = λiπ(γ), (14)

In (Balsamo & Marin, 2007) we prove that this condi-
tion holds for GSPN-1, GSPN-2 and GSPN-3 models
by defining appropriate traffic processes. As observed

in (Melamed, 1979) this property of the CTMC is
equivalent to the M ⇒ M given by Muntz thus it as-
sures that a BCMP-like composition of these GSPN
models holds a closed-form steady state probability
function. Random switches between the blocks and
user class switches can be easily modelled by imme-
diate transitions.

8 FINAL REMARKS

In this paper we have shown how to represent multi-
class single queuing systems by structurally finite
GSPN for various queuing disciplines. For each of
the BCMP center types we have introduced a GSPN
model whose steady state probability, aggregating on
the number of customers in the system for each class,
is equal to the correspondent single queue service
center. Hence the two models are equivalent in terms
of steady state distribution and average performance
indexes. The main advantages of our representation
are the following.

– We define a finite GSPN model. The abstraction
level of the GSPN model allows the representa-
tion of the queuing behavior without introduc-
ing an high level of details in the state specifi-
cation. We distinguish the customers waiting in
the queue from those being served without tak-
ing in account the arrival order. This leads to
a steady state probability which is less detailed
than the one proposed in (Balbo et al., 2003)
which considers the single station detailed rep-
resentation with the order of the customers in
the queue, similarly to the BCMP paper (Bas-
kett et al., 1975). On the other side the models
we introduce are more detailed than those which
just consider the total number of customers in a
center as the compact models of (Balbo et al.,
2003).

– The FCFS and the LCFSPR (or PS) scheduling
disciplines have different GSPN representations.
The GSPN models simulate the corresponding
queuing system even if their semantic is differ-
ent.

The main idea of the definition of the GSPN mod-
els is a probabilistic choice of the customer to serve
when a server is avaiable and of the customer to pre-
empt when there is an arrival to a LCFSPR station.

The M⇒M property allows us to state that a com-
bination of GSPN-1, GSPN-2 and GSPN-3 models
similar to the service centers combination in BCMP
networks, has a simple closed form steady state prob-
ability. In (Afshari, Bruell, & Kain, 1982) authors
define a queuing center isomorphic to GSPN-1 and
show how it can be embedded in a BCMP queuing
network so that the steady state probability function
of the network does not change. In the GSPN formal-
ism probabilistic routing can be easily simulated by



introducing a block with a place and an immediate
transition for each possible route just after the timed
transitions of the models.

Further research deals with the extension of the
proposed LCFSPR model to Coxian service time dis-
tributions and the definition of algorithms to identify
GSPN which are compositions of models GSPN-1,
GSPN-2, GSPN-3 and in order to obtain efficiently
a set of significant performace indexes.
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