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Abstract. In order to detect intruders that attempt to pass through a
rectangular domain, sensors are placed at nodes of a regular spaced grid
laid out over the rectangle. An intruder that steps within the sensing
range of a sensor will be detected. It is desired that we prevent potential
attacks in either one dimension or two dimensions. A one-dimensional
attack succeeds when an intruder enters from the top (North) side and
exits out the bottom (South) side of the domain without being detected.
Preventing attacks in two dimensions requires that we simultaneously
prevent the intruder from either entering North and exiting South or
entering East (left side) and exiting West (right side) undetected.

Initially, all of the sensors are working properly and the domain is fully
protected, i.e., attacks will be detected, in both dimensions (assuming
the grid points are such that neighboring sensors have overlapping sens-
ing ranges and include all four boundaries of the domain). Over time, the
sensors may fail and we are left with a subset of working sensors. Under
these conditions we wish to (1) determine if one or two-dimensional at-
tack detection still persists and (2) if not, restore protection by adding
the least number of sensors required to ensure detection in either one or
two dimensions.

Ideally, the set of currently working sensors would provide some amount
of fault-tolerance. In particular, it would be advantageous if for a given
k, the set of sensors maintains protection (in one or two dimensions) even
if up to k of the sensors fail. This leads to the problems of (1) deciding
if a subset of the sensors provides protection with up to k faults and (2)
if not, finding the minimum number of grid points to add sensors to in
order to achieve k fault-tolerance.

In this paper, we provide algorithms for deciding if a set sensors provides
k-fault tolerant protection against attacks in both one and two dimen-
sions, for optimally restoring k-fault tolerant protection in one dimension
and for restoring protection in two dimensions (optimally for k = 0 and
approximately otherwise).
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1 Introduction

In order to detect intruders that attempt to pass through a rectangular domain,
sensors are placed at nodes of a regular spaced grid laid out over the rectangle.
An intruder that steps within the sensing range of a sensor will be detected. It is
desired that we prevent potential attacks in either one dimension or two dimen-
sions. A one-dimensional attack succeeds when an intruder enters from the top
(North) side and exits out the bottom (South) side of the domain without being
detected. Preventing attacks in two dimensions requires that we simultaneously
prevent the intruder from either entering North and exiting South or entering
East (left side) and exiting West (right side) undetected.

Initially, all of the sensors are working properly and the domain is fully
protected, i.e., attacks will be detected, in both dimensions (assuming the grid
points are such that neighboring sensors have overlapping sensing ranges and
include all four boundaries of the domain). Over time, the sensors may fail and
we are left with a subset of working sensors. Under these conditions we wish to
(1) determine if one- or two-dimensional attack detection still persists and (2) if
not, restore protection by adding the least number of sensors required to ensure
detection in either one or two dimensions.

Ideally, the set of currently working sensors would provide some amount of
fault-tolerance. In particular, it would be advantageous if for a given k, the set
of sensors maintains protection (in one or two dimensions) even if up to k of the
sensors fail. This leads to the problems of (1) deciding if a subset of the sensors
provides protection with up to k faults and (2) if not, finding the minimum
number of grid points to add sensors to in order to achieve k fault-tolerance.

In this paper, we provide algorithms for deciding if a set sensors provides
k-fault tolerant protection against attacks in both one and two dimensions, for
optimally restoring k-fault tolerant protection in one dimension and for restoring
protection in two dimensions (optimally for k = 0 and approximately otherwise).
The rest of this introduction provides more precise definitions for our problems, a
description of our results and a discussion of related work. The following section
presents our results in detail and we finish with a discussion of extensions and
open problems.

1.1 Preliminaries and notation

In order to present our results we first provide some definitions. As many of
our results depend upon results concerning shortest paths and network flow in
directed graphs, we will, at times, represent an undirected graph, say H, with a
directed graph, denoted H↔, by replacing each edge with two edges of opposite
orientation. Any directed path in H↔ will then correspond to an undirected path



in H and vice versa. Moreover, two directed paths are vertex-disjoint in H↔ if
and only if the corresponding paths in H are vertex-disjoint.

Also, we will need a binary weight function on the vertices of our graphs
to indicate whether or not a vertex can be occupied by an adversary without
detection by a sensor. As we will see, it is convenient to add ‘dummy’ vertices
to our grid, G, which will not be accessible by an adversary. These vertices will
be given weight zero, as will any vertex on which we place a sensor. Any grid
vertex which does not contain a sensor will have weight one.

Many of the cut/flow results we would like to use depend on edge weights to
determine the length of a path. As we are interested in the presence of sensors
on a path, for any plane graph, H, with weighted vertices, we give edge weights
to H↔ determined by the terminal vertex of each edge. Then the weight of a
directed path in H↔ will be the sum of the edge weights plus the weight (in H) of
the initial vertex on the path. This provides an equivalent weight on undirected
paths in H and a distance function in both graphs.

Fix m,n > 0 and consider an m×n-grid, G, embedded in the plane. Label the
four vertex sets corresponding to the four sides of the grid, North, South,East
and West, so that North and South have size m; East and West have size n.
Let C = (c0, ..., c2n+2m−5) be the cycle peripheral to the unbounded face of G
so that

North = {c0, ..., cm−1},
East = {cm−1, ..., cm+n−2},
South = {cm+n−2, ..., c2m+n−3},
West = {c2m+n−3, ..., c2m+2n−5, c0}.

A (North, South)-path in G↔ is a directed path whose initial vertex is in
North and whose terminal vertex is in South; similarly, an (East,West)-path
in G↔ is a directed path whose initial vertex is in East and whose terminal
vertex is in West. We refer to undirected paths in G as (North, South) and
(East,West)-paths as well.

Definition 1 ((North, South)- and (East, West)-blocking set). A (North,
South)-blocking set, B ⊆ V (G), is a set of vertices such that there is no
(North, South)-path in G − B. Similarly, an (East,West)-blocking set, B ⊆
V (G), is a set of vertices such that there is no (East,West)-path in G−B.

Placing sensors on such a blocking set will detect an adversary’s movement along
any path between the identified pair of sides in the grid.

We generalize these blocking sets to allow for a number, k, of faults amongst
sensors.

Definition 2 (k-blocking set). For any fixed k ≥ 0, a (North, South)-k-
blocking set, B ⊆ V (G), is a set of vertices such that for any F ⊆ B with |F | ≤ k,
there is no (North, South)-path in G − (B\F ). Similarly, an (East,West)-k-
blocking set, B ⊆ V (G), is a set of vertices such that for any F ⊆ B with



|F | ≤ k, there is no (East,West)-path in G− (B\F ). For any fixed k ≥ 0, a k-
blocking set, B ⊆ V (G), is a set of vertices so that for any F ⊆ B with |F | ≤ k,
there is neither a (North, South)-path nor an (East,West)-path in G− (B\F ).

Placing sensors on a (North, South)-k-blocking set (respectively, (East,West)-
k-blocking set) will detect movement along any path between the identified pair
of sides in the grid, allowing for up to k faulty sensors. Moreover, a k-blocking
set detects both (North, South) and (East,West) movement at the same time,
allowing for up to k faulty sensors.

We now define our problems.

Definition 3 (One-dimensional k-protection decision problem). Given
an m × n-grid, G, a subset B ⊆ V (G), and a non-negative integer k, does B
form a (North, South)-k-blocking set? The case k = 0 will be referred to simply
as the one-dimensional protection decision problem.

Definition 4 (Two-dimensional k-protection decision problem). Given
an m×n-grid, G, a subset B ⊆ V (G), and a non-negative integer k, does B form
a k-blocking set? The case k = 0 will be referred to simply as the two-dimensional
protection decision problem.

Definition 5 (One-dimensional k-protection placement problem). Given
an m× n-grid, G, a subset B ⊆ V (G), and a non-negative integer k, find a set
B′ ⊆ V (G)\B of minimum size such that B ∪ B′ forms a (North, South)-k-
blocking set. The case k = 0 will be referred to simply as the one-dimensional
protection placement problem.

Definition 6 (Two-dimensional k-protection placement problem). Given
an m× n-grid, G, a subset B ⊆ V (G), and a non-negative integer k, find a set
B′ ⊆ V (G)\B of minimum size such that B ∪ B′ forms a k-blocking set. The
case k = 0 will be referred to simply as the two-dimensional protection placement
problem.

1.2 Our results

We show the following:

1. There exist O(mn) time algorithms for solving the one- and two-dimensional
k-protection decision problems. See Theorems 2 and 5. (Note: the one di-
mensional case follows from a result in [13]. We present our own version of
the proof for completeness.)

2. There exists aO(kmn log(mn)) time algorithm for solving the one-dimensional
k-protection placement problem. See Theorem 3.

3. There exists a O(m2n2) time algorithm for solving the two-dimensional pro-
tection placement problem. See Theorem 6.

4. There exists a O(kmn log(mn)) time 2-approximation algorithm for solving
the two-dimensional k-protection placement problem. See Theorem 7.



In all of the above we assume k < min{m,n} as we shall see that the problems
can not be solved otherwise. Further we discuss extensions of these results for
solving more general versions of these problems including protecting:

1. domains containing impassable regions,
2. non-rectangular domains,
3. and against more general attacks than just North-South or East-West.

1.3 Related work

As far as we know, we are the first to study these problems as formalized above.
A closely related problem concerning the placement of sensors to accomplish
coverage of a given region has been studied extensively in the literature. Gen-
erally, one assumes sensors can sense a limited region defined by their sensing
radius. To monitor a larger region against potential threats every point of the
region must be within the sensing range of at least one of the sensors. This has
been studied in several papers, and includes research on area coverage whereby
one ensures monitoring of an entire region [11, 14], and on perimeter or barrier
coverage whereby a region is monitored via its perimeter thus sensing intrusions
or exits from the interior [1, 13]. The fault tolerance of such placements has also
been studied [4, 13]. For the case where the sensors may be moved, the com-
plexity of minimizing the sensor displacement has also been studied in some
detail. For example, for sensors placed on a line [6] shows that there is an O(n2)
algorithm for minimizing the max displacement of a sensor while the problem
becomes NP-complete if there are two separate (non-overlapping) barriers (cf.
also [5] for arbitrary sensor ranges). Similar research is known if one is inter-
ested in sum of sensor displacements [7], or the number of sensors moved [15].
Further, [9] considers the complexity of several natural generalizations of the
barrier coverage problem with sensors of arbitrary ranges, including when the
initial positions of sensors are arbitrary points in the two-dimensional plane, as
well as multiple barriers that are parallel or perpendicular to each other. Perhaps
the most closely related work to ours is that of [16] where the authors look at
how to best randomly distribute additional sensors in order to maintain barrier
coverage under the potential for faults.

2 Main Results

Our main results are based upon establishing a characterization of minimal k-
blocking sets in grids. To do this, it is easier to work in the more general setting of
graphs embedded in the plane and use some ideas derived from the graph theory
literature. We begin by establishing some definitions and important lemmas.

2.1 Connectedness and surface graphs

Definition 7. Let H be a simple, 2-connected graph embedded in the plane. The
surface graph of H, Ĥ, is obtained from H as follows. In each face, f , of H,



add a new node, vf , and edges from vf to each vertex of H which is peripheral
to f . For each X ⊆ V (H), the bounded surface set of X, called X, is equal

to X ∪ {vf ∈ V (Ĥ) : f is a bounded face of H} ⊆ V (Ĥ).

That is, we obtain a subset of vertices of Ĥ from X by including each vertex
which corresponds to a bounded face of H. The subgraph of Ĥ induced by X is
denoted by Ĥ[X].

Notice that Ĥ is a maximal plane graph. We observe the following connect-
edness property for any maximal plane graph.

Lemma 1. Let H be a maximal plane graph, and let X ⊆ V (H). If f is a face
of H −X, then the set,

F := {u ∈ V (H) : u is in the face f},

is a connected set of vertices in H.

Proof Let u, v ∈ F . Then there is some simple polygonal (u, v)-curve, say γ,
contained in the face, f . Moreover, we may assume that γ does not meet any
vertices from H other than its endpoints, and γ’s intersection with each edge
consists of an isolated point. Consider the finite multi-sequence of edges from H
which intersect γ, beginning with the edge closest to u on γ, (e1, e2, ..., en). For
each i ∈ {1, ..., n}, let vi be an endpoint of ei contained in F (choosing arbitrarily
if both endpoints of ei lie in F ). We want to show that (u, v1, ..., vn, v) is a (u, v)-
walk in H.

Suppose 1 ≤ i ≤ n − 1. If we restrict γ to the curve between its identified
intersection with ei and ei+1, then the interior of the resulting curve does not
intersect any edges or vertices of H. Thus, its interior is contained in a single
face of H. Since H is a maximal plane graph, there are three vertices incident
with this face, and they form a clique in H. In particular, either vi = vi+1 or
vi is adjacent to vi+1. Similar arguments show that u is adjacent to v1 and v is
adjacent to vn. Therefore, (u, v1, ..., vn, v) is a (u, v)-walk in H consisting entirely
of vertices in F , so F is connected in H.

Our characterization of k-blocking sets in one or two dimensions will depend
upon the existence of a set of paths in G with certain properties. The next lemma
will be useful in establishing this correspondence.

Let H be a simple, 2-connected graph embedded in the plane and let C =
(c0, ..., ct−1) be the cycle in H which is peripheral to the unbounded face. Fol-
lowing Robertson and Seymour’s treatment of the DISJOINT CONNECTING
SUBGRAPHS problem in [17], for any 4-tuple, (i, j, i′, j′), such that

0 ≤ i < j ≤ i′ ≤ j′ ≤ t− 1

we say that {ci, ci′} crosses {cj , cj′} in H. Notice that we allow the degenerate
cases, where i = i′ or j = j′. For convenience, we may say that {a, b} crosses
{c, d} in H without referring to indices. In this case, given an (a, b)-path, P , in
H, it is a straightforward consequence of the Jordan Curve Theorem that any
(c, d)-path must contain a vertex in P .



Lemma 2. Let H be a 2-connected plane graph, let C = (c0, ..., ct−1) be the
cycle in H which is peripheral to the unbounded face, and let X ⊆ V (H). For
ci, ci′ ∈ V (H)\X such that 0 ≤ i ≤ i′ ≤ t− 1, there is a (ci, ci′)-path in H −X
if and only if for every j, j′ such that i ≤ j ≤ i′ ≤ j′ ≤ t − 1, there is no
(cj , cj′)-path in Ĥ[X].

Proof The forward direction is a consequence of the Jordan Curve Theorem.
For the backward direction, we prove the contrapositive. Suppose there is no
(ci, ci′)-path in H − X. Define j so that cj−1 is the last vertex on the path,
(ci, ci+1..., ci′−1), which is in the same component of H −X as ci, and define j′

so that cj′+1 is the first vertex on the path, (ci′+1, ci′+2..., ci), which is in the
same component of H −X as ci (here, our indices are modulo t). By definition,

both cj , cj′ ∈ X. We want to show that cj and cj′ lie in the same face of Ĥ −X.
If not, there is some pair, ck, ck′ ∈ V (C) ∩ (V (H)\X), with

ck ∈ {cj+1, cj+2, ..., cj′−1} and ck′ ∈ {cj′+1, cj′+2, ..., cj−1},

such that there is a (ck, ck′)-path in H −X and {ck, ck′} crosses {cj , cj′} in H.
We consider three cases.

Case 1: Suppose k ∈ {j + 1, ..., i′ − 1}. If k′ ∈ {j′ + 1, ..., i}, then {ck, ck′}
crosses {cj′+1, ci}. Therefore ck is in the same component of H −X as ci, con-
tradicting the maximality of j−1. Otherwise, k′ ∈ {i+1, ..., j−1}, and {ck, ck′}
crosses {cj−1, ci}. Again, ck is in the same component of H −X as ci, contra-
dicting the maximality of j − 1.

Case 2: Suppose k ∈ {i′ + 1, ..., j′ − 1}. If k′ ∈ {j′ + 1, ..., i}, then {ck, ck′}
crosses {cj′+1, ci}. Therefore ck is in the same component of H−X as ci, contra-
dicting the minimality of j′ + 1. Otherwise, k′ ∈ {i, ..., k}, and {ck, ck′} crosses
{cj+1, ci}. Again, ck is in the same component of H −X as ci, contradicting the
minimality of j′ + 1.

Case 3: Suppose k = i′. Then {ck, ck′} crosses {cj−1, cj′+1}, so ci is in the
same component of H −X as ci′ . This contradicts our assumption that there is
no (ci, ci′)-path in H −X.

Therefore, cj and cj′ lie in the same face, say f , of Ĥ − X, where Ĥ is a
maximal plane graph. By lemma 1, the collection of vertices from X which lie
in f is connected in Ĥ. In particular, there is a (cj , cj′)-path in Ĥ[X]. This
completes the proof.

We are now prepared to prove our main results.

2.2 One-Dimensional Blocking

For an m × n-grid, G, define the plane graph, G′, obtained from G by adding
two new vertices, e and w, to the unbounded face so that e is adjacent to each
vertex in East and w is adjacent to each vertex in West. For each B ⊆ V (G),

we can think of Ĝ[B] as a subgraph of Ĝ′[B] because every bounded face of G
is a bounded face of G′. Moreover, there are k+ 1 vertex-disjoint (East,West)-

path in Ĝ[B] just in case there are k+ 1 internally vertex-disjoint (e, w)-path in

Ĝ′[B ∪ {e, w}]. Define B′ = B ∪ {e, w}.



Theorem 1. Let m,n > 0, let G be the m × n-grid and let B be a subset of
vertices from G. For each k ≥ 0, B is a (North, South)-k-blocking set if and

only if Ĝ[B] contains k + 1 vertex-disjoint (East,West)-paths.

Proof Suppose B is a (North, South)-k-blocking set in G. For the sake of

contradiction, suppose Ĝ′[B′] contains at most k vertex-disjoint (e, w)-paths.

By Menger’s Theorem, there is some X ⊆ B separating e and w in Ĝ′[B′] with

|X| ≤ k. We claim there is some F ⊆ B separating e and w in Ĝ′[B′] with
|F | = |X| .

We prove the claim by induction on the number of vertices in X\B. Let X be

a minimum size set of vertices separating e and w in Ĝ′[B′]. If |X\B| = 0, then
X ⊆ B and we are done. Otherwise, there is some face, f , of G′ such that vf ∈
X\B. By the minimality of X, there is an (e, w)-path P in Ĝ′[B′]− (X\{vf}).
Moreover, it must be the case that vf ∈ V (P ), and the two neighbors of vf in

P are not adjacent in Ĝ′.

Clearly, neither e nor w is peripheral to f since each such face is bounded by
a 3-cycle. Therefore, f is a bounded face in G; let Cf = (a, b, c, d) be the cycle
peripheral to f . Without loss of generality, we may assume that a and c are the
two neighbors of vf in P and b, d /∈ B\X. Let X ′ = X\{vf} ∪ {a}. Notice that

vf has degree 1 in Ĝ′[B′]−X ′. Therefore, no (e, w)-path in Ĝ′[B′]−X ′ uses vf .

By the choice of X, there is no (e, w)-path in Ĝ′[B′]− (X\{vf}) which does not

use vf . Hence, there is no (e, w)-path in Ĝ′[B′] − X ′. Finally, |X| = |X ′| and
|X\B| − 1 = |X ′\B|. This completes the induction.

We have shown the existence of some F ⊆ B separating e and w in Ĝ′[B′]

with |F | ≤ k. That is, there is no (e, w)-path in Ĝ′[B′\F ]. But, since B is a
(North, South)-k-blocking set, there is no (North, South)-path in G′− (B′\F ).
This contradicts Lemma 2.

For the backward direction, suppose Ĝ′[B′] contains k + 1 vertex disjoint
(e, w)-paths. Then for any F ⊆ B with |F | ≤ k, there is an (e, w)-path in

Ĝ′[B′\F ]. By Lemma 2, there is no (North, South)-path in G′− (B′\F ). There-
fore, B is a (North, South)-k-blocking set.

Theorem 2. Let m,n > 0, let G be the m × n-grid and let B be a subset of
vertices from G. For each k ≥ 0, one can decide whether B is a (North, South)-
k-blocking set in O(mn) time.

Proof Theorem 1 implies that B is a (North, South)-k-blocking set if and

only if there are k+ 1 internally vertex-disjoint (e, w)-paths in Ĝ′[B′]. Letting `

equal the number of vertices in Ĝ′[B′], we can compute the vertex connectivity
between two vertices in a planar graph in O(`) time ([2, 10]). Moreover, Euler’s



formula tells us that

` ≤ |V (Ĝ′)\{vf∞}|
= |V (G′)|+ |F (G′)| = |E(G′)|+ 2

= n(m− 1) +m(n− 1) + 2n+ 2

= 2mn+ n−m+ 2.

Here, F (G′) is the set of faces in G′ and f∞ is the unbounded face of G′.

Define a weight function, σ, on V (Ĝ) so that

σ(v) =

{
1, v ∈ V (G)

0, v ∈ V (Ĝ)\V (G).

From σ, we obtain a weight function, σ↔, on the vertices of Ĝ↔ and a distance
function δ on the edges of Ĝ↔, as described in the preliminaries. These functions
are easily extended to Ĝ′ and Ĝ′↔ by giving each new vertex weight zero.

Now suppose we are given some initial set of sensors in the grid. We are
interested in placing additional sensors to obtain a (North, South)-k-blocking
set. Moreover, we would like to minimize the number of sensors used to obtain
this result. Let B0 ⊆ V (G) be a set of sensors initially placed on the grid. We
define a new weight function, σ0, by altering σ so that σ0(v) = 0 for each v ∈ B0.
The functions σ0↔ and δ0 are defined naturally from these new weights.

Theorem 3. Let m,n > 0, let G be the m×n-grid and let B0 ⊆ V (G) be given
weight zero. For each k ≥ 0, there is an O(kmn log(mn)) algorithm to find a
minimum size set, B1 ⊆ V (G)\B0, such that B0 ∪ B1 is a (North, South)-k-
blocking set.

Proof By Theorem 1, B ⊆ V (G) is a (North, South)-k-blocking set if

and only if there exist k + 1 internally-disjoint (e, w)-paths in Ĝ′↔. Given the

weight function, σ0↔, on the edges of Ĝ′↔, we can use Suurballe’s algorithm
[19] to find k+1 internally vertex-disjoint (e, w)-paths of minimum total length.
Since σ(e), σ(w) = 0, the total length of these k + 1 paths will be equal to the
number of vertices used which are in G and do not have a sensor placed on them.
Let B be the set of vertices in these k + 1 internally vertex-disjoint paths, and
let B1 be the set of vertices in B which have weight 1. Then B0 ∪B1 ⊇ B and
Ĝ[B0 ∪B1] contains k+1 vertex-disjoint (East,West)-paths. Therefore, B0∪B1

is a (North, South)-k-blocking set. By construction, no set smaller than B1 has
this property.

Since Ĝ↔ is a plane graph, we can use Borradaile and Klein’s shortest di-
rected path algorithm from [2] in the implementation of Suurballe’s algorithm.
Borradaile and Klein’s algorithm runs in O(mn log(mn)) time, and Suurballe
requires k + 1 iterations.

2.3 Two-Dimensional Blocking

It is straightforward to extend Theorems 1 and 2 to two dimensions. First we
characterize the two-dimensional solution in terms of disjoint paths.



Theorem 4. Let m,n > 0, let G be the m × n-grid and let B be a subset of
vertices from G. For each k ≥ 0, B is k-blocking set if and only if Ĝ[B] contains
k+1 vertex-disjoint (North, South)-paths and k+1 vertex-disjoint (East,West)-
paths.

From this, the solution to the decision version follows:

Theorem 5. Let m,n > 0, let G be the m × n-grid and let B be a subset of
vertices from G. For each k ≥ 0, one can decide whether B is a k-blocking set
in O(mn) time.

Using the distance function, δ, defined on Ĝ, we now describe a property of
a minimum weight 0-blocking set.

Lemma 3. Let m,n > 0, let G be the m × n-grid and let B ⊆ V (G) be given

weight zero. If B is a minimum weight 0-blocking set, then Ĝ[B] contains a tree,
T , such that B ⊆ V (T ), and there exist special vertices u, v ∈ V (T ) (possibly u =
v) such that T is the union of five shortest paths, a (u, v)-path, a (North, {u})-
path, a (South, {v})-path, and either a (East, {u})-path and a (West, {v})-path
or an (East, {v})-path and a (West, {u})-path.

Proof If B is a 0-blocking set, Ĝ[B] contains a (North, South)-path, say
P , and an (East,West)-path, say Q. The endpoints of P cross the endpoints of
Q; therefore, S = P ∪Q is a connected graph. Moreover, S is a 0-blocking set, so
by minimality, B ⊆ V (S). Let P1 be the subpath of P beginning with the initial
vertex in North and ending with the first vertex in V (Q), say u. Let P2 be the
subpath of P beginning with the last vertex of P in V (Q), say v, and ending
with the terminal vertex in South. Either u occurs before v in Q, u occurs after
v in Q or u = v.

In the first case, let Q1 be the subpath of Q beginning with the initial vertex
in East and ending with u and let Q2 be the subpath of Q beginning with v and
ending with the terminal vertex in West. Let R be the subpath of P beginning
with u and ending with v. Then S′ = P1∪P2∪Q1∪Q2∪R is a subgraph of S and
is also a 0-blocking set. By minimality, V (S′) ∩B = V (S) ∩B. Moreover, their
definition ensures that these subpaths are internally disjoint. The minimality of
B implies that P1 is a shortest (North, {u})-path, P2 is a shortest ({v}, South)-
path, Q1 is a shortest (East, {u})-path, Q2 is a shortest ({v},West)-path and
R is a shortest (u, v)-path. The second and third cases follow similarly.

We use the above characterization to describe an algorithm for finding special
vertices and a minimum 0-blocking set.

Algorithm: A1, Minimum sensor 0-blocking in G.
Input: Fixed integers, m,n > 0, the plane graph Ĝ obtained from the m×n-

grid, G, and a set of vertices B0 ⊆ V (G).

Initialization: Order the vertices of Ĝ, {u1, ..., us}. Here s = |V (Ĝ)|. Define

the distance function, δ0, on Ĝ.

1. For i = 1, ..., s:



(a) Run the single-source shortest path algorithm from [10] on Ĝ with source,

ui, obtaining a weighted distance, δ0(ui, v), for each v ∈ V (Ĝ).
(b) Set

rN (ui) = min{δ0(ui, v) : v ∈ North},
rS(ui) = min{δ0(ui, v) : v ∈ South},
rE(ui) = min{δ0(ui, v) : v ∈ East},
rW (ui) = min{δ0(ui, v) : v ∈West}.

2. For i = 1, ..., s and j = i, ..., s:

(a) Set

RNE(i, j) = rN (ui) + rE(ui) + rS(uj) + rW (uj) + δ0(ui, uj),

RNW (i, j) = rN (ui) + rW (ui) + rS(uj) + rE(uj) + δ0(ui, uj),

RSE(i, j) = rS(ui) + rE(ui) + rN (uj) + rW (uj) + δ0(ui, uj),

RSW (i, j) = rS(ui) + rW (ui) + rN (uj) + rE(uj) + δ0(ui, uj).

(b) Set

R(i, j) = min{RNE(i, j), RNW (i, j), RSE(i, j), RSW (i, j)}
− 2σ0(ui)− 2σ0(uj)

and set D(i, j) = (X,Y ) ∈ {North, South} × {East,West} such that
R(i, j) = RXY (i, j).

3. Set ρ(G) = min{R(i, j) : 1 ≤ i ≤ j ≤ s}.
4. Set (α, β) = min{(i, j) : R(i, j) = ρ(G)}, given the lexicographic ordering on

tuples.
5. Run the single-source shortest path algorithm from [10] on Ĝ to find shortest

paths for (uα, X), (uα, Y ), (uβ , X
c), (uβ , Y

c) and (uα, uβ), where D(α, β) =
(X,Y ). Here, if X = North, then Xc = South; if Y = West, Y c = East,
etc. Stop.

Output: T , the graph obtained from the union of the five shortest paths found
in step 5. ρ(G), which gives the number of vertices in (T ∩ V (G))\(B0).

Theorem 6. Let m,n > 0, let G be the m× n-grid and let B0 ⊆ V (G) contain
sensors. There is an O(m2n2) time algorithm for finding a minimum size set
that extends B0 to a 0-blocking set.

Proof By Theorem 1, the set, V (T ), output by algorithm, A1 is a 0-blocking
set. By Lemma 3, no 0-blocking set has smaller size. Step 1 of A1 consists of
s = 2mn+n−m+2 iterations of the shortest-path algorithm in [10], which runs
in O(mn) time. Thus, step 1 runs in O(m2n2) time. Step 2 is iterated

(
s
2

)
+ s

times, running in O(m2n2) time. Step 5 is completed in O(mn) time. Therefore,
algorithm A1 runs in O(m2n2) time.



While a characterization similar to that Lemma 3 for k-blocking sets (k > 0)
is easily derived, unfortunately it does not immediately lead to a polynomial
time algorithm for finding the optimal placement.

Instead we describe an efficient 2-approximation algorithm for this case. The
graph used is Ĝ with weights on the vertices are as above.

1. Using Suurballe’s algorithm (with the optimization by Borradaile and Klein)
find k + 1 disjoint paths of minimum total weight connecting East to West
(adding a start node with weight 0 attached to all of the nodes in East and
a finish node with weight 0 attached to all of the nodes in West). Let those
paths be EW0, . . . , EWk with total cost ew.

2. Using Suurballe’s algorithm find k+1 disjoint paths of minimum total weight
connecting North to South. Let those paths be NS0, . . . , NSk with cost ns.

3. Return the combination of paths EW0, . . . , EWk and NS0, . . . , NSk with
total weight at most ew + ns.

Theorem 7. Let m,n > 0 and let G be the m × n-grid and let B0 ⊆ V (G)
contain sensors. There is an O(kmn log(mn))) algorithm for finding a set of
vertices that extends B0 to a k-blocking set and that is within a factor of 2 of
optimal in size.

Proof By Theorem 4 and by construction the set output by the algorithm
above is a k-blocking set and it clearly runs in O(kmn log(mn)) time. Let the
value of the optimal solution by OPT . Observe that OPT ≥ ns. This follows
from the fact that the optimal solution must contain k + 1 disjoint paths from
North to South and therefore must have cost at least ns (which is optimal).
Similarly, we have OPT ≥ ew. If follows that the value of our solution is at most
ew + ns ≤ 2 ·OPT .

3 Extensions and open problems

Lemmas 1 and 2 are written in such generality as to allow us to easily extend
our results to other domains and problems. For example, the original (planar)
domain need not be rectangular and may contain “holes” representing impass-
able regions. The attacks detected need not be North-South or East-West paths
but an intruder may enter at any contiguous portion of the border of the region
and exit any other (disjoint) contiguous region. Multiple such disjoint attacks
may be tested for simultaneously generalizing the results of Theorems 5, 6 and
7.

Two major open problems come to mind. The first is extending the result of
Theorem 6 to k > 0 faults. While it is easy to generalize the characterization
given in Lemma 3 for k = 0 faults to the case k > 0, it is not obvious that this
results in a polynomial time algorithm. To make it effective, it seems that one
must solve the minimum sum t vertex disjoints paths problem. In particular, a
polynomial time solution to that problem would be sufficient to solve the two-
dimensional k-protection placement problem in time O((mn)2(k+1)2) using an



algorithm analogous to A1. It is known that for variable t this problem is NP-
complete [12]. On the other hand, for fixed t the problem of deciding if the paths
exist is in P [18]. While some progress has been made on this question [3], it
remains open.

The second problem involves the case of movable sensors. Instead of replacing
faulty sensors with new sensors, what if one was allowed to move non-faulty
sensors to new points in the grid. The question of moving the least number of
sensors the least total distance or the minimum maximum distance may be of
interest. Related problems concerning coverage appear to be NP-hard [8]. An
experimental study of a greedy strategy for this problem appears in [20].
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