
The Complexity of Foremost Coverage of
Time-varying Graphs

Eric Aaron1 Danny Krizanc2 Elliot Meyerson3

1Computer Science Department, Vassar College

2Department of Mathematics & Computer Science, Wesleyan University

3Department of Computer Science, UT Austin

Venice, Jan 28, 2015



Foremost Coverage in a Dynamic Environment

Goal: Given a map, a set of agents and set of critical locations

I navigate agents so that every location is visited at least once

I complete coverage as soon as possible

I map may change during navigation

Application domains: inspection, surveillance, coverage, etc. by
robots in a disaster-prone or hostile domain, virtual agents in a
mobile network, etc.

Our approach:

I use time-varying graphs (TVGs) to model dynamics

I analyze DMVP across central chain of TVG classes

I consider centralized, offline complexity



Time-varying graphs (TVGs)

A TVG [Casteigts et al. ’12] is a five-tuple G = (V ,E , T , ρ, ζ)

I G = (V ,E ) is called the underlying graph of G
I T ⊆ T is the lifetime of the system

I presence function ρ(e, t) = 1 ⇐⇒ edge e ∈ E is available at
time t ∈ T

I latency function ζ(e, t) gives the time it takes to cross e if
starting at time t (given that it is available)

We work with the unweighted discrete case:

I T = N
I ζ(e, t) = 1, ∀ e, t

Related concepts: Delay-tolerant networks, Evolving graphs,
T-interval connected graphs, etc.



Journeys

TVG analog of path in (static) graphs is a journey:

J = {(e1, t1), ..., (ek , tk)} is a journey iff

I {e1, ..., ek} is a walk in G

I ρ(ei , ti ) = 1 and ti+1 > ti for all i < k

Types of minimal journeys starting on or after a given date t:

I shortest: k is minimal

I fastest: (tk + 1)− t1 is minimal

I foremost: tk + 1 is minimal (counting from t=0)



Example: Journeys in G

0 1 2 3 5

0 6

7

8

9



Example: Journeys in G, t = 0



Example: Journeys in G, t = 1

fa fo

sh



Example: Journeys in G, t = 2

fa fo

sh



Example: Journeys in G, t = 3

fa fo

sh



Example: Journeys in G, t = 4

fa fo

sh



Example: Journeys in G, t = 5

fa fo

sh



Example: Journeys in G, t = 6

fa

sh

fo



Example: Journeys in G, t = 7

fa of,sh



Example: Journeys in G, t = 8

fa



Example: Journeys in G, t = 9

fa



TVG classes: R ⊃ B ⊃ P [Casteigts et al. ’12]

For each, assume underlying graph G is connected.

I (Edge-recurrent) R is the class of all TVG’s G such that
∀e ∈ E ,∀t ∈ T ,∃t ′ > t s.t. ρ(e, t ′) = 1.

I (Time-bounded edge-recurrent) B is the class of all TVG’s G
such that ∀e ∈ E , ∀t ∈ T , ∃t ′ ∈ [t, t + ∆) s.t. ρ(e, t ′) = 1,
for some ∆.

I (Edge-periodic) P is the class of all TVG’s G such that
∀e ∈ E ,∀t ∈ T ,∀k ∈ N, ρ(e, t) = ρ(e, t + kp) for some p. p
is called the period of G.

Note: G can be disconnected at any moment.



Separations in R ⊃ B ⊃ P

[Casteigts et al. ’10] established a number of separations between the
TVG classes R,B,P.

They studied shortest, fastest and foremost broadcast with
termination detection in the distributed on-line setting.

Their main result is to show how knowledge of n, ∆ and p effects
the feasibility of broadcast.

In particular they show:

Rn ) B∆ ) Pp

where XK is TVG class X with knowledge of K .

What about the offline complexity of exploration?



DMVP (Dynamic Map Visitation Problem)

Problem: Given a TVG G and a set of starting locations S for k
agents in G find journeys for each of these k agents such that

1. every node in V is in some journey

2. the maximum temporal length among all k journeys is
minimized (starting at t = 0)

Decision variant: max temporal length ≤ t.

Essentially k-TSP with following distinctions:

I agents potentially start at different nodes (multi vs single
depot)

I agents need not return to depot (with or without return)

I graph is a TVG



Example: DMVP over G

1,2,3
0 1 2 3 5

0 6

7

8

9



Example: DMVP over G, t = 0

1,2,3



Example: DMVP over G, t = 1

3 1

2



Example: DMVP over G, t = 2

3 1

2



Example: DMVP over G, t = 3

3 1

2



Example: DMVP over G, t = 4

3 1

2



Example: DMVP over G, t = 5

3 1

2



Example: DMVP over G, t = 6

3

2

1



Example: DMVP over G, t = 7

3

2

1



Example: DMVP over G, t = 8

2

3

1



Example: DMVP over G, t = 9

2

3

1



Presentation of G for offline case

Input: G = (G1, t1), (G2, t2), ..., (Gm, tm) [Ferreira ’04]

I Gi a static graph of G , ti the duration of Gi .

I T =
∑m

i=1 ti .

We think of G as being the prefix of some possibility infinite object.

Dealing with exponentiality of T :

I Observation: It is not necessary to consider each static
temporal subgraph (Gi , ti ) for more than 2n − 3 time steps.

I T ′ =
∑m

i=1 min(ti , 2n − 3) < 2nm − 3m

I We can think of T as T ′, thereby avoiding the exponential
nature of T .

I Do this with O(T ′) preprocessing step.

I Does not affect asymptotic runtimes.



Related results for offline case

I [Bui-Xuan, Ferreira and Jarry 2003] give polytime algorithms for
computing shortest, fastest and foremost journeys in TVGs

I [Ferreira 2004] shows that deciding if there exists a
strongly-connected component of size k in a TVG is
NP-complete.

I [Mans and Mathieson 2013] show that testing certain properties of
TVGs is fixed parameter tractable for graphs of bounded
(local) tree-width.

I [Michail and Spirakis 2014] present polytime constant
approximations for TSP with edge weights 1 and 2 on TVGs
(shown to be APX-hard).



Our results

Lower bounds for a single agent:

I Hard to approximate to within any factor in R even on stars
or degree 3 trees. (cf. [Michail and Spirakis 2014].)

I Hard to approximate to within better than ∆ in B even on
spiders or degree 3 trees.

I NP-complete in P for general graphs.

Upper bounds for a k agents:

I O(Tn) for a path; O(Tn2/k) for a cycle in R.

I O(Tn6c+1) for planar region with constant c subregions in R.

I Fixed parameter algorithm for m-leaf c-almost trees in R.

Upper bounds for 2 agents:

I O(n3) ∆-approximation for trees (tight) in B.

I O(n5) algorithm on trees in P with p = 2.

I Linear time 12∆
5 -approximation for general graphs in B.



Inapproximability in R

Thm. DMVP in R is NP-hard to approximate within any factor, even

over stars.

pass(1)

c

v1

v2

v3

v4

v5

p1

p2

p3

p4

p0

take(1)

c

v1

v2

v3

v4

v5

p1

p2

p3

p4

p0

pass(1)

c

v1

v2

v3

v4

v5

p1

p2

p3

p4

p0 ...

Set cover: U = {1, 2, 3, 4, 5}, S = {{1, 2, 4}, {2, 4}, {3, 4}, {3, 5}}, k = 2



Inapproximability in B

Thm. DMVP in B is NP-hard to approximate within any factor < ∆,

even over spiders.

A0

c

3-partition input: S = {2, 3, 4, 4, 5, 8}



Complexity in P

Thm. DMVP in P is
NP-complete.

I p = 1 is static case,
essentially TSP.

Thm. O(n) over a tree with
p = 2.

I Can only enter each
subtree once.

I Partition subtrees into
equivalence classes.

Thm. ∃ graphs such that p = 1
is trivial but p = 2 is NP-hard.

G

G′

v0

v1 v2

v3

v4v5

c0

c1 c2

c3

c4c5

01

01

01

10

10

10

10

10

10

01

0101

10

01

10

01

10

01



Paths/Cycles in R

Observe:

I “No crossing” lemma

I Need only consider case where no two agents start at the
same node

Together these yield an O(Tn) dynamic programming algorithm
for path.

For cycle:

I There exist two agents ≤ n
k apart

I Split cycle at each of these n
k positions and apply path

algorithm

Yields an O(T n2

k ) algorithm.



Planar region with constant c subregions in R

C1

C2

C3

C4

Figure: Border coverage graph extracted from a planar region subdivided
into four subregions.



Planar regions in R

I Graph consists of O(c) paths of length O(n) between O(c)
nodes of degree > 2.

I Each path starts with either 0 or > 0 agents.

I A path starting with 0 agents is covered by either one agent
traveling its full length or by two agents entering from either
end.

I A path starting with > 0 agents is either covered entirely by
its starting agents or partially covered by these agents with
either or both of the ends covered by at most two external
agents.



Planar regions in R

Algorithm idea:

I For each path guess:
I how many external agents required (0, 1, 2),
I which agents they are,
I what portion do they cover.

I For each external agent we are left with a problem of covering
a tree with O(c) leaves which can be solved using an
O(Tn3 + c22O(c)) algorithm.

I For the internal agents we apply the path algorithm.

I Dominated by the cost of guessing where to cut the paths:
O(n6c+1).

I Similar approach gives fixed parameter tractable algorithm for
m-leaf c-almost trees.



Two agents on a tree

L1: static single depot with return

L2: static single depot

T5: static

L3: p = 2 single depot with return

L4: p = 2 single depot

T6: p = 2T7: ∆-approx.

O(1)

O(1)

O(n2)

O(n2)

O(n2)
O(1)

O(1)O(1)

Figure: Poset of results leading to solutions for two-agent DMVP on a
tree; arrows indicate increasing factors of complexity as constraints are
loosened. L1 implied by [Dynai et al., 2006], [Xu et al., 2013].



Two agents on general graphs

Algorithm idea:

I Chose a spanning tree, T , of general graph G .

I Use Euler tour C of T of length 2n − 1.

I Observe that on a (static) cycle of length n there exists
solution where neither agent visits more than 3n

5 of the nodes

I Further observe that optimal coverage must take at least n−1
2

steps

Thm. O(n)-time 12∆
5 -approximation algorithm for general graphs.



Open Problems

Potential generalizations of above:

I More agents on a tree (pseudo-polytime algorithm)

I Fixed p > 2

I Larger underlying graph classes (e.g., bounded max-leaf
number, poly number of spanning trees)

Open problems:

I Relation between B and R: Is there a graph class C such that
DMVP over C is tractable in B, but NP-hard in R? B with
∆ = 2 hard on a star?

I Apply TVGs to related problems

I Markovian TVGs


	Introduction
	Lower Bounds
	Upper Bounds
	Conclusion

