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Abstract

In this paper we consider the decontamination problem inpgetoube network of size. The nodes
of the network are assumed to be contaminated and they have tiecontaminated by a sufficient
number of agents. An agent is a mobile entity that asynchrsiganoves along the network links and
decontaminates all the nodes it touches. A decontaminatdd that is not occupied by an agent is
re-contaminated if it has a contaminated neighbour.

We consider some variations of the model based on the c#jeshilf mobile agentdocality, where
the agents can only access local informatigshility, where they can “see” the state of their neighbours;
andcloning, where they can create copies of themselves. We also cosgithronicity as an alternative
system requirement.

For each model, we design a decontamination strategy andake several observations. For agents
with locality, our strategy is based on the use of a coordinidiat leads the other agents. Our strategy
results in an optimal number of agen&gﬁ), and require®(n logn) moves and)(n logn) time
steps. For agents with visibility, we assume that the agesrtsmove autonomously. In this setting,
our decontamination strategy achieves an optimal time ¢exitp (log n time steps), but the number of
agents increases t. Finally, we show that when the agents have the capabilityooe combined with
either visibility or synchronicity, we can reduce the moeenplexity—which becomes optimal—at the

expense of an increase in the number of agents.
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1 Introduction

1.1 The Problem

We consider the problem of deploying a team of mobile agenttetontaminate a network infected by a
mobile virus. From a practical point of view, the disinfectiof a network and the protection of its hosts
from unwanted, possibly dangerous intrusions is a presgogrity problem in networked environments. In
fact, a great deal of research has been devoted to this isspecially for detection (e.g., see [1, 17, 30]).
The problem has been studied extensively from a graph-¢tieal point of view under the termistruder
capture, decontamination, andgraph search (e.g., see [2, 6, 10, 14, 19, 20, 22-24, 26]). In particutsearch
has looked at variations of the decontamination problemliickvthe agents are allowed to “jump” from
one node to any other node. The focus has often been on detegntine minimum number of agents able
to perform decontamination because this number is clostfted to standard graph parameters such as
pathwidth and treewidth (e.g., see [10, 11, 26, 28, 29]).

In the decontamination problem without “jumping”, defined in [2], a team of agents is initialocated
on a single node, theomebase, and the agents can move freely from the node they are on tiglabweiring
node. At any point in time each node of the network can be inafrtbree possible statestean, contam-
inated, or guarded. A node is guarded when it contains at least one agent, cléamwan agent has been
on the node and all the neighbouring nodes are clean or gljaadd contaminated otherwise. Initially all
nodes are contaminated except for the homebase, whichisusbyguarded. The solution to the problem is
given by a cleaning strategy for the agents that guaranbe¢sfter a finite amount of time all the nodes are
simultaneously clean. A strategy is call@dnotone if guarantees that after a node has been decontaminated
it will not be re-contaminated. Decontamination has to becaied as efficiently as possible. Efficiency is
measured in terms of the size of the team of agents, traffic (he number of moves the agents have to
perform), and time (or steps)

Starting with the model employed in [2] (here called tbeal model), we introduce additional assump-
tions in order to study the impact that more powerful agepabdities or additional system requirements

have on the solution process for our problem. Inltheal model, an agent located at a node can only “see”

*In the case of asynchronous systems, we measure ideal tiatést we assume that it takes one unit of time for an agent to
traverse a link.



local information, such as the state of the node, the labfdlseancident links, and the other agents present
on the nodeMsihility is the capability of the agent to “see” the state of the naighing nodes, meaning
that an agent can see whether a neighbouring node is guatdead, or contaminatedloning is the capa-
bility for an agent to create copies of itseSynchronicity implies that local computations are instantaneous
and it takes one unit of time (one step) for an agent to mova fxanode to a neighbouring one.

In this paper, our main focus is on understanding what imgiecpower of the agents and the under-
lying system has on the complexity of the problem. As a firgp $bwards understanding these issues, we
concentrate on a specific topology—the hypercube, whicHasglg common topology for interconnection
networks and has been the subject of extensive investigédig., see [21]).

We design strategies to solve the decontamination problaimib the local and the visibility models,
and we compare their performances. In particular, we shatwikibility is crucial to the reduction of time
complexity, which, in fact, becomes optimal. This reductimwever is obtained by increasing the number
of agents (see Table 1 in the Conclusions for a summary okthdts).

We then consider the cloning and synchronicity assumptidie show that cloning is useful for re-
ducing the move complexity — which becomes optimal — whers itdmbined with either visibility or
synchronicity. Unfortunately, we could not achieve the saeduction while keeping an optimal number of
agents.

An interesting consequence of the optindgl—=— ) bound on the number of agents that we obtain in

Viogn
the local model is the derivation of the search number fohtfpercube in the classical graph search model,

which was unknown. In fact, in the classical model, the lol@und would still hold, making our strategy

optimal even when the agents are allowed to “jump.”
1.2 Related Work

The decontamination problem has been introduced in [6, 28]r@s been extensively studied in the liter-
ature under the terrgraph search (e.g., see [10, 19, 20, 24, 27]). The graph search problersidens a
system of tunnels represented by the edges of a graph.llinia#l these tunnels are “contaminated” and
have to be decontaminated or cleaned by a sequence of aekensted by a (minimal) set skarchers.

The following operations are considered to be actions: Idgepa searcher on a node, (2) remove a searcher

from a node, and (3) move a searcher along an edge. Many €lakgeaphs have been studied with the
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main focus being on determining the optimal number of seaschrsearch number. The decision problem
corresponding to the computation of the search number ofphgis NP-hard [24] with NP-completeness
being shown in [4, 20]. In graph searching, there has beemtiazydar interest in monotone strategies (e.g.,
see [4, 12, 20]). Monotonicity is a particularly interegtiassumption because monotone strategies can al-
ways perform a polynomial number of moves (one move for eacbrtaminated node plus a few additional
setup moves). An important result from Lapaugh has shownntlmaotonicity does not really change the
difficulty of the graph search problem; in fact, it has beeavahin [20] that for any graph there exists a
monotone search strategy that uses the minimum number nfsage

The classical results for graph search are heavily baseuecgssumption that a searcher can be initially
placed on an arbitrary node and can be arbitrarily moved yootimer node. The main difference in our
setting is that agentsannot be removed fromthe network; they can only move from a node taei ghbouring
one. This assumption is obviously motivated by the fact atare considering software agents that are
only able to move on the edges of the network. This additicnaktraint was introduced and first studied
in [2] resulting in aconnected node search where(i) the removal of agents is not allowed, afid) at any
time of the search strategy, the set of clean nodes formsraected subnetwork.

A connected graph search usually requires more agentsdo@esinate a networ. It has been shown
that for any graphG with n nodes the ratio between the connected search numbé€) and the regular
search numbesn(G) is always bounded. More precisely, it is known that (G)/sn(G) < logn + 1 (see
[11]), and, for atred’, csn(T)/sn(T) < 2 (see [3]). Monotonicity also plays an important role in ceated
graph searches. It has been shown that, as in the more ggnaphl search problem, a solution allowing
re-contamination of nodes cannot reduce the optimal nurabagents required to decontaminate trees
[2]. On the other hand, unlike the classical graph sear@retbxist graphs for which any given monotone
connected graph search strategy requires more searcherththoptimal non-monotone connected search
strategy [31]. The decision problem corresponding to thepatation of the connected search number of a
graph is NP-hard, but it is not known whether there existssacggtificate that is checkable in polynomial
time.

With the connection assumption, the nature of the probleangés considerably and the classical results

on graph search do not generally apply. The problem of finttiegoptimal number of agents has been



studied in some specific topologies. For example, it has Iseewn that the problem can be solved in
linear time for trees [2]. Moreover, optimal strategiesédnéeen studied in chordal rings, tori, and meshes
[14, 15], and in the Sierpihski graphs [22]. Arbitrary tépgy networks have also been considered: some
heuristics have been proposed in [16] and an exponentiaéraog time solution has been described in [5]
to determine an optimal strategy.

Finally, both the connected and the non-connected vergbitse problem have been studied (e.g.,
see [9, 11, 12]) under the assumption that the intruder iblgido the searchersiiGible search game).
The visible search number is also linked to standard grapanpeters such as treewidth and pathwidth.
Moreover, it has been shown that in the case of non-connesgtacth any optimal strategy is monotone,
while in the case of connected search there are graphs wieoptimal strategy is not monotone.

In this paper we consider the same model as [2] and we use rilmedeeontamination to refer to a

connected monotone node search.

2 Definitions and Basic Properties

In a d-dimensional hypercub&; with n = 2¢ nodes, each node corresponds @it binary string and
two nodes are neighbours if their binary strings differ ingisely one bit. At each node there is a distinct
label associated with each of its incident edges; the labgden node: and node: is the position of the
bit in which the corresponding binary strings differ, cdld#mension.

LetG = H; = (V, E) be ad-dimensional hypercube with = |V|. Let E(z) be the edges incident to
x €V.Let),: E(x) — {1,...,d} be an injective function defining the edge labelling for nade

A team of autonomous mobile agents operateS.irEach agent is associated with a distinct identifier,
can perform local computation, can move asynchronousiy fimode to a neighbouring one, and has some
local memory Q(logn) bits suffice for all our algorithms). Moreover, each agentysbthe same set of
behavioural rules, knows that it is operating in a hypercamel can communicate with other agents only
when they are simultaneously present at the same nodet(fefaee communication). The environment is
assumed to be asynchronous; that is, every action the ggenfidsm (e.g., computing, moving) takes a finite
but otherwise unpredictable amount of time.

Let us view the hypercubé&l; as being organized id + 1 levels and let level = 0,1,...,d consist
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Figure 1: The broadcast trd¢ of the hypercubdis. Normal lines represent edgesiig, dotted lines (only
partially shown) the remaining edges 6.

of all the nodes whose binary representation contaorses. Clearly, all the nodes at leviedre connected
only to nodes of level — 1 and to those of level+ 1. Let m(z) denote the position of the most significant
bit of .

Let T, be a breadth-first spanning treefdf rooted at the source (hode (00..00)) defined as followsether
is an edge in the spanning tree betwaeand all the nodes in the next level whose binary representati
differs in a position higher tham(x) (see Figure 1). This spanning tree is also calldataadcast tree
because it is employed to perform optimal broadcast in tipeftgbe: a node receiving a message from
dimension; will forward it to all nodes connected by dimensiohs- i.

Notice that the resulting spanning tree (also known as haape) has the following structure:

e anode of typel'(0) is a leaf

e anode of typel'(1) is a node with one child

e anode of typel'(k) is a node witht children of typeT’(0),...,T'(k — 1)

e the source nod€)0...0) of T, is of typeT'(d)

Let z, y be two neighbouring nodesa(, y) € E(x)). Nodey is called asmall neighbour of nodex if



Az(z,y) < m(z) and it is called abig neighbour of x if \;(x,y) > m(x). Notice that the big neighbours

of x are the children of in the broadcast tree.

3 The Strategies

We first present a lower bound and then propose severalgirat®r the decontamination of the hypercube.
3.1 Lower Bound

In this section, we state a lower bound on the number of agesgided to clean the hypercube that holds for
all our models.

The lower bound is linked to the notion pathwidth, a classical graph parameter defined in [28]. A
path decomposition of a graphGG = (V, E) is a collection{ X1, ..., X, } of subsets o¥” where:

o U X; =V

o V(zr,y)e E,Jie{l,...,rhz,ye X;

o Vi,j,kwithl <i<j<k<r X;NX;CX;

Thewidth of a path decompositiolX, . . ., X, ) is defined asnax;<;<, | X;| — 1, and thepathwidth of

G is the minimum width over its path decompositions.

Theorem 1. To solve the connected monotone search problem, Q( \/12@) agents are required.

PrROOF It is known that the node search number of a graph (in the iciEssodel) is equal to its

pathwidth plus one [19]. From [8, 7] we know that the pathWwidf a hypercube i®(—2—). Since the

logn

lower bound in the classical model is obviously the lowerrmbalso in our model, the theorem followg.
3.2 Local Model: Agent-Optimal Strategy

For ease of discussion in this section, we assume that threaefithe hypercubé is even and thad > 4.
The same bounds are obtained for odd degrees with minorite¢modifications.

The first strategy we present is optimal in terms of the nundbeigents. The main idea is that all the
agents, starting from the same homebase, have their moveditated by an agent that acts as a leader.

The agents visit all nodes while protecting the system frernantamination.



3.2.1 Basic Properties
We start by reviewing a basic property that we will need far strategy:
Property 1. Let T; be a broadcast tree for the hypercube.
1. The number of nodes at level 1 is ().
2. Level O hasno leaves, level [ > 0 has (?:11) leaves, and the total number of leavesis 291,

3. At level O there is a unique node of type 7°(d). At level I > 0 there are (') nodes of type T'(k)

with0 < k <d— 1.

In the rest of the paper we will sometimes use an alternadibelling for the nodes of the hypercube.
Given a node with binary representationwe can also label it with a vectardefined as followsz = () if
x is the source node; otherwisg,=< 11,19, ...,7; > Where thei, for 1 < k <[ < d, are the increasing
positions of the 1 bits inx, i.e., iy > i1 for 2 < k < [. For example, nod¢001110) can also be
labelled as< 2, 3,4 >. In the following we will consider the nodes at each leveltw broadcast tree to be
lexicographically ordered according to this labellinggtis the order in which nodes appear in each level in
Figure 1) and not according to their binary representatidareover, we will use the notationsy and>g

when referring to lexicographic comparisons.
3.2.2 Cleaning strategy

One of the agents (e.g., the one with smallest id), will adhasoordinator for the entire cleaning process.
The cleaning strategy is carried out on the broadcast tlee sfructure of the broadcast tree guarantees
that when a level is fully guarded all the agents on a nodef level [ can move to the next level without
incurring a re-contamination of nodef the agents on nod&<R ?(in level l) have already moved to the
next level. In other words, the broadcast tree and the altieenlabellingz define a correct cleaning order
for the nodes. The main idea is then to place enough agent®ds(00...00) and to coordinate their
movement on the edges of the broadcast tree, level by levet. gfoup of agents available at the root is

called theset of available agents.



Algorithm CLEAN

1. From the root to level 1

1.1 The coordinatord times, guides a distinct agent from the root of the tree tdeddts d
children of typesl'(d — 1), ...,7'(0) and each time returns to the root.

2. From levell > 1 to levell + 1 < d (levell has one agent per node)

2.1Before starting to clean nodes at levet 1, the coordinator moves back to the root to collect
the agents needed for completing the cleaning of leévell (i.e., ¥ — 1 agents per node qf
type T'(k) with 0 < k < d — [, except for the nodes of tydg(1) and7'(0) which do not
require any extra agents). The coordinator séndd additional agents, in no specific order,
to each node of typ&'(k), £ > 1, at levell and then moves to the first node of level

2.2Whenk agents are on a node of tyfi&k) at levell, they are sent down the broadcast tree
to the children at level + 1, guided by the coordinator. L&, ..., 7, (m = (4)) be the
lexicographically-ordered nodes of levelThe coordinator sequentially chooses each node
at levell following this lexicographical ordering and node by nodédgs an agent on eagh
outgoing edge of the broadcast tree to ldvel 1.

2.3When the coordinator reaches a leaf of ldyéhe agent it was guiding becomes available and
returns to the root. Notice that when the coordinator reathe last node of levé| the only
active agents are the ones covering lével1.

Figure 2 shows foi, the order in which the nodes are cleaned by the agents lecelyotirdinator.

Figure 2: Algorithm @EAN on a hypercubéf,. The nodes get cleaned sequentially.



3.2.3 Correctness and Analysis

Correctness. We now prove that Algorithm CEAN is correct; that is, all the nodes in the hypercube will
be cleaned and once a node has been cleaned it will neverdoat@ninated.

Let = be a node of level, let N (z) denote the neighbours ofat levell + 1; and letNT'(x) denote the
children ofz at levell + 1 in the broadcast tree. Notice thit{x) includesNT'(z) and possibly some other

neighbours at levdl+ 1. The following lemma contains an obvious observation:
Lemmal. If z € N(y) \ NT(y) then z € NT'(x) for somex suchthat z <p ¥.

Lemma 2. In Algorithm CLEAN, when agents leave unguarded a node z at level [, all the neighbours of x

are either clean or guarded.

ProOFThis is clearly true for the node at level 0. Assume it is troledll nodes at leve) < j < ¢ and
consider levet.

Nodes at level are only connected to nodes at level 1 andi + 1. When the nodes at levelare
sending agents to levéh- 1, by the induction hypothesis and the cleaning strategyaales at level — 1
are clean. Let us now assume that cleaning occurs at padédevel i. For anyz € N(y) \ NT(y), by
Lemma 13z such that € NT'(z) andz < y. By the cleaning strategy, the coordinator visits the naades
lexicographical order at each level. So before the cootdin@aches nodg, agents on node are already
sentto level + 1 and allz € N(y) \ NT'(y) are already guarded by an agent eachy i a node of type
T(j) wherej > 1, by Step 2.1 of Algorithm CeEAN, enough agents are sent from the set of available agents
on the homebase to nogeto clean the children of in the broadcast tree. {f is a node of typd’(1), the
agent on it is enough to clean its only child at leve} 1. After all the agents ory are sent down to the
children ofy at leveli + 1, each node oNT'(y) is guarded by an agent and all the neighbourg arfe either
clean or guarded by an agent.ylis a leaf thenNT'(y) is empty. When the coordinator reaches it, all the

neighbours of at leveli + 1 are guarded and all the neighbours at lgvel1 are clean.g

Theorem 2. The cleaning process of Algorithm CLEAN decontaminates all nodes. During the execution

clean nodes cannot be re-contaminated.

ProOFIn Algorithm CLEAN, the decontamination is performed level by level, so wheedthes level

d, all nodes have been cleaned. The fact that a clean nodeowltlenre-contaminated directly follows from
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Lemma 2. g

Complexity. To calculate the number of agents needed to perform theiotpaf the hypercube with
Algorithm CLEAN, we first compute the number of agents that are taken fromehefsavailable agents

before performing the cleaning from a level to the next.

Lemma 3. In Algorithm CLEAN, before cleaning fromlevel [ > 1 tolevel [ +1 < d, (lj_ll) -+ ()

extra agents are fetched from the root by the coordinator.

PrROOFINn Step 2.1 of Algorithm CEAN, k£ — 1 extra agents for a node of ty[@g k) are sent from the
root. By Property 1 part 3, at levél> 1 there are(djfl‘l) nodes of typel’(k) with 0 < k < d —[. So, in
total, >0 =4 (k — 1)(*,*;!) extra agents are sent from the root to leehile cleaning from level to level
[ + 1. Note that by first choosinfj= k — 1 and thenL. = [ — 1 we have

i (k= DT = ST YT = E T O )

a

Observe now that givem, b € N we have(b) = 0 for a < b. Therefore:
SO =2 00T =25 Q)
Referring to [18], we hav& (=5 () (* %) = ({,4); thus,
S W) =) = () = () =68 - () + (50w
We now compute the number of agents used by the algorithnegmdiom a level to the next.

d—1

Lemma 4. In Algorithm CLEAN, no more than (&) +(4_}) + 1 agents are used to clean from level > 1
2 2

tolevel [ +1 < d.

PrROOF By induction.
The lemma holds for level 1 because orlugents are needed add< (_L) + (4) + 1 for d > 4.
2 2
Let us assume that it holds for level> 1 (i.e., after cleaning levels). At this point, we havé‘li) +1

active agents (including the coordinator) and every nodiewal [ is guarded by one agent; all the other

d—1

agents are available. We now show that our strategy doesseanare thar s ) +(4_,) +1agents to clean
2 2

levell +1.

11



By Lemma 3, before cleaning level 1, the coordinator collect@fl) — (Cll) + (7:11) extra agents, and
thus exactlyk agents for each node of tyd@&k). In fact, by the induction hypothesis, each node at level
L is already guarded by one agent before the extra agente.agivin total(f) + 1+ (,%)) — () + (421)

I+1

—(d

= (141) + (=1) + 1 agents are active at level By our strategy, thd?"!) agents on the leaves do not

participate in the cleaning of levéh- 1, but the other(lj_ll) are just enough to move to level- 1 on the
broadcast tree.

In addition, it is well known thatnax;<i<a-1{(,5,) + (15} = (a%,) + (g:ll) = (9) + (2:12) for

I =%ori =91, respectively. Therefori) + (7_}) + 1 is the maximum number of agents required
2 2
by our algorithm and corresponds to the cleaning of the aklgvel (this number corresponds to the nodes

of level £, plus the leaves of the broadcast tree at lével 1). g

Theorem 3. Algorithm CLEAN uses O ( lggn) agents to clean the hypercube, which is optimal.

]

ProoF The lower bound follows from Theorem 1. The upper bound fedldrom Lemma 4 observing

that, by the Stirling approximatior(,gl) = O(f‘/—%) which isO( = ). m
5} ogn

]

Notice that the optimal bound derived above on the numbergehts needed to decontaminate the
hypercube holds also in the classical graph search model thieeagents can “jump”.

We now calculate the total number of moves needed for theegmtbcess.

Theorem 4. The total number of moves performed by the agents in Algorithm CLEAN is O(nlogn). The

time complexity is O(n log n) time units.

ProOF To compute the global number of moves we have to take intouextdbe moves performed by
the agents and those performed by the coordinator.
The number of moves performed by the agents:

It takes2/ moves for an agent to arrive from the root to a leaf of ldvahd go back to the root. By
Property 1 part 2, there afd_;) leaves at level. So in total there ar§"]"_, 2(}~}) moves made by the
agents. To compute this quantity first note t(@t is the number of nodes at levielSumming over all the
levels we obtairy"(, (4) = 27 = n. Itfollows that >, (471) Sy (471) =241 = 2.

We now have to compute
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S =105 o+ (G- DD+ ) + D) + A + o+ )
Using the property tha) = (,*,) we may group terms in pairs and obtain

S = @+ D) e+ @D (I = @+ DT (),

We already know thap = (*71) = 291 = 2; we also know thad "~ (*;!) = 22; (4, so
(d+1) zfzo (471 = (d +1)272 = 2(logn + 1).

Finally, the total number of moves performed by the agents is

Zzz(l - 11> (logn +1) = O(nlogn).

The number of moves performed by the coordinator:

1. Goto the root to get more agents. In total, theregf’gfl = W = O(log?*n) moves.

2. Goto the first node of each level. In total, there B2 1 = (=201 — O(10g%n) moves.

3. Navigate within each level to get to the next node. Rawglihat the procedure is run on a hypercube,
we know that at level the coordinator needs to navigate at nistdges ifl < 2, ; otherwise 2d — 21

edges are needed to reach the next node at the same level.t&al,ithe number of moves is at most
d d_q
> 2l( ) + Zl d+1(2d - 21)(?) =437, l(?) + d(g) = O(nlogn).

4. Go down with each agent to clean a node at the next levekibtbadcast tree and then come back.
Each edge of the broadcast tree is traversed twice by thdioator. So, in total, there a%2d —-1) =

2(n — 1) moves.

In total, the number of moves performed during the cleaninggss i<D(nlogn).

Recall that we are working in an asynchronous environmentyes now consider the ideal time com-
plexity for the cleaning strategy (i.e., we assume thatkiesaone unit of time for an agent to traverse an
edge). Observing that the cleaning process is carried quiesdially by the coordinator, we see that the

time required is equal to the number of moves of the coordingt

Note. Let us now briefly discuss what happens if the number of diimesss odd. Since the algorithm

does not depend on whethéris odd or even, the correctness still holds. The only thirigcaéd is the
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maximum number of agents employed. In fact, in the proof ahirea 4, we have shown that the number

d

of agents employed isax;<;<a—1{(,%4

)+ (?:11)} + 1. Whend is even, we have seen that this number
corresponds to the number of nodég’s) in the maximum level, plus the number of Ieav((-f%fsi;) in the
previous level, plus 1. Whedhis odd, there are two central Ievel%;—Fé and d;Ql) in the broadcast tree with
the same number of nodes. In this casexi<;<q—1{(,{,) + ({_1)} + 1 corresponds to the number of
nodes(%) in level £ plus the number of Ieave(s%ﬂl) (or equivalently(‘g)) in the previous level,

plus 1. This value is clearly stilD(—2=)

logn’’

3.3 Visibility Model: Time-Optimal Strategy

In this section, we propose a solution to the decontamingtioblem in a model where the agents can “see”
the state (clean, guarded, or contaminated) of all the beigting nodes. In fact, we make the following

assumption about agevisibility:
An agent located at node = can see the state of its neighbours N ().

As we will see, the visibility assumption allows the agewotgi¢cide the next move solely on the basis of
their local knowledge and without the need of being led by adimator. This feature allows us to reduce

the time complexity, at the expense, however, of an increetfe number of agents.
3.3.1 Basic Properties

We now introduce some basic properties that we will need toess the problem (see [13] for the proofs).
Let C; be the set of nodes whose most significant bit is inithie position (see Figure 3). Thu§y is

exactly the set of all the leaves of the broadcast tree.
Property 2. C, contains exactly one node; C;, for 0 < i < d, contains 2/~! nodes.

Property 3. Let = be any nodein C; with ¢ > 0. One small neighbour of z isin C; (where j < 7), and the
remaining small neighbours, if any exist, arein C;. The big neighbours of z, if any exist, are in some Cj,

(where k& > 1).

Property 4. Let x be any node in C; withi > 1. There must exist at least one small neighbour 3 of x such

that y isin C;, and a small neighbour z of i such that z isin C;_;.
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Figure 3: The hypercub&, in the new group structure.

3.3.2 Cleaning strategy

All the agents are initially located at the root (the homebassource) of the broadcast tree; they are identical
and autonomous; and they follow the same local rules. Thetageove along the broadcast tree as in the
previous model, but they do so without requiring coordimratiIn fact, they can independently proceed to
clean the children (or big neighbours) in the broadcastwrieen they “see” that the other neighbours (all

the small neighbours) are either clean or guarded.

Algorithm CLEAN WITH VISIBILITY

Rule for the agents on nodeof typeT'(k) (0 < k < d):

1. Wait until 25—1 agents are on.
2. If k < d then wait until all the small neighbours ofare clean or guarded.

3. One agent moves to the big neighbour of t§{{6); 2!~ ! agents move to each of the big neighbdurs
of typeT'(i), for 0 < i < k; and if there are no big neighbours, terminate.

Figure 4 shows the order in which the nodesHf get cleaned with our strategy. As opposed to the
strategy of the previous section, nodes are not cleaneasgglly; several nodes, in fact, could be cleaned

independently.

15



Figure 4: The execution of Algorithm EAN WITH VISIBILITY on a hypercubédi,.

3.3.3 Correctness and Complexity

Theorem 5. The total number of agents needed to clean the d-dimensional hypercube using Algorithm

CLEAN WITH VISIBILITY is 3.

ProOF By definition, Algorithm Q.EAN WITH VISIBILITY sends one agent from level O to level 1 for
T(0) and2'~! agents for eact’(i) for a total of 1 + S 271 = 1 4 Y4297 = 29-1 = 2 agents.
Moreover, a node of typ@ (k) receives2*~! agents an@*~! is exactly the number of agents needed to
continue the cleaning strategy. In fagh " = 1 + Y27 2-1. Thus, with? agents, the strategy can be
completed. g

We now prove that Algorithm CEAN WITH VISIBILITY is correct; in other words, the network is clean

and once a node has been cleaned it will never be re-contadina

Lemma 5. In Algorithm CLEAN WITH VISIBILITY , when agents leave a node in C; (leaving it unguarded)

all its small neighbours are either clean or guarded.

PROOF Let us consider a node in C;. By the cleaning strategy, when an agent arrives at ngde
cleans the node. By the argument presented in the proof afr€heb, every node will have enough agents

to continue the cleaning process, and, by the second rukedlgorithm, the agents anmove to the big
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neighbours only when all other neighbours are clean or guargl

Theorem 6. During the cleaning process of Algorithm CLEAN WITH VISIBILITY , the agents clean all the

nodes and a clean node will not be re-contaminated.

PrROOF By the cleaning strategy, the edges and nodes traversecelggtnts form the broadcast tree.
All the nodes are visited by an agent. The fact that a cleaer makinot be re-contaminated directly follows
from Lemma 5.g

We now consider the time complexity of the cleaning strategy
Theorem 7. Cleaning the network with Algorithm CLEAN WITH VISIBILITY takes O(logn) time units.

ProoFWe will prove this by showing that at timeall nodes inC; are clean; only the agents @y can
move to clean the big neighbours, which are&infor j > i. We prove the theorem by induction.

Base case: Attime = 0, all the agents are placed on no@®...00), the homebase. First notice that,
since there are no agents on any other node at time 0, onlygdrsaonCy can move at this time. By the
cleaning strategy, the agents clean the homebase and thentondean thel big neighbours, which are in
C; for 0 < j < d. Node(00..00) becomes clean at time O; obviously, it cannot be re-contat@éh The
claim then holds foi = 0.

Assume the claim is true up to time: > 0. We show that it holds at time+ 1.

By the induction hypothesis and Theorem 6, all the nodé&s.iare clean for ang < k < i. The agents
that were once on them have left. Let nagdbe an arbitrary node i@; ;. By Property 3, exactly one small
neighbour ofz is in C}, for k < i. By the induction hypothesis, at timie the agents arrive at and clean
it. So at timei + 1, every node inC;; is guarded by at least one agent. Thus, all small neighbduteo
nodes inC;; are clean or guarded. So, at time- 1, every agent irC;; executes the algorithm; they
clean the big neighbours, which, by Property 3, ar€’jrwith j > 7 + 1. Because the nodes iy ; have
already been cleaned by their guarding agents upon arricebacause by Theorem 6 a clean node will not
be re-contaminated, we know that at time- 1 the nodes irnC; ., become clean after the agents on them
move on.

Notice that, by our cleaning algorithm, the other agent§’jrfor i +- 1 < j < d cannot move because

one or more of their small neighbours are not guarded. Lebnsider any nodg in C'; on which there are
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agents. By Property 4, there exists one small neighbafry which is inC; too and a small neighbous
of z which is inC;_;, wherej — 1 > i 4 1. We know that the agents ancome from its small neighbour
w whichisinC;_. If j —1 =441, in other wordsw is in C; 11, the agents ow move at time + 1. So
at timei + 1 no agent is o yet. If j > i + 1, even if there are agents an by the induction hypothesis,
they have not moved before timie- 1. Hence, in any case,is not guarded at timgé+ 1 and the agents on
y cannot move because at least one of its small neighbours guacded.
The time complexity is clearly optimal, sinéeg n is the diameter of the hypercube and the agents are
initially all located in the same nodeg

We now calculate the total number of moves made by the agents.

Theorem 8. The number of moves performed by the agentsin Algorithm CLEAN WITH VISIBILITY for the
cleaning isO(nlogn).

PrROOF All the agents start from the source (the homebase) and eactinates on a leaf. There are

d—l)

(4=1) leaves at level > 0, thus the total number of moves¥s;_ , 1(4~1) = O(nlogn) (the calculation is

similar to the one of the proof of Theorem 4.
3.4 Visibility and Cloning: Time and Move-Optimal Strategy

Cloning is the capability for an agent to create copies @fitsin this section, we consider the visibility
model where the agents have cloning capabilities. In thse @& show that no coordinator is necessary to
control the cleaning; in fact, all the agents can autonomydo#iow the same algorithm. Cloning allows the
agents to make a smaller number of moves.

Initially, one agent is placed at nog@0...00), the homebase. It cleans no@®...00) and clones] — 1
new agents. In this way agents are available on the node. Then one agent per edge is seean each of

thed neighbours. When an agent arrives at a node, it cleans itemdexecutes the following algorithm.

Algorithm CLEAN WITH VISIBILITY AND CLONING
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Rule for the agents on node

1. Wait until all the small neighbours afare clean or guarded.

2. Clone enough agents to clean the big neighbours arid then send one agent per edge to clean
each of the big neighbours. If all the small neighbours amrded or clean and there are no big
neighbours, terminate.

Similarly to Theorem 6 we have:

Theorem 9. During the cleaning process of Algorithm CLEAN WITH VISIBILITY AND CLONING the agents

clean all nodes and a clean node will not be re-contaminated.

Regarding the complexity, first observe that agents careah@nw agents whenever they are needed, so

there are always enough agents to clean the network.

Theorem 10. The cleaning of the network with Algorithm CLEAN WITH VISIBILITY AND CLONING re-

quires log n time units, 5 agents, and » — 1 moves. The time and move complexities are optimal.

PrRoOOF The bound on the time units may be computed similar to thefgoodheorem 7.

Let us now compute the number of agents employed. Since atitadiave to terminate, instead of
counting how many agents are created overall, we count homy ragents terminate. By the cleaning
strategy, we know that the edges and nodes traversed by ¢mésafgrm the broadcast tree; every node is
visited by exactly one agent, which then clones itself ifr¢hare big neighbours to clean. By Algorithm
CLEAN WITH VISIBILITY AND CLONING , the agent on a nhode terminates only if the node does not ligive b
neighbours. It is easy to see that there 2fte! such nodes. Each of theg8& ! nodes is visited by exactly
one agent. Hence the total number of agents used is eqéf te= 5

Finally, the computation of the number of moves triviallyiéavs from the fact that the edges and nodes
traversed by the agents form the broadcast tree; each edge broadcast tree is traversed by one agent

only.

The time complexity is optimal becauke n is the diameter of the hypercube, and the agents start from

the same location. The number of moves is also optimal becalisodes must be visitedy
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3.5 Local, Cloning, and Synchronicity: Time and Move-Optimal Strategy

We now show that the same result obtained in the previougsédor the visibility model with cloning can
be achieved in the local model when cloning is available hraystem is synchronous. In fact, we describe
a strategy for the local model that exploits synchroniaitybtain an optimal time complexity, and cloning
to obtain an optimal number of moves: this is done, howevtdheaexpense of the number of agents used.

Our approach is based on the observation that, even if the&isage not have visibility, they can still
move autonomously thanks to the synchronicity of the systenthis setting, in fact, synchronicity can be
exploited by using a strategy very similar to the one of Allon CLEAN WITH VISIBILITY but without the
need for the visibility assumption. Instead of waiting ftirsamall neighbours to become clean or guarded,
the agents on a node wait for an appropriate amount of timaréehoving to clean the big neighbours.

Recall thatm(z) denotes the position of the most significant bitzofIn the synchronous model, the
agents onc can move to the big neighbours when time: m(x) because theymplicitly know that at this
time all the small neighbours afare clean or guarded.

Attime 0, one agent is placed at no@®...00), the homebase. It cleans no@®...00) and clones! — 1
new agents. One agent per edge is then sent to clean eachdofidighbours. At time, an agent arrives at

a node, cleans the node and then executes the followingthlgor

Algorithm CLEAN WITH CLONING AND SYNCHRONICITY

Rule for the agents on node

1. Wait untilt = m(x).

2. Clone enough agents to clean the big neighbours arid then send one agent per edge to clean
each of the big neighbours. If there are no big neighbours)itate.

The correctness follows from the next result:

Lemma6. Attimei, 0 < i < d, of Algorithm CLEAN WITH CLONING AND SYNCHRONICITY, thereisone
agent on every node of C;. This node clones other agents and cleans the big neighbours. All nodesin C.,

for 0 < j <4, areclean. At time d, all the agents on the nodes of C,; terminate.

ProoOFby induction.
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Base case: Attimé= 0 only node(00..00) is in Cp, and the cleaning strategy places exactly one agent
on it. This agent cleans the node, clones itself, and cldamgighbours, so no re-contamination may occur
and at timel all the nodes irCy andC; are clean.

Inductive step: First assume that at timdor 0 < ¢ < d — 1, there is one agent on every node(§f
and that all nodes i0’;, for 0 < j < 4, are clean.

We show that at time + 1, there is one agent on every nodelin. ;. This agent either clones itself and
moves to a big neighbour (if any) or terminates. Moreovénadies inC; 1, for 0 < j < 4, are clean.

Let nodex be any node irnC; ;. By Property 3, exactly one small neighbour aaf which we will
call z, is in Cj}, for somej < i, and all the other small neighbours of if any, are inC;;,. By the
induction hypothesis, at timg there is one agent on Hence, by Algorithm CEAN WITH CLONING AND
SYNCHRONICITY, at timej, one agent is sent fromto = and has to stop at up to timet = i 4+ 1. At this
time, ifi4+1 < d—1 then the agent clones enough new agents and cleans its aeighbtherwise;+1 = d
and the agent is if’;, meaning that it is on a leaf so it terminates. Moreover,maéti + 1, every node in
C;11 is guarded by an agent. The only contaminated neighboutrsacé the big neighbours. The agent on
x clones enough new agents, cleans its neighbours;andves from a guarded to a clean state together
with its small neighbours id’; 1. Thus, the nodes i6'; 1, for 0 < j < ¢, cannot be re-contaminateg.

We now prove that our cleaning strategy is correct; thathis,tetwork is clean and once a node has
been cleaned it will never be re-contaminated.

It follows from Lemma 6 that:

Theorem 11. During the cleaning process of Algorithm CLEAN WITH CLONING AND SYNCHRONICITY

the agents clean all nodes and a clean node will not be re-contaminated.
Regarding the complexity we have the following:

Theorem 12. The cleaning of the network with Algorithm CLEAN WITH CLONING AND SYNCHRONICITY

requires log n time units, 5 agents, and » — 1 moves. The time and move complexities are optimal.

ProoFThe bound on the time units comes from Lemma 6, and the bourideomumber of agents and

moves is similar to the proof of Theorem 1§.
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4 Observations and Open Problems

In this paper we have considered the problem of decontamgnathypercube network and, starting with
the basic local model, we have considered additional asoinspon the agents’ and system’s capabilities
(visibility, cloning, and synchronicity). Our goal was ttag a study on the impact that these additional

assumptions have on the efficiency of the solution procefisetolecontamination problem in general net-

works.
Agents Time Moves
LOCAL Local O( \/IZE) O(nlogn) | O(nlogn)
Local, Cloning, Synchronicity n/2 O(logn) O(n)
VISIBILITY Visibility n/2 O©(logn) | O(nlogn)
Visibility and Cloning n/2 O(logn) O(n)

Table 1: Comparisons of results for the various models.

From our observations (see Table 1 for a summary), vigibéitems to be a crucial assumption for the
reduction of time complexity, which, in fact, becomes ogtimHowever, we have been able to obtain this
reduction only at the expense of increasing the number aftag&he same reduction can also be obtained
in the local model, but only when both synchronicity and aignare assumed. We have not been able
to achieve the reduction with cloning or synchronicity aor-urthermore, cloning is certainly useful for
reducing the move complexity, which, in fact, becomes ogtimhen cloning is available in the visibility
model. However, with cloning alone, we have not been ablébtain an optimal move complexity in the
local model, where we can only achieve it by adding syncluityniAnother interesting observation concerns
synchronicity. It appears to be useless when the systemisiagity. As mentioned above, it remains an
open problem whether synchronicity indeed does not add amepto a setting where the agents have
visibility.

We observe that the use of an optimal number of agents in tla&evdocal model is obtained at the
expense of the use of coordination. In fact, in our algorghmhenever coordination is not employed, the
number of agents grows. It is an open problem to design ant-ageimal strategy that does not assume

the use of a coordinator. Vice versa, it would be interestingrove that this strategy does not exist. Also,
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regarding the optimal number of agents, we observe that aboer strategies achieves both optimal agent
and time complexities. We conjecture that these two pammeare linked and that it is impossible to design
an algorithm that minimizes both. It would be very intenegtto prove this conjecture or find an example
where such complexity can be achieved.

An interesting research direction is the investigationarfaus levels of visibility. In this paper we have
considered the cases where there is no visibility, and w¥isigility is limited to neighbouring nodes. The
extreme case of total visibility (i.e., where the agents saa the whole network) has been studied (see
[9, 11, 12]) leaving the study of the intermediate visilyilévels open.

Another interesting problem which we are now investigatsitp determine, given a network topology,

the biggest area that can be decontaminated with a fixed mwhhgents.
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