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Abstract

In this paper we consider the decontamination problem in a hypercube network of sizen. The nodes

of the network are assumed to be contaminated and they have tobe decontaminated by a sufficient

number of agents. An agent is a mobile entity that asynchronously moves along the network links and

decontaminates all the nodes it touches. A decontaminated node that is not occupied by an agent is

re-contaminated if it has a contaminated neighbour.

We consider some variations of the model based on the capabilities of mobile agents:locality, where

the agents can only access local information;visibility, where they can “see” the state of their neighbours;

andcloning, where they can create copies of themselves. We also consider synchronicity as an alternative

system requirement.

For each model, we design a decontamination strategy and we make several observations. For agents

with locality, our strategy is based on the use of a coordinator that leads the other agents. Our strategy

results in an optimal number of agents,Θ( n
√

log n

), and requiresO(n log n) moves andO(n log n) time

steps. For agents with visibility, we assume that the agentscan move autonomously. In this setting,

our decontamination strategy achieves an optimal time complexity (logn time steps), but the number of

agents increases ton
2

. Finally, we show that when the agents have the capability toclone combined with

either visibility or synchronicity, we can reduce the move complexity—which becomes optimal—at the

expense of an increase in the number of agents.
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1 Introduction

1.1 The Problem

We consider the problem of deploying a team of mobile agents to decontaminate a network infected by a

mobile virus. From a practical point of view, the disinfection of a network and the protection of its hosts

from unwanted, possibly dangerous intrusions is a pressingsecurity problem in networked environments. In

fact, a great deal of research has been devoted to this issue,especially for detection (e.g., see [1, 17, 30]).

The problem has been studied extensively from a graph-theoretical point of view under the termsintruder

capture, decontamination, andgraph search (e.g., see [2, 6, 10, 14, 19, 20, 22–24, 26]). In particular, research

has looked at variations of the decontamination problem in which the agents are allowed to “jump” from

one node to any other node. The focus has often been on determining the minimum number of agents able

to perform decontamination because this number is closely related to standard graph parameters such as

pathwidth and treewidth (e.g., see [10, 11, 26, 28, 29]).

In thedecontamination problem without “jumping”, defined in [2], a team of agents is initially located

on a single node, thehomebase, and the agents can move freely from the node they are on to a neighbouring

node. At any point in time each node of the network can be in oneof three possible states:clean, contam-

inated, or guarded. A node is guarded when it contains at least one agent, clean when an agent has been

on the node and all the neighbouring nodes are clean or guarded, and contaminated otherwise. Initially all

nodes are contaminated except for the homebase, which is obviously guarded. The solution to the problem is

given by a cleaning strategy for the agents that guarantees that after a finite amount of time all the nodes are

simultaneously clean. A strategy is calledmonotone if guarantees that after a node has been decontaminated

it will not be re-contaminated. Decontamination has to be executed as efficiently as possible. Efficiency is

measured in terms of the size of the team of agents, traffic (i.e., the number of moves the agents have to

perform), and time (or steps)∗.

Starting with the model employed in [2] (here called thelocal model), we introduce additional assump-

tions in order to study the impact that more powerful agent capabilities or additional system requirements

have on the solution process for our problem. In thelocal model, an agent located at a node can only “see”

∗In the case of asynchronous systems, we measure ideal time, that is, we assume that it takes one unit of time for an agent to
traverse a link.
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local information, such as the state of the node, the labels of the incident links, and the other agents present

on the node.Visibility is the capability of the agent to “see” the state of the neighbouring nodes, meaning

that an agent can see whether a neighbouring node is guarded,clean, or contaminated.Cloning is the capa-

bility for an agent to create copies of itself.Synchronicity implies that local computations are instantaneous

and it takes one unit of time (one step) for an agent to move from a node to a neighbouring one.

In this paper, our main focus is on understanding what impactthe power of the agents and the under-

lying system has on the complexity of the problem. As a first step towards understanding these issues, we

concentrate on a specific topology—the hypercube, which is afairly common topology for interconnection

networks and has been the subject of extensive investigation (e.g., see [21]).

We design strategies to solve the decontamination problem both in the local and the visibility models,

and we compare their performances. In particular, we show that visibility is crucial to the reduction of time

complexity, which, in fact, becomes optimal. This reduction however is obtained by increasing the number

of agents (see Table 1 in the Conclusions for a summary of the results).

We then consider the cloning and synchronicity assumptions. We show that cloning is useful for re-

ducing the move complexity — which becomes optimal — when it is combined with either visibility or

synchronicity. Unfortunately, we could not achieve the same reduction while keeping an optimal number of

agents.

An interesting consequence of the optimalΘ( n√
log n

) bound on the number of agents that we obtain in

the local model is the derivation of the search number for thehypercube in the classical graph search model,

which was unknown. In fact, in the classical model, the lowerbound would still hold, making our strategy

optimal even when the agents are allowed to “jump.”

1.2 Related Work

The decontamination problem has been introduced in [6, 25] and has been extensively studied in the liter-

ature under the termgraph search (e.g., see [10, 19, 20, 24, 27]). The graph search problem considers a

system of tunnels represented by the edges of a graph. Initially, all these tunnels are “contaminated” and

have to be decontaminated or cleaned by a sequence of actionsexecuted by a (minimal) set ofsearchers.

The following operations are considered to be actions: (1) place a searcher on a node, (2) remove a searcher

from a node, and (3) move a searcher along an edge. Many classes of graphs have been studied with the
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main focus being on determining the optimal number of searchers orsearch number. The decision problem

corresponding to the computation of the search number of a graph is NP-hard [24] with NP-completeness

being shown in [4, 20]. In graph searching, there has been a particular interest in monotone strategies (e.g.,

see [4, 12, 20]). Monotonicity is a particularly interesting assumption because monotone strategies can al-

ways perform a polynomial number of moves (one move for each decontaminated node plus a few additional

setup moves). An important result from Lapaugh has shown that monotonicity does not really change the

difficulty of the graph search problem; in fact, it has been shown in [20] that for any graph there exists a

monotone search strategy that uses the minimum number of agents.

The classical results for graph search are heavily based on the assumption that a searcher can be initially

placed on an arbitrary node and can be arbitrarily moved to any other node. The main difference in our

setting is that agentscannot be removed from the network; they can only move from a node to aneighbouring

one. This assumption is obviously motivated by the fact thatwe are considering software agents that are

only able to move on the edges of the network. This additionalconstraint was introduced and first studied

in [2] resulting in aconnected node search where(i) the removal of agents is not allowed, and(ii) at any

time of the search strategy, the set of clean nodes forms a connected subnetwork.

A connected graph search usually requires more agents to decontaminate a networkG. It has been shown

that for any graphG with n nodes the ratio between the connected search numbercsn(G) and the regular

search numbersn(G) is always bounded. More precisely, it is known thatcsn(G)/sn(G) ≤ log n + 1 (see

[11]), and, for a treeT , csn(T )/sn(T ) ≤ 2 (see [3]). Monotonicity also plays an important role in connected

graph searches. It has been shown that, as in the more generalgraph search problem, a solution allowing

re-contamination of nodes cannot reduce the optimal numberof agents required to decontaminate trees

[2]. On the other hand, unlike the classical graph search, there exist graphs for which any given monotone

connected graph search strategy requires more searchers than the optimal non-monotone connected search

strategy [31]. The decision problem corresponding to the computation of the connected search number of a

graph is NP-hard, but it is not known whether there exists a yes-certificate that is checkable in polynomial

time.

With the connection assumption, the nature of the problem changes considerably and the classical results

on graph search do not generally apply. The problem of findingthe optimal number of agents has been
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studied in some specific topologies. For example, it has beenshown that the problem can be solved in

linear time for trees [2]. Moreover, optimal strategies have been studied in chordal rings, tori, and meshes

[14, 15], and in the Sierpiński graphs [22]. Arbitrary topology networks have also been considered: some

heuristics have been proposed in [16] and an exponential move and time solution has been described in [5]

to determine an optimal strategy.

Finally, both the connected and the non-connected versionsof the problem have been studied (e.g.,

see [9, 11, 12]) under the assumption that the intruder is visible to the searchers (visible search game).

The visible search number is also linked to standard graph parameters such as treewidth and pathwidth.

Moreover, it has been shown that in the case of non-connectedsearch any optimal strategy is monotone,

while in the case of connected search there are graphs where the optimal strategy is not monotone.

In this paper we consider the same model as [2] and we use the term decontamination to refer to a

connected monotone node search.

2 Definitions and Basic Properties

In a d-dimensional hypercubeHd with n = 2d nodes, each node corresponds to ad-bit binary string and

two nodes are neighbours if their binary strings differ in precisely one bit. At each nodex, there is a distinct

label associated with each of its incident edges; the label between nodex and nodez is the position of the

bit in which the corresponding binary strings differ, called dimension.

Let G = Hd = (V,E) be ad-dimensional hypercube withn = |V |. Let E(x) be the edges incident to

x ∈ V . Let λx : E(x) → {1, . . . , d} be an injective function defining the edge labelling for nodex.

A team of autonomous mobile agents operates inG. Each agent is associated with a distinct identifier,

can perform local computation, can move asynchronously from a node to a neighbouring one, and has some

local memory (O(log n) bits suffice for all our algorithms). Moreover, each agent obeys the same set of

behavioural rules, knows that it is operating in a hypercube, and can communicate with other agents only

when they are simultaneously present at the same node (face-to-face communication). The environment is

assumed to be asynchronous; that is, every action the agentsperform (e.g., computing, moving) takes a finite

but otherwise unpredictable amount of time.

Let us view the hypercubeHd as being organized ind + 1 levels and let leveli = 0, 1, . . . , d consist
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Figure 1: The broadcast treeT6 of the hypercubeH6. Normal lines represent edges inT6, dotted lines (only
partially shown) the remaining edges ofH6.

of all the nodes whose binary representation containsi ones. Clearly, all the nodes at leveli are connected

only to nodes of leveli − 1 and to those of leveli + 1. Let m(x) denote the position of the most significant

bit of x.

LetTd be a breadth-first spanning tree ofHd rooted at the source (node (00..00)) defined as follows: there

is an edge in the spanning tree betweenx and all the nodes in the next level whose binary representation

differs in a position higher thanm(x) (see Figure 1). This spanning tree is also called abroadcast tree

because it is employed to perform optimal broadcast in the hypercube: a nodex receiving a message from

dimensioni will forward it to all nodes connected by dimensionsj > i.

Notice that the resulting spanning tree (also known as heap queue) has the following structure:

• a node of typeT (0) is a leaf

• a node of typeT (1) is a node with one child

• a node of typeT (k) is a node withk children of typeT (0), . . . , T (k − 1)

• the source node(00 . . . 0) of Td is of typeT (d)

Let x, y be two neighbouring nodes ((x, y) ∈ E(x)). Nodey is called asmall neighbour of nodex if
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λx(x, y) ≤ m(x) and it is called abig neighbour of x if λx(x, y) > m(x). Notice that the big neighbours

of x are the children ofx in the broadcast tree.

3 The Strategies

We first present a lower bound and then propose several strategies for the decontamination of the hypercube.

3.1 Lower Bound

In this section, we state a lower bound on the number of agentsneeded to clean the hypercube that holds for

all our models.

The lower bound is linked to the notion ofpathwidth, a classical graph parameter defined in [28]. A

path decomposition of a graphG = (V,E) is a collection{X1, . . . ,Xr} of subsets ofV where:

• ∪r
i=1Xi = V

• ∀(x, y) ∈ E, ∃i ∈ {1, . . . , r}: x, y ∈ Xi

• ∀i, j, k with 1 ≤ i < j < k ≤ r, Xi ∩ Xk ⊆ Xj

Thewidth of a path decomposition(X1, . . . ,Xr) is defined asmax1≤i≤r |Xi| − 1, and thepathwidth of

G is the minimum width over its path decompositions.

Theorem 1. To solve the connected monotone search problem, Ω( n√
log n

) agents are required.

PROOF It is known that the node search number of a graph (in the classical model) is equal to its

pathwidth plus one [19]. From [8, 7] we know that the pathwidth of a hypercube isΘ( n√
log n

). Since the

lower bound in the classical model is obviously the lower bound also in our model, the theorem follows.

3.2 Local Model: Agent-Optimal Strategy

For ease of discussion in this section, we assume that the degree of the hypercubed is even and thatd ≥ 4.

The same bounds are obtained for odd degrees with minor technical modifications.

The first strategy we present is optimal in terms of the numberof agents. The main idea is that all the

agents, starting from the same homebase, have their moves coordinated by an agent that acts as a leader.

The agents visit all nodes while protecting the system from re-contamination.
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3.2.1 Basic Properties

We start by reviewing a basic property that we will need for our strategy:

Property 1. Let Td be a broadcast tree for the hypercube.

1. The number of nodes at level l is
(
d
l

)
.

2. Level 0 has no leaves, level l > 0 has
(
d−1
l−1

)
leaves, and the total number of leaves is 2d−1.

3. At level 0 there is a unique node of type T (d). At level l > 0 there are
(
d−k−1

l−1

)
nodes of type T (k)

with 0 ≤ k ≤ d − l.

In the rest of the paper we will sometimes use an alternative labelling for the nodes of the hypercube.

Given a node with binary representationx, we can also label it with a vector̂x defined as follows:̂x = ∅ if

x is the source node; otherwise,x̂ =< i1, i2, ..., il > where theik, for 1 ≤ k ≤ l ≤ d, are the increasing

positions of the 1 bits inx, i.e., ik > ik−1 for 2 ≤ k ≤ l. For example, node(001110) can also be

labelled as< 2, 3, 4 >. In the following we will consider the nodes at each level of the broadcast tree to be

lexicographically ordered according to this labelling (this is the order in which nodes appear in each level in

Figure 1) and not according to their binary representation.Moreover, we will use the notations<R and>R

when referring to lexicographic comparisons.

3.2.2 Cleaning strategy

One of the agents (e.g., the one with smallest id), will act asthecoordinator for the entire cleaning process.

The cleaning strategy is carried out on the broadcast tree. The structure of the broadcast tree guarantees

that when a levell is fully guarded all the agents on a nodeî of level l can move to the next level without

incurring a re-contamination of nodêi if the agents on nodeŝj <R î (in level l) have already moved to the

next level. In other words, the broadcast tree and the alternative labellingx̂ define a correct cleaning order

for the nodes. The main idea is then to place enough agents on node (00 . . . 00) and to coordinate their

movement on the edges of the broadcast tree, level by level. The group of agents available at the root is

called theset of available agents.
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Algorithm CLEAN

1. From the root to level 1

1.1 The coordinator,d times, guides a distinct agent from the root of the tree to each of its d
children of typesT (d − 1), . . . , T (0) and each time returns to the root.

2. From level l ≥ 1 to level l + 1 ≤ d (level l has one agent per node)

2.1Before starting to clean nodes at levell + 1, the coordinator moves back to the root to collect
the agents needed for completing the cleaning of levell + 1 (i.e., k − 1 agents per node of
typeT (k) with 0 ≤ k ≤ d − l, except for the nodes of typeT (1) andT (0) which do not
require any extra agents). The coordinator sendsk−1 additional agents, in no specific order,
to each node of typeT (k), k > 1, at levell and then moves to the first node of levell.

2.2 Whenk agents are on a node of typeT (k) at level l, they are sent down the broadcast tree
to the children at levell + 1, guided by the coordinator. Let̂n1, . . . , n̂m (m =

(
d
l

)
) be the

lexicographically-ordered nodes of levell. The coordinator sequentially chooses each node
at levell following this lexicographical ordering and node by node guides an agent on each
outgoing edge of the broadcast tree to levell + 1.

2.3When the coordinator reaches a leaf of levell, the agent it was guiding becomes available and
returns to the root. Notice that when the coordinator reaches the last node of levell, the only
active agents are the ones covering levell + 1.

Figure 2 shows forH4 the order in which the nodes are cleaned by the agents led by the coordinator.

Source

1 2 3

n−1 n

. . .

. . .Source Source Source

Source

Figure 2: Algorithm CLEAN on a hypercubeH4. The nodes get cleaned sequentially.
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3.2.3 Correctness and Analysis

Correctness. We now prove that Algorithm CLEAN is correct; that is, all the nodes in the hypercube will

be cleaned and once a node has been cleaned it will never be re-contaminated.

Let x be a node of levell; let N(x) denote the neighbours ofx at levell + 1; and letNT (x) denote the

children ofx at levell + 1 in the broadcast tree. Notice thatN(x) includesNT (x) and possibly some other

neighbours at levell + 1. The following lemma contains an obvious observation:

Lemma 1. If z ∈ N(y) \ NT (y) then z ∈ NT (x) for some x such that x̂ <R ŷ.

Lemma 2. In Algorithm CLEAN, when agents leave unguarded a node x at level l, all the neighbours of x

are either clean or guarded.

PROOFThis is clearly true for the node at level 0. Assume it is true for all nodes at level0 ≤ j < i and

consider leveli.

Nodes at leveli are only connected to nodes at leveli − 1 and i + 1. When the nodes at leveli are

sending agents to leveli + 1, by the induction hypothesis and the cleaning strategy all nodes at leveli − 1

are clean. Let us now assume that cleaning occurs at nodey of level i. For anyz ∈ N(y) \ NT (y), by

Lemma 1,∃x such thatz ∈ NT (x) andx̂ <R ŷ. By the cleaning strategy, the coordinator visits the nodesin

lexicographical order at each level. So before the coordinator reaches nodey, agents on nodex are already

sent to leveli + 1 and allz ∈ N(y) \ NT (y) are already guarded by an agent each. Ify is a node of type

T (j) wherej ≥ 1, by Step 2.1 of Algorithm CLEAN, enough agents are sent from the set of available agents

on the homebase to nodey to clean the children ofy in the broadcast tree. Ify is a node of typeT (1), the

agent on it is enough to clean its only child at leveli + 1. After all the agents ony are sent down to the

children ofy at leveli+1, each node ofNT (y) is guarded by an agent and all the neighbours ofy are either

clean or guarded by an agent. Ify is a leaf thenNT (y) is empty. When the coordinator reaches it, all the

neighbours ofy at leveli + 1 are guarded and all the neighbours at leveli − 1 are clean.

Theorem 2. The cleaning process of Algorithm CLEAN decontaminates all nodes. During the execution

clean nodes cannot be re-contaminated.

PROOF In Algorithm CLEAN, the decontamination is performed level by level, so when itreaches level

d, all nodes have been cleaned. The fact that a clean node will not be re-contaminated directly follows from
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Lemma 2.

Complexity. To calculate the number of agents needed to perform the cleaning of the hypercube with

Algorithm CLEAN, we first compute the number of agents that are taken from the set of available agents

before performing the cleaning from a level to the next.

Lemma 3. In Algorithm CLEAN, before cleaning from level l ≥ 1 to level l + 1 ≤ d,
(

d
l+1

)
−

(
d
l

)
+

(
d−1
l−1

)

extra agents are fetched from the root by the coordinator.

PROOF In Step 2.1 of Algorithm CLEAN, k − 1 extra agents for a node of typeT (k) are sent from the

root. By Property 1 part 3, at levell ≥ 1 there are
(
d−k−1

l−1

)
nodes of typeT (k) with 0 ≤ k ≤ d − l. So, in

total,
∑d−l

k=2(k − 1)
(
d−k−1

l−1

)
extra agents are sent from the root to levell while cleaning from levell to level

l + 1. Note that by first choosingi = k − 1 and thenL = l − 1 we have
∑d−l

k=2(k − 1)
(
d−k−1

l−1

)
=

∑d−l−1
i=1 i

(
d−(i+1)−1

l−1

)
=

∑d−L−2
i=1

(
i
1

)(
d−i−2

L

)
.

Observe now that givena, b ∈ NI we have
(
a
b

)
= 0 for a < b. Therefore:

∑d−L−2
i=1

(
i
1

)(
d−i−2

L

)
=

∑d−2
i=1

(
i
1

)(
d−i−2

L

)
=

∑d−2
i=0

(
i
1

)(
d−i−2

L

)
.

Referring to [18], we have
∑d−2

i=0

(
i
1

)(
d−i−2

L

)
=

(
d−1
L+2

)
; thus,

∑d−2
i=0

(
i
1

)(
d−i−2

L

)
=

(
d−1
l+1

)
=

(
d

l+1

)
−

(
d−1

l

)
=

(
d

l+1

)
−

(
d
l

)
+

(
d−1
l−1

)
.

We now compute the number of agents used by the algorithm to clean from a level to the next.

Lemma 4. In Algorithm CLEAN, no more than
(

d
d

2

)
+

(d−1
d

2
−2

)
+ 1 agents are used to clean from level l ≥ 1

to level l + 1 ≤ d.

PROOFBy induction.

The lemma holds for level 1 because onlyd agents are needed andd <
(

d−1
d

2
−2

)
+

(
d
d

2

)
+ 1 for d ≥ 4.

Let us assume that it holds for levell ≥ 1 (i.e., after cleaningl levels). At this point, we have
(
d
l

)
+ 1

active agents (including the coordinator) and every node oflevel l is guarded by one agent; all the other

agents are available. We now show that our strategy does not use more than
(

d
d

2

)
+

(
d−1
d

2
−2

)
+1 agents to clean

level l + 1 .
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By Lemma 3, before cleaning levell + 1, the coordinator collects
(

d
l+1

)
−

(
d
l

)
+

(
d−1
l−1

)
extra agents, and

thus exactlyk agents for each node of typeT (k). In fact, by the induction hypothesis, each node at level

l is already guarded by one agent before the extra agents arrive. So in total
(
d
l

)
+ 1 +

(
d

l+1

)
−

(
d
l

)
+

(
d−1
l−1

)

=
(

d
l+1

)
+

(
d−1
l−1

)
+ 1 agents are active at levell. By our strategy, the

(
d−1
l−1

)
agents on the leaves do not

participate in the cleaning of levell + 1, but the other
(

d
l+1

)
are just enough to move to levell + 1 on the

broadcast tree.

In addition, it is well known thatmax1≤l≤d−1{
(

d
l+1

)
+

(
d−1
l−1

)
} =

(
d

d

2
+1

)
+

(d−1
d

2
−1

)
=

(
d
d

2

)
+

(d−1
d

2
−2

)
for

l = d
2 or l = d

2 − 1, respectively. Therefore,
(

d
d

2

)
+

(
d−1
d

2
−2

)
+ 1 is the maximum number of agents required

by our algorithm and corresponds to the cleaning of the central level (this number corresponds to the nodes

of level d
2 , plus the leaves of the broadcast tree at leveld

2 − 1).

Theorem 3. Algorithm CLEAN uses Θ( n√
log n

) agents to clean the hypercube, which is optimal.

PROOF The lower bound follows from Theorem 1. The upper bound follows from Lemma 4 observing

that, by the Stirling approximation,
(

d
d

2

)
= O( 4d

√
d
) which isO( n√

log n
).

Notice that the optimal bound derived above on the number of agents needed to decontaminate the

hypercube holds also in the classical graph search model when the agents can “jump”.

We now calculate the total number of moves needed for the entire process.

Theorem 4. The total number of moves performed by the agents in Algorithm CLEAN is O(n log n). The

time complexity is O(n log n) time units.

PROOF To compute the global number of moves we have to take into account the moves performed by

the agents and those performed by the coordinator.

The number of moves performed by the agents:

It takes2l moves for an agent to arrive from the root to a leaf of levell and go back to the root. By

Property 1 part 2, there are
(
d−1
l−1

)
leaves at levell. So in total there are

∑d
l=1 2l

(
d−1
l−1

)
moves made by the

agents. To compute this quantity first note that
(
d
l

)
is the number of nodes at levell. Summing over all the

levels we obtain
∑d

l=0

(
d
l

)
= 2d = n. It follows that

∑d
l=1

(
d−1
l−1

)∑d−1
l=0

(
d−1

l

)
= 2d−1 = n

2 .

We now have to compute
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∑d
l=1 l

(
d−1
l−1

)
= 1

(
d−1
0

)
+ · · · + (d

2 − 1)
(d−1

d

2
−2

)
+ d

2

(d−1
d

2
−1

)
+ (d

2 + 1)
(d−1

d

2

)
+ (d

2 + 2)
(d−1

d

2
+1

)
+ · · · + d

(
d−1
d−1

)
.

Using the property that
(
a
b

)
=

(
a

a−b

)
we may group terms in pairs and obtain

∑d
l=1 l

(
d−1
l−1

)
= (d + 1)

(
d−1
0

)
+ · · · + (d + 1)

(d−1
d

2
−1

)
= (d + 1)

∑ d

2
−1

l=0

(
d−1

l

)
.

We already know that
∑d−1

l=0

(
d−1

l

)
= 2d−1 = n

2 ; we also know that
∑d−1

l=0

(
d−1

l

)
= 2

∑ d

2
−1

l=0

(
d−1

l

)
, so

(d + 1)
∑ d

2
−1

l=0

(
d−1

l

)
= (d + 1)2d−2 = n

4 (log n + 1).

Finally, the total number of moves performed by the agents is

d∑

l=1

2l

(
d − 1

l − 1

)
=

n

2
(log n + 1) = O(n log n).

The number of moves performed by the coordinator:

1. Go to the root to get more agents. In total, there are
∑d−2

l=1 l = (d−2)(d−1)
2 = O(log2n) moves.

2. Go to the first node of each level. In total, there are
∑d−2

l=1 l = (d−2)(d−1)
2 = O(log2n) moves.

3. Navigate within each level to get to the next node. Recalling that the procedure is run on a hypercube,

we know that at levell the coordinator needs to navigate at most2l edges ifl ≤ d
2 ; otherwise,2d− 2l

edges are needed to reach the next node at the same level. So, in total, the number of moves is at most
∑ d

2

l=1 2l
(
d
l

)
+

∑d−1
l= d

2
+1

(2d − 2l)
(
d
l

)
= 4

∑ d

2
−1

l=1 l
(
d
l

)
+ d

(
d
d

2

)
= O(n log n).

4. Go down with each agent to clean a node at the next level in the broadcast tree and then come back.

Each edge of the broadcast tree is traversed twice by the coordinator. So, in total, there are2(2d−1) =

2(n − 1) moves.

In total, the number of moves performed during the cleaning process isO(n log n).

Recall that we are working in an asynchronous environment, so we now consider the ideal time com-

plexity for the cleaning strategy (i.e., we assume that it takes one unit of time for an agent to traverse an

edge). Observing that the cleaning process is carried out sequentially by the coordinator, we see that the

time required is equal to the number of moves of the coordinator.

Note. Let us now briefly discuss what happens if the number of dimensions is odd. Since the algorithm

does not depend on whetherd is odd or even, the correctness still holds. The only thing affected is the
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maximum number of agents employed. In fact, in the proof of Lemma 4, we have shown that the number

of agents employed ismax1≤l≤d−1{
(

d
l+1

)
+

(
d−1
l−1

)
} + 1. Whend is even, we have seen that this number

corresponds to the number of nodes
(

d
d

2

)
in the maximum level, plus the number of leaves

(d−1
d

2
−2

)
in the

previous level, plus 1. Whend is odd, there are two central levels (d+1
2 and d−1

2 ) in the broadcast tree with

the same number of nodes. In this case,max1≤l≤d−1{
(

d
l+1

)
+

(
d−1
l−1

)
} + 1 corresponds to the number of

nodes
(

d
d+1

2

)
in level d+1

2 plus the number of leaves
( d−1

d+1

2
−1

)
(or equivalently

(d−1
d−1

2

)
) in the previous level,

plus 1. This value is clearly stillO( n√
log n

).

3.3 Visibility Model: Time-Optimal Strategy

In this section, we propose a solution to the decontamination problem in a model where the agents can “see”

the state (clean, guarded, or contaminated) of all the neighbouring nodes. In fact, we make the following

assumption about agentvisibility:

An agent located at node x can see the state of its neighbours N(x).

As we will see, the visibility assumption allows the agents to decide the next move solely on the basis of

their local knowledge and without the need of being led by a coordinator. This feature allows us to reduce

the time complexity, at the expense, however, of an increasein the number of agents.

3.3.1 Basic Properties

We now introduce some basic properties that we will need to address the problem (see [13] for the proofs).

Let Ci be the set of nodes whose most significant bit is in thei-th position (see Figure 3). Thus,Cd is

exactly the set of all the leaves of the broadcast tree.

Property 2. C0 contains exactly one node; Ci, for 0 < i ≤ d, contains 2i−1 nodes.

Property 3. Let x be any node in Ci with i > 0. One small neighbour of x is in Cj (where j < i), and the

remaining small neighbours, if any exist, are in Ci. The big neighbours of x, if any exist, are in some Ck

(where k > i).

Property 4. Let x be any node in Ci with i > 1. There must exist at least one small neighbour y of x such

that y is in Ci, and a small neighbour z of y such that z is in Ci−1.
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Figure 3: The hypercubeH4 in the new group structure.

3.3.2 Cleaning strategy

All the agents are initially located at the root (the homebase or source) of the broadcast tree; they are identical

and autonomous; and they follow the same local rules. The agents move along the broadcast tree as in the

previous model, but they do so without requiring coordination. In fact, they can independently proceed to

clean the children (or big neighbours) in the broadcast treewhen they “see” that the other neighbours (all

the small neighbours) are either clean or guarded.

Algorithm CLEAN WITH VISIBILITY

Rule for the agents on nodex of typeT (k) (0 < k ≤ d):

1. Wait until2k−1 agents are onx.

2. If k < d then wait until all the small neighbours ofx are clean or guarded.

3. One agent moves to the big neighbour of typeT (0); 2i−1 agents move to each of the big neighbours
of typeT (i), for 0 < i < k; and if there are no big neighbours, terminate.

Figure 4 shows the order in which the nodes ofH4 get cleaned with our strategy. As opposed to the

strategy of the previous section, nodes are not cleaned sequentially; several nodes, in fact, could be cleaned

independently.
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Figure 4: The execution of Algorithm CLEAN WITH VISIBILITY on a hypercubeH4.

3.3.3 Correctness and Complexity

Theorem 5. The total number of agents needed to clean the d-dimensional hypercube using Algorithm

CLEAN WITH VISIBILITY is n
2 .

PROOF By definition, Algorithm CLEAN WITH VISIBILITY sends one agent from level 0 to level 1 for

T (0) and2i−1 agents for eachT (i) for a total of1 +
∑d−1

i=1 2i−1 = 1 +
∑d−2

i=0 2i = 2d−1 = n
2 agents.

Moreover, a node of typeT (k) receives2k−1 agents and2k−1 is exactly the number of agents needed to

continue the cleaning strategy. In fact,2k−1 = 1 +
∑k−1

i=1 2i−1. Thus, with n
2 agents, the strategy can be

completed.

We now prove that Algorithm CLEAN WITH VISIBILITY is correct; in other words, the network is clean

and once a node has been cleaned it will never be re-contaminated.

Lemma 5. In Algorithm CLEAN WITH VISIBILITY , when agents leave a node in Ci (leaving it unguarded)

all its small neighbours are either clean or guarded.

PROOF Let us consider a nodex in Ci. By the cleaning strategy, when an agent arrives at nodex, it

cleans the node. By the argument presented in the proof of Theorem 5, every node will have enough agents

to continue the cleaning process, and, by the second rule of the algorithm, the agents onx move to the big
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neighbours only when all other neighbours are clean or guarded.

Theorem 6. During the cleaning process of Algorithm CLEAN WITH VISIBILITY , the agents clean all the

nodes and a clean node will not be re-contaminated.

PROOF By the cleaning strategy, the edges and nodes traversed by the agents form the broadcast tree.

All the nodes are visited by an agent. The fact that a clean node will not be re-contaminated directly follows

from Lemma 5.

We now consider the time complexity of the cleaning strategy.

Theorem 7. Cleaning the network with Algorithm CLEAN WITH VISIBILITY takes Θ(log n) time units.

PROOFWe will prove this by showing that at timei all nodes inCi are clean; only the agents inCi can

move to clean the big neighbours, which are inCj for j > i. We prove the theorem by induction.

Base case: At timei = 0, all the agents are placed on node(00...00), the homebase. First notice that,

since there are no agents on any other node at time 0, only the agents onC0 can move at this time. By the

cleaning strategy, the agents clean the homebase and then move to clean thed big neighbours, which are in

Cj for 0 < j ≤ d. Node(00..00) becomes clean at time 0; obviously, it cannot be re-contaminated. The

claim then holds fori = 0.

Assume the claim is true up to timei, i ≥ 0. We show that it holds at timei + 1.

By the induction hypothesis and Theorem 6, all the nodes inCk are clean for any0 ≤ k ≤ i. The agents

that were once on them have left. Let nodex be an arbitrary node inCi+1. By Property 3, exactly one small

neighbour ofx is in Ck for k ≤ i. By the induction hypothesis, at timek, the agents arrive atx and clean

it. So at timei + 1, every node inCi+1 is guarded by at least one agent. Thus, all small neighbours of the

nodes inCi+1 are clean or guarded. So, at timei + 1, every agent inCi+1 executes the algorithm; they

clean the big neighbours, which, by Property 3, are inCj with j > i + 1. Because the nodes inCi+1 have

already been cleaned by their guarding agents upon arrival and because by Theorem 6 a clean node will not

be re-contaminated, we know that at timei + 1 the nodes inCi+1 become clean after the agents on them

move on.

Notice that, by our cleaning algorithm, the other agents inCj for i + 1 < j ≤ d cannot move because

one or more of their small neighbours are not guarded. Let us consider any nodey in Cj on which there are
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agents. By Property 4, there exists one small neighbourz of y which is inCj too and a small neighbourw

of z which is inCj−1, wherej − 1 ≥ i + 1. We know that the agents onz come from its small neighbour

w which is inCj−1. If j − 1 = i + 1, in other words,w is in Ci+1, the agents onw move at timei + 1. So

at timei + 1 no agent is onz yet. If j > i + 1, even if there are agents onw, by the induction hypothesis,

they have not moved before timei + 1. Hence, in any case,z is not guarded at timei + 1 and the agents on

y cannot move because at least one of its small neighbours is not guarded.

The time complexity is clearly optimal, sincelog n is the diameter of the hypercube and the agents are

initially all located in the same node.

We now calculate the total number of moves made by the agents.

Theorem 8. The number of moves performed by the agents in Algorithm CLEAN WITH V ISIBILITY for the

cleaning is O(n log n).

PROOF All the agents start from the source (the homebase) and each terminates on a leaf. There are
(
d−1
l−1

)
leaves at levell > 0, thus the total number of moves is

∑d
l=1 l

(
d−1
l−1

)
= O(n log n) (the calculation is

similar to the one of the proof of Theorem 4).

3.4 Visibility and Cloning: Time and Move-Optimal Strategy

Cloning is the capability for an agent to create copies of itself. In this section, we consider the visibility

model where the agents have cloning capabilities. In this case we show that no coordinator is necessary to

control the cleaning; in fact, all the agents can autonomously follow the same algorithm. Cloning allows the

agents to make a smaller number of moves.

Initially, one agent is placed at node(00...00), the homebase. It cleans node(00...00) and clonesd − 1

new agents. In this wayd agents are available on the node. Then one agent per edge is sent to clean each of

thed neighbours. When an agent arrives at a node, it cleans it and then executes the following algorithm.

Algorithm CLEAN WITH VISIBILITY AND CLONING
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Rule for the agents on nodex:

1. Wait until all the small neighbours ofx are clean or guarded.

2. Clone enough agents to clean the big neighbours ofx and then send one agent per edge to clean
each of the big neighbours. If all the small neighbours are guarded or clean and there are no big
neighbours, terminate.

Similarly to Theorem 6 we have:

Theorem 9. During the cleaning process of Algorithm CLEAN WITH VISIBILITY AND CLONING the agents

clean all nodes and a clean node will not be re-contaminated.

Regarding the complexity, first observe that agents can clone new agents whenever they are needed, so

there are always enough agents to clean the network.

Theorem 10. The cleaning of the network with Algorithm CLEAN WITH VISIBILITY AND CLONING re-

quires log n time units, n
2 agents, and n − 1 moves. The time and move complexities are optimal.

PROOFThe bound on the time units may be computed similar to the proof of Theorem 7.

Let us now compute the number of agents employed. Since all agents have to terminate, instead of

counting how many agents are created overall, we count how many agents terminate. By the cleaning

strategy, we know that the edges and nodes traversed by the agents form the broadcast tree; every node is

visited by exactly one agent, which then clones itself if there are big neighbours to clean. By Algorithm

CLEAN WITH VISIBILITY AND CLONING , the agent on a node terminates only if the node does not have big

neighbours. It is easy to see that there are2d−1 such nodes. Each of these2d−1 nodes is visited by exactly

one agent. Hence the total number of agents used is equal to2d−1 = n
2 .

Finally, the computation of the number of moves trivially follows from the fact that the edges and nodes

traversed by the agents form the broadcast tree; each edge inthe broadcast tree is traversed by one agent

only.

The time complexity is optimal becauselog n is the diameter of the hypercube, and the agents start from

the same location. The number of moves is also optimal because all nodes must be visited.
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3.5 Local, Cloning, and Synchronicity: Time and Move-Optimal Strategy

We now show that the same result obtained in the previous section for the visibility model with cloning can

be achieved in the local model when cloning is available and the system is synchronous. In fact, we describe

a strategy for the local model that exploits synchronicity to obtain an optimal time complexity, and cloning

to obtain an optimal number of moves: this is done, however, at the expense of the number of agents used.

Our approach is based on the observation that, even if the agents do not have visibility, they can still

move autonomously thanks to the synchronicity of the system. In this setting, in fact, synchronicity can be

exploited by using a strategy very similar to the one of Algorithm CLEAN WITH VISIBILITY but without the

need for the visibility assumption. Instead of waiting for all small neighbours to become clean or guarded,

the agents on a node wait for an appropriate amount of time before moving to clean the big neighbours.

Recall thatm(x) denotes the position of the most significant bit ofx. In the synchronous model, the

agents onx can move to the big neighbours when timet = m(x) because theyimplicitly know that at this

time all the small neighbours ofx are clean or guarded.

At time 0, one agent is placed at node(00...00), the homebase. It cleans node(00...00) and clonesd−1

new agents. One agent per edge is then sent to clean each of thed neighbours. At timei, an agent arrives at

a node, cleans the node and then executes the following algorithm.

Algorithm CLEAN WITH CLONING AND SYNCHRONICITY

Rule for the agents on nodex:

1. Wait until t = m(x).

2. Clone enough agents to clean the big neighbours ofx and then send one agent per edge to clean
each of the big neighbours. If there are no big neighbours, terminate.

The correctness follows from the next result:

Lemma 6. At time i, 0 ≤ i ≤ d, of Algorithm CLEAN WITH CLONING AND SYNCHRONICITY, there is one

agent on every node of Ci. This node clones other agents and cleans the big neighbours. All nodes in Cj ,

for 0 ≤ j ≤ i, are clean. At time d, all the agents on the nodes of Cd terminate.

PROOFby induction.
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Base case: At timei = 0 only node(00..00) is in C0, and the cleaning strategy places exactly one agent

on it. This agent cleans the node, clones itself, and cleans its neighbours, so no re-contamination may occur

and at time1 all the nodes inC0 andC1 are clean.

Inductive step: First assume that at timei, for 0 ≤ i ≤ d − 1, there is one agent on every node ofCi,

and that all nodes inCj, for 0 ≤ j ≤ i, are clean.

We show that at timei + 1, there is one agent on every node inCi+1. This agent either clones itself and

moves to a big neighbour (if any) or terminates. Moreover, all nodes inCj+1, for 0 ≤ j ≤ i, are clean.

Let nodex be any node inCi+1. By Property 3, exactly one small neighbour ofx, which we will

call z, is in Cj , for somej ≤ i, and all the other small neighbours ofx, if any, are inCi+1. By the

induction hypothesis, at timej, there is one agent onz. Hence, by Algorithm CLEAN WITH CLONING AND

SYNCHRONICITY, at timej, one agent is sent fromz to x and has to stop atx up to timet = i + 1. At this

time, if i+1 ≤ d−1 then the agent clones enough new agents and cleans its neighbours; otherwise,i+1 = d

and the agent is inCd, meaning that it is on a leaf so it terminates. Moreover, at time i + 1, every node in

Ci+1 is guarded by an agent. The only contaminated neighbours ofx are the big neighbours. The agent on

x clones enough new agents, cleans its neighbours, andx moves from a guarded to a clean state together

with its small neighbours inCi+1. Thus, the nodes inCj+1, for 0 ≤ j ≤ i, cannot be re-contaminated.

We now prove that our cleaning strategy is correct; that is, the network is clean and once a node has

been cleaned it will never be re-contaminated.

It follows from Lemma 6 that:

Theorem 11. During the cleaning process of Algorithm CLEAN WITH CLONING AND SYNCHRONICITY

the agents clean all nodes and a clean node will not be re-contaminated.

Regarding the complexity we have the following:

Theorem 12. The cleaning of the network with Algorithm CLEAN WITH CLONING AND SYNCHRONICITY

requires log n time units, n
2 agents, and n − 1 moves. The time and move complexities are optimal.

PROOFThe bound on the time units comes from Lemma 6, and the bound onthe number of agents and

moves is similar to the proof of Theorem 10.
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4 Observations and Open Problems

In this paper we have considered the problem of decontaminating a hypercube network and, starting with

the basic local model, we have considered additional assumptions on the agents’ and system’s capabilities

(visibility, cloning, and synchronicity). Our goal was to start a study on the impact that these additional

assumptions have on the efficiency of the solution process tothe decontamination problem in general net-

works.

Agents Time Moves
LOCAL Local Θ( n√

log n
) O(n log n) O(n log n)

Local, Cloning, Synchronicity n/2 Θ(log n) Θ(n)

VISIBILITY Visibility n/2 Θ(log n) O(n log n)
Visibility and Cloning n/2 Θ(log n) Θ(n)

Table 1: Comparisons of results for the various models.

From our observations (see Table 1 for a summary), visibility seems to be a crucial assumption for the

reduction of time complexity, which, in fact, becomes optimal. However, we have been able to obtain this

reduction only at the expense of increasing the number of agents. The same reduction can also be obtained

in the local model, but only when both synchronicity and cloning are assumed. We have not been able

to achieve the reduction with cloning or synchronicity alone. Furthermore, cloning is certainly useful for

reducing the move complexity, which, in fact, becomes optimal when cloning is available in the visibility

model. However, with cloning alone, we have not been able to obtain an optimal move complexity in the

local model, where we can only achieve it by adding synchronicity. Another interesting observation concerns

synchronicity. It appears to be useless when the system has visibility. As mentioned above, it remains an

open problem whether synchronicity indeed does not add any power to a setting where the agents have

visibility.

We observe that the use of an optimal number of agents in the weaker local model is obtained at the

expense of the use of coordination. In fact, in our algorithms, whenever coordination is not employed, the

number of agents grows. It is an open problem to design an agent-optimal strategy that does not assume

the use of a coordinator. Vice versa, it would be interestingto prove that this strategy does not exist. Also,
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regarding the optimal number of agents, we observe that noneof our strategies achieves both optimal agent

and time complexities. We conjecture that these two parameters are linked and that it is impossible to design

an algorithm that minimizes both. It would be very interesting to prove this conjecture or find an example

where such complexity can be achieved.

An interesting research direction is the investigation of various levels of visibility. In this paper we have

considered the cases where there is no visibility, and wherevisibility is limited to neighbouring nodes. The

extreme case of total visibility (i.e., where the agents cansee the whole network) has been studied (see

[9, 11, 12]) leaving the study of the intermediate visibility levels open.

Another interesting problem which we are now investigatingis to determine, given a network topology,

the biggest area that can be decontaminated with a fixed number of agents.
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