
A unifying framework for greedy mining
approximate top-k binary patterns

and their evaluation

Claudio Lucchese1, Salvatore Orlando2, and Raffaele Perego1

1 ISTI-CNR, Pisa, Italy
2 DAIS - Università Ca’ Foscari Venezia, Italy

Abstract. A major mining task for binary matrixes is the extraction of
approximate top-k patterns that are able to concisely describe the input
data. The top-k pattern discovery problem is commonly stated as an
optimization one, where the goal is to minimize a given cost function,
e.g. the accuracy of the data description. In this work, we review several
greedy algorithms, and also discuss PaNDa+, an enhanced version of a
previously proposed algorithm, which is able to greedily optimize several
cost functions generalized into a unifying formulation.
In evaluating the set of mined patterns, we aim at complementing the
usual assessment methodology, which only measures the given cost func-
tion. Thus, we also evaluate how good are the models/patterns extracted
in unveiling supervised knowledge on the data, i.e. the class labels of the
data instances. We tested state-of-the-art algorithms and diverse cost
functions on several datasets from the UCI repository. As expected, inter-
nal (cost function) and external (classification accuracy) indices of qual-
ity provide contrasting results. Nevertheless, PaNDa+ performs best,
since the classifiers, built over the mined patterns used as record fea-
tures, are in the majority of the cases the most accurate.

1 Introduction

Binary matrixes can be derived from several typologies of datasets, collected
in diverse and popular application domains. Without loss of generality, we can
think of a binary matrix as a representation of a transactional database, com-
posed of a multi-set of transactions (matrix rows), each including a set of items
(matrix columns). An approximate pattern extracted from a binary matrix thus
corresponds to a pair of sets, items and transactions, where the items of the
former set are mostly included in all the transactions of the latter set.

Top-k pattern mining is an alternative approach to pattern enumeration. It
aims at discovering the (small) set of k patterns that best describes, or models,
the input dataset.

State-of-the-art algorithms differ in the formalization of the above concept
of dataset description. For instance, in [1] the goodness of the description is
given by the number of occurrences in the dataset incorrectly modeled by the
extracted patterns, while shorter, i.e. concise, patterns are promoted in [2, 3].

The goodness of a description is measured with some cost function, and the
top-k mining task is casted into an optimization of such cost. In most of such
formulations, the problem is demonstrated to be NP-hard, and therefore greedy
strategies are adopted. At each iteration, the pattern that best optimizes the
given cost function is added to the solution. This is repeated until k patterns
have been found or until it is not possible to improve the cost function.

In this paper we analyze in depth three state-of-the-art algorithms for mining
approximate top-k pattern from binary data: Asso [1], Hyper+ [2] and PaNDa
[3]. Our analysis explores the cost functions used by such greedy algorithms
and focuses on the evaluation of the extracted patterns. We show that the cost
functions adopted by all these algorithms share important aspects that can be
generalized into a unique formulation. We thus extend PaNDa, by plugging into
its framework such generalized formulation, which makes it possible to greedily
mine approximate patterns according to several cost functions. We also included
into this framework noise constraints inspired to [4] in order to improve its greedy
heuristics. We named the resulting algorithm PaNDa+.

Concerning the evaluation methodology, we observe that state-of-the-art al-
gorithms for approximate top-k mining measure the goodness of the discovered
patterns by their capability of minimizing the same cost function optimized by
the greedy algorithm. This simple assessment methodology captures more the
effectiveness of the greedy strategy than the quality of the extracted patterns. In
this paper, we want to go beyond this common evaluation approach by adopting
an assessment methodology aimed at measuring also how good are the concise
models extracted in unveiling some hidden supervised knowledge, in particular
the class labels associated with transactions. We test this capability by using the
algorithms for approximate top-k mining as a sort of feature extractors. The ac-
curacy of the classifiers built on top of the extracted features is then considered
a proxy for the quality of the mined patterns. In this way we are able to comple-
ment internal indices of quality (cost function), with external ones (classification
accuracy). As expected, experiments show that internal and external quality in-
dices provide contrasting results. Nevertheless, PaNDa+ is able to perform well
with several cost function and quality measures. More specifically, the classifiers
built over the mined patterns are in the majority of the cases the most accurate.

In summary, the contributions of this work are the following:

– a unifying formulation of several cost functions that are used by state-of-
the-art algorithms to drive their greedy heuristic strategies and to evaluate
the quality of the mined patterns;

– a new algorithm, named PaNDa+, that thanks to the unified formulation,
and by extending PaNDa [3], can deal with a variety of cost functions;

– PaNDa+ also improves over [5], since it can directly optimize the Minimum
Description Length (MDL) encoding cost proposed therein, and it is capable
to deal with error noise thresholds [4], thus improving the accuracy of each
mined pattern;

– we show the goodness of PaNDa+ by means of both an unsupervised, based
on an internal quality measures, and a supervised assessment, where the

accuracy of a classifier built over the pattern-based transaction features is
considered a proxy for the quality of the mined patterns.

The rest of the paper is organized as follows. We first introduce some nota-
tion (Sec. 2) and formalize the approximate top-k pattern mining problem also
illustrating state-of-the-art algorithms (Sec. 3). Then we discuss the framework
of the PaNDa+ algorithm (Sec. 4). Finally, we report on the conducted ex-
periments (Sec. 5), and we discuss other related works (Sec. 6) and concluding
remarks (Sec. 7).

2 Notation

A transactional dataset of N transactions and M items can be represented by a
binary matrix D ∈ {0, 1}N×M where D(i, j) = 1 if the i−th item occurs in the
j−th transaction, and D(i, j) = 0 otherwise.

An approximate pattern P is identified by the set of items it contains and
the set of transactions where it occurs, and it is represented by the pair of
binary vectors P = 〈PI , PT 〉, where PI ∈ {0, 1}M and PT ∈ {0, 1}N . The outer
product PT · PI of the two binary vectors identifies the sub-matrix of D which
is approximately covered by pattern P .

Being each pattern approximate, it may cover some empty occurrencesD(i, j) =
0 (false positives). Analogously, some occurrences D(i, j) = 1 may not be cov-
ered by any pattern in a given pattern set Π (false negatives). Indeed, we can
say that a set of patterns Π =

{
P1, . . . , P|Π|

}
approximately covers dataset D,

except for some noisy item occurrences identified by the matrix N ∈ {0, 1}N×M :

N =
∨

P∈Π
(PT · PI) Y D. (1)

where ∨ and Y are respectively the element-wise logical or and xor operators.
Indeed, this formulation of the noise models both false positives and false

negatives. If an occurrence D(i, j) corresponds to either a false positive or a false
negative, we have that N (i, j) = 1.

3 Problem Statement and Algorithms

In general we can state the top-k pattern discovery problem as an optimization
one, where the goal is to minimize a given cost function.

Problem 1 (Approximate Top-k Pattern Discovery Problem). Given a binary
dataset D ∈ {0, 1}N×M and an integer k, find the pattern set Πk, |Πk| ≤ k,
that minimizes the given cost function J(Πk,D):

Πk = argmin
Πk

J(Πk,D) (2)

In the following we review some cost functions and the algorithms that adopt
them. These algorithms try to optimize specific functions J with some greedy
strategy, since the problem belongs to the NP class. In addition, they exploit
some specific parameters, whose purpose is to make the pattern set Πk subject
to particular constraints, with the aim of (1) reducing the algorithm search
space or (2) possibly avoiding that the greedy generation of patterns brings to
local minima. As an example of the former type of parameters, we mention the
frequency of the pattern. Whereas, for the latter type of parameters, an example
is the amount of false positives we can tolerate in each pattern.

3.1 Minimizing noise (Asso)

Asso [1] is a greedy algorithm aimed at finding the pattern setΠk that minimizes
the amount of noise in describing the input data matrix D. This is measured as
the L1-norm ‖N‖ (or Hamming norm), which simply counts the number of 1 bits
in matrix N as defined in Eq.(1). Asso is thus a greedy algorithm minimizing
the following function:

JA(Πk,D) = ‖N‖. (3)

Indeed, Asso aims at finding a solution for the Boolean matrix decomposition
problem, thus identifying two low-dimensional factor binary matrices of rank k,
such that their Boolean product approximates D. The authors of Asso called
this matrix decomposition problem the Discrete Basis Problem (DBP). It can
be shown that the DBP problem is equivalent to the approximate top-k pattern
mining problem when optimizing JA. The authors prove that the decision version
of the problem is NP-complete by reduction to the set basis problem, and that
JA cannot be approximated within any factor in polynomial time, unless P=NP.

Asso works as follows. First it creates a set of candidate item sets, by mea-
suring the correlation between every pair of items. The minimum confidence
parameter τ is used to determine whether two items belong to the same item
set. Then Asso iteratively selects a pattern from the candidate set by greedily
minimizing the JA.

Asso has been proved to perform better than other matrix decomposition
approaches, such as principal component analysis and non-negative matrix fac-
torization, even if these last methods were not specifically tailored for boolean
matrices.

3.2 Minimizing the pattern set complexity (Hyper+)

The Hyper+ [2] algorithm works in two phases. In the first phase (corresponding
to the covering algorithm Hyper [6]), given a collection of frequent item sets,
the algorithm greedily selects a set of patterns Π∗ by minimizing the following
cost function that models the pattern set complexity:

JH(Π∗,D) =
∑

P∈Π∗
(‖PI‖+ ‖PT ‖). (4)

During this first phase, the algorithm aims to cover in the best way all the items
occurring in D, without neither false negatives nor positives, and thus without
any noise. The rationale is to promote the simplest description of the input
data D. Note that the size of Π∗ is unknown, and depends on the amount of
patterns that suffice to cover the 1-bits in D. The minimum support parameter
σ is used by Hyper+ to select an initial set of frequent item sets for starting the
greedy selection phase, thus reducing the search space of the greedy optimization
strategy.

Concerning the second phase of the algorithm, pairs of patterns in Π∗ are
recursively merged as long as a new collection Π ′, with a reduced number of
patterns, can be obtained without generating an amount of false positive occur-
rences larger than a given budget β. Finally, since the pattern set Π ′ is ordered
(from most to least important), we can simply select Πk as the top-listed k pat-
terns in Π ′, as done by the algorithm authors in Sec. 7.4 of [2]. Note that this
also introduces false negatives, corresponding to all the occurrences D(i, j) = 1
in the dataset that remain uncovered after selecting the top-k patterns Πk only.

3.3 Minimizing both pattern set complexity and noise (PaNDa)

PaNDa [3] minimizes a cost function that combines the two functions JA(·) and
JH(·). Given N as defined in Eq. (1), PaNDa minimizes the following cost:

JP (Πk,D) = JA(Πk,D) + JH(Πk,D) = ‖N‖ +
∑

P∈Πk

(‖PT ‖+ ‖PI‖) (5)

PaNDa adopts a greedy strategy, by exploiting a two-stage heuristics to iter-
atively select each pattern. The problem of discovering an approximate pattern
is in fact decomposed into two simpler problems: (a) discover a noise-less pattern
that covers the yet uncovered 1-bits of D, and (b) extend it to form a good ap-
proximate pattern, thus allowing some false positives to occur within the pattern.
Rather than considering all the possible exponential combinations of items, these
are sorted to maximize the probability of generating large cores, and processed
one at the time without backtracking. A number of different heuristic strategies
are proposed with PaNDa. In this work we assume correlation ordering with 30
randomization rounds, as described in [3].

Even if we do not fix the input parameter k, PaNDa can stop producing
further patterns when the cost of a new pattern is larger than the corresponding
noise reduction. The cost function of PaNDa is indeed inspired by the MDL
principle. By looking at Eq. (5) we can in fact recognize the cost of the model
(the cost of pattern set) and the the cost of the dataset given the model (the
cost of the noise matrix).

3.4 Minimizing the MDL encoding

In [5] the MDL principle [7] is adopted to evaluate a pattern set Πk. According
to the MDL principle, the regularities in D, corresponding to the discovered

patterns Πk, can be used to lossless compress D: thus the best pattern set Πk is
the one that induces the smallest encoding of D. More formally, given a collection
of pattern sets, the best Πk is the one that minimizes the following cost function:

JE(Πk,D) = enc(Πk) + enc(D|Πk) =
∑

P∈Πk

enc(P) + enc(N) (6)

in which enc(Πk) is the length, in bits, of the description of Πk, and enc(D|Πk)
is the length, in bits, of the description of the data when encoded with Πk.
Optimal codes are assumed. Note that enc(Πk) is computed in terms of the
encoding costs of all the single patterns, whereas enc(D|Πk), that is the residual
information we need to derive D when Πk is known, which exactly corresponds
to encoding N . Hereinafter, we refer to JE as the Typed-XOR cost described in
[5].

The authors do not provide an algorithm for mining directly the patterns that
minimize JE , but rather they use JE to select only the best top-listed patterns
returned by Asso. We show that PaNDa can be easily extended to directly
optimize the MDL cost JE(Πk,D), rather than performing a post-pruning as
done in [5].

4 Generalized PaNDa+ framework

In this section we discuss the improvements introduced in the PaNDa algorithm
aimed at producing the generalized PaNDa+ framework. First, we generalize its
cost function in order to deal in a flexible way with a wider class of optimization
problems. Second, we introduce noise constraints to improve the quality of the
extracted patterns.

4.1 Cost functions generalization

The PaNDa original cost function JP can be replaced without harming its
greedy heuristics. Indeed, JP can be generalized so as to include all of the afore-
mentioned cost functions as follows:

J+(Πk,D, γN , γP , ρ) = γN (N) + ρ ·
∑

P∈Πk

γP (P) (7)

where N is the noise matrix defined by Eq. (1), γN and γP are user defined
functions measuring the cost of the noise and patterns descriptions respectively,
and ρ ≥ 0 works as a regularization factor weighting the relative importance of
the patterns cost.

Table 1 shows how the cost function defined by Eq. (7) can be instantiated
to obtain all the functions discussed above, and allows for new functions to be
introduced, by fully leveraging the trade-off between patterns description cost
and noise cost (thanks to parameter ρ). Note the JρP is a generalization of the
function JP already proposed for PaNDa, with parameter ρ that determines a
different trade-off between patterns description cost and noise cost.

Table 1. Objective functions for Top-k Pattern Discovery Problem.

cost function description

JA(Πk,D) = J+(Πk,D, γN (N) = ‖N‖, γP (P) = 0, ρ = 0) Minimize noise [1]
JH(Πk,D) = J+(Πk,D, γN (N) = 0, γP (P) = ‖PT ‖+ ‖PI‖, ρ = 1) Minimize patter set

complexity [6]
JP (Πk,D) = J+(Πk,D, γN (N) = ‖N‖, γP = ‖PT ‖+ ‖PI‖, ρ = 1) Minimize noise and

pattern set complex-
ity [8, 3].

JρP (Πk,D) = J+(Πk,D, γN (N) = ‖N‖, γP (P) = ‖PT ‖+ ‖PI‖, ρ = ρ) Extend JP to lever-
age the trade-off be-
tween noise and pat-
tern set complexity.

JE(Π,D) = J+(Π,D, γN (N) = enc(N), γP (P) = enc(P), ρ = 1) Minimize the encod-
ing length [7] of the
pattern model ac-
cording to [5].

As a result, PaNDa+ is the first approximate top-k pattern mining algorithm
directly optimizing the MDL-based cost function JE .

4.2 Introducing noise thresholds into PaNDa+

Depending on the functions γN and γP , PaNDa may extend a pattern by adding
an item or a transaction even if a significant amount of noise is introduced. For
instance, JP allows to add a transaction to a pattern P if it contains at least
half of its items plus one. This behavior may lead the algorithm to fall into a
local minimum.

In order to avoid the greedy search strategy accepting too noisy patterns, we
introduced into PaNDa+ two maximum noise thresholds εr, εc ∈ [0, 1], inspired
by [4], aimed at bounding the maximum amount of noise generated by adding a
new item or a new transaction to a pattern. Given a pattern P = 〈PI , PT 〉 ∈ Πk,
the following constraints must hold:

1. every item j (column) of the pattern (s.t. PI(j) = 1) must be included in at
least εc · ‖PT ‖ transactions of the pattern:

∀j ∈ [1,M], such that PI(j) = 1,
N∑

i=1

(PT (i) · D(i, j)) ≥ εc · ‖PT ‖

2. every transaction i (row) of the pattern (s.t. PT (i) = 1) must include at
least εr · ‖PI‖ items of the pattern:

∀i ∈ [1, N], such that PT (i) = 1,
M∑

j=1

(PI(j) · D(i, j)) ≥ εr · ‖PI‖

Note that PaNDa+ optimizing JP extracts different patterns from PaNDa
due to these noise constraints.

5 Experiments

We used 24 datasets from the UCI repository3 which have been discretized for
pattern mining4. The main characteristics of the datasets are reported in Table 2.
For all the experiments, the class labels were removed before feeding any top-k
approximate item sets mining algorithm.

Table 2. Characteristics of the datasets used for the experiments

dataset # classes # items # transactions avg. trans. length
abalone 3 40 4177 8.0
anneal 5 108 898 38.0

audiology 24 154 226 67.6
auto 6 129 205 24.7

congres 2 32 434 15.1
credita 2 70 690 14.9

cylBands 2 120 540 33.2
dermatology 6 43 366 12.0

diabetes 2 40 768 8.0
ecoli 8 26 336 7.0
flare 8 30 1389 10.0
glass 6 40 214 9.0
heart 5 45 303 13.0

hepatitis 2 50 155 17.9
horseColic.D85 2 81 368 16.8

ionosphere 2 155 351 34.0
iris 3 16 150 4.0

mushroom 2 88 8124 21.7
pima 2 36 768 8.0
sick 2 75 3772 27.4

soybean-large 19 99 683 31.6
vehicle 4 90 846 18.0

wine 3 65 178 13.0
zoo 7 35 101 16.0

We compared the performance of Hyper+, Asso, and PaNDa+, where the
last one is able to minimize the different objective functions illustrated in this
work. In all the experiments, we required the mining algorithms to extract a
number of patterns equal to twice the number of classes present in the data.
We believe that the number of classes is a good proxy for the actual number of
interesting patterns occurring in the data. We used twice the number of classes
to deal with the presence of multiple dense subgroups that characterize a single
class, as found in [5]. Also, note that all the three algorithms may produce less
patterns than required if none is found to improve the objective function.

Although Hyper+ allows for setting the maximum number of patterns k
to extract, unfortunately we found this option to perform poorly, resulting in
excessive noise. This is due to the covering constraint of the algorithm: false
negatives are not allowed, and the extracted k patterns must cover all the occur-
rences D(i, j) = 1 in the dataset. It is possible to achieve much better results by
tuning the algorithm noise budget β, and then accepting only the k top-listed

3 http://archive.ics.uci.edu/ml/
4 http://www.csc.liv.ac.uk/∼frans/KDD/Software/LUCS KDD DN/

patterns. We fine-tuned the β parameter on every single dataset by choosing
β in the set {1%, 10%}. Moreover, we used frequent closed item sets in order
to take advantage of a lower minimum support thresholds, which is the most
sensitive parameter of Hyper+. We swept the minimum support threshold in
the interval [10%, 90%] by increments of 10%.

The Asso algorithm has a minimum correlation parameter τ which deter-
mines the initial patterns candidate set. Indeed, Asso is very sensitive to this
parameter. We fine-tuned the algorithm independently on every single dataset
by tuning τ in the range [0.5, 1] with steps of 0.05. In our experiments we always
tested the best performing variant of the algorithm which is named Asso + iter
in the original paper.

We evaluated four variants of PaNDa+ optimizing different cost functions:
JA, JP , JE , J1.2

P . Recall that JA measures the noise cost only, JP adds the cost
of each pattern, JE measures the cost of an optimal MDL encoding, and J1.2

P

mimics JE by using a larger weight for the cost of the patters semi-perimeter.
The PaNDa+ algorithm uses two maximum noise thresholds εr and εc, to control
the maximum amount of noise on each pattern row or column. Also in this case,
on each dataset we sweept the parameters εr and εc in the range [0.0, 0.5], with
steps of 0.05, and also considering the value 1.0 which is equivalent to ignoring
the thresholds.

The objective of our experimental evaluation is twofold. First, we want to
evaluate the capability of the various algorithms in optimizing two specific cost
functions, i.e., noise (JA) and MDL-based encoding (JE). These metrics capture
the goodness of the patterns extracted at describing the input data. We consider
this as an unsupervised evaluation, since no external knowledge is used to choose
the best extracted patterns and evaluate their goodness. Indeed, this kind of
evaluation tells us the capability of a greedy algorithm at optimizing the given
cost function.

In addition to this, we propose a supervised evaluation of the extracted pat-
terns. Even if the patterns are mined without any knowledge on the class labels
of each transaction, we can measure how well the extracted patterns may de-
scribe, or predict, such class labels. We believe that this second kind of evaluation
is more relevant, and we illustrate in the following the behavior of the various
algorithms.

5.1 Unsupervised evaluation

In the first experiment, we conducted parameter sweeping for each algorithm
and we selected the best outcome according to the cost function JA, i.e. the
pattern set generating the smallest amount of noise. In Tab. 3 we report the
pairwise comparison of each algorithm, i.e. the number of times each algorithm
better/equally/worse optimized JA. Hyper+ was not able to run to completion
on the audiology dataset, since its memory footprint exceeded the 4GBs avail-
able on the test machine. This is because it needs to process all the patterns
extracted by the underlying closed frequent item set mining algorithm. Overall,
Hyper+ is the worst performing in terms of noise reduction. The first phase

ASS
O

HYP
ER

+

Pa
NDa+

 J A

Pa
NDa+

 J P
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o
rm

a
liz

e
d
 N

o
is

e
 c

o
st

Noise cost

ASS
O

HYP
ER

+

Pa
NDa+

 J P

Pa
NDa+

 J
1.
2

P

Pa
NDa+

 J E
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o
rm

a
liz

e
d
 M

D
L

T
y
p
e
d
-X

O
R

 c
o
st MDL cost

(a) (b)

Fig. 1. Box-plots of the normalized (a) JA and (b) JE costs across the various UCI
datasets (Hyper+ did not complete on audiology).

of the algorithm tries to cover every occurrence in D, and this probably leaves
little degrees of freedom for the merging phase. Asso is clearly the best perform-
ing algorithm, as it is exactly designed to optimize JA. In Fig. 1(a) we report
the normalized noise, i.e. ‖N‖/‖D‖ = JA(Π,D)/JA(∅,D), across the various
datasets. We tested the two variants PaNDa+ JA and PaNDa+ JP , the first
optimizing directly JA while the second using the same cost function as PaNDa.
We can see that PaNDa+ JA improves over PaNDa+ JP and that the absolute
difference between PaNDa+ JA and Asso is very low.

In Fig. 1(b) we report the normalized MDL cost values, i.e. JE(Π,D)/JE(∅,D).
While also in this case Hyper+ has the worst performance, Asso and the
PaNDa+ variants achieve very similar results. We tested the PaNDa+ vari-
ants optimizing J1.2

P , J1.2
P , JE , being more relevant for task of minimizing JE .

Tab. 3 reports the results of the pairwise comparison. First we can observe that
PaNDa+ JE performs much better than PaNDa+ JP and PaNDa+ J1.2

P , thus
showing the benefits of directly optimizing the MDL cost function. On the other

Table 3. Results for JA or JE optimization. Number of times an algorithm (column)
generated better/equal/worse results than the baseline (row) on the test datasets. The
number of datasets for which the algorithm succeeded in extracting patterns is reported
in the diagonal between parentheses. Best results are highlighted in boldface.

Optimizing JA Optimizing JE

Asso Hyper+ PaNDa+ PaNDa+ Asso Hyper+ PaNDa+ PaNDa+ PaNDa+

JP JA JP J1.2
P JE

Asso (24) 0/1/22 1/0/23 2/1/21 (24) 2/0/21 13/0/11 9/0/15 12/0/12
Hyper+ 22/1/0 (23) 21/0/2 22/1/0 21/0/2 (23) 23/0/0 23/0/0 23/0/0

PaNDa+ JP 23/0/1 2/0/21 (24) 13/0/11 11/0/13 0/0/23 (24) 8/0/16 15/0/9
PaNDa+ JA 21/1/2 0/1/22 11/0/13 (24)

PaNDa+ J1.2
P 15/0/9 0/0/23 16/0/8 (24) 20/0/4

PaNDa+ JE 12/0/12 0/0/23 9/0/15 4/0/20 (24)

Alg params
Asso τ

Hyper+ σ, β

PaNDa+ εr, εr
(a)

Parameter

Sweeping over
params

Data w/o
class labels

Alg

Πk
Data

Mapping

10-fold cross-validation

Accuracy

Alg’s
params
setting

Training w/o
class labels

SVM
Classifier Mapped Data

w/ class labels

Alg

Πk
Data

Mapping

10-fold cross-validation

Accuracy

Training w/o
class labels

SVM
Classifier Mapped Data

w/ class labels

Alg

Parameter Sweeping over params

among all
settings of

Alg’s params

yielding
the best

J

Select the best
Accuracy

Accuracy

instance, JP allows to add a transaction to a pattern P if it contains at least
half of its items plus one. This behavior may lead the algorithm to fall into a
local minimum.

In order to avoid the greedy search strategy accepting too noisy patterns, we
introduced into PaNDa+ two maximum noise thresholds �r, �c ∈ [0, 1], inspired
by [4], aimed at bounding the maximum amount of noise generated by adding a
new item or a new transaction to a pattern. Given a pattern P = �PI , PT � ∈ Π,
the following constraints must hold:

1. every item j (column) of the pattern (s.t. PI(j) = 1) must be included in at
least �c · �PT � transactions of the pattern:

∀j ∈ [1, M], such that PI(j) = 1,
N�

i=1

(PT (i) ∧D(i, j)) ≥ �c · �PT �

2. every transaction i (row) of the pattern (s.t. PT (i) = 1) must include at
least �r · �PI� items of the pattern:

∀i ∈ [1, N], such that PT (i) = 1,
M�

j=1

(PI(j) ∧D(i, j)) ≥ �r · �PI�

The resulting PaNDa+ algorithm can be described as follows:

ΠK = AlgPaNDa+(D, K, J+, �r, �c).

Alg params
Asso τ

Hyper+ σ, β
PaNDa+ �r, �r

(a) (b) (c)

5 Experiments

We used 24 datasets from the UCI repository3 which have been discretized for
pattern mining4. The main characteristics of the datasets are reported in Table 2.
For all the experiments, the class labels were removed before feeding any top-k
approximate item sets mining algorithm.

We compared the performance of Hyper+, Asso, and PaNDa+, where the
last one is able to minimize the different objective functions illustrated in this
work. In all the experiments, we required the mining algorithms to extract a
number of patterns equal to twice the number of classes present in the data.
3 http://archive.ics.uci.edu/ml/
4 http://www.csc.liv.ac.uk/∼frans/KDD/Software/LUCS KDD DN/

instance, JP allows to add a transaction to a pattern P if it contains at least
half of its items plus one. This behavior may lead the algorithm to fall into a
local minimum.

In order to avoid the greedy search strategy accepting too noisy patterns, we
introduced into PaNDa+ two maximum noise thresholds �r, �c ∈ [0, 1], inspired
by [4], aimed at bounding the maximum amount of noise generated by adding a
new item or a new transaction to a pattern. Given a pattern P = �PI , PT � ∈ Π,
the following constraints must hold:

1. every item j (column) of the pattern (s.t. PI(j) = 1) must be included in at
least �c · �PT � transactions of the pattern:

∀j ∈ [1, M], such that PI(j) = 1,
N�

i=1

(PT (i) ∧D(i, j)) ≥ �c · �PT �

2. every transaction i (row) of the pattern (s.t. PT (i) = 1) must include at
least �r · �PI� items of the pattern:

∀i ∈ [1, N], such that PT (i) = 1,
M�

j=1

(PI(j) ∧D(i, j)) ≥ �r · �PI�

The resulting PaNDa+ algorithm can be described as follows:

ΠK = AlgPaNDa+(D, K, J+, �r, �c).

Alg params
Asso τ

Hyper+ σ, β
PaNDa+ �r, �r

(a) (b) (c)

5 Experiments

We used 24 datasets from the UCI repository3 which have been discretized for
pattern mining4. The main characteristics of the datasets are reported in Table 2.
For all the experiments, the class labels were removed before feeding any top-k
approximate item sets mining algorithm.

We compared the performance of Hyper+, Asso, and PaNDa+, where the
last one is able to minimize the different objective functions illustrated in this
work. In all the experiments, we required the mining algorithms to extract a
number of patterns equal to twice the number of classes present in the data.
3 http://archive.ics.uci.edu/ml/
4 http://www.csc.liv.ac.uk/∼frans/KDD/Software/LUCS KDD DN/

Fig. 2. Supervised evaluation: (a) algorithms’ parameters, (b) unsupervised and (c)
supervised selection of the algorithms’ parameters.

hand, we can observe that Asso has performance similar to PaNDa+ JE , with
an equal number of wins and losses. Asso performs only slightly worse than
PaNDa+ JP , showing that probably both Asso and PaNDa+ JP fall into
some into local minima.

5.2 Supervised evaluation

We observe the lack of common real-world benchmarks, i.e., data sets for which
the most important patterns are known, and that can be used as a ground
truth to evaluate and compare algorithms. We thus propose to compare different
pattern mining algorithms by evaluating their ability in discovering interesting
transaction features that we can use to build an accurate classifier. More specif-
ically, we adopt two distinct approaches for our supervised evaluation. In both,
since the various algorithms take as input several parameters summarized in Fig.
2(a), we exploited a parameter sweeping technique, like in [1] and [5], aimed at
understanding the full potential of the algorithms taken into consideration.

In the former approach – see Fig. 2(b) – we sweep over the input parameters
of the given algorithm, and select ’ex ante’ the best parameters on the basis
of a cost function J which is used to evaluate the quality of the mined pattern
sets (internal unsupervised measure). We thus conduct 10-fold cross validation to
evaluate the goodness of the algorithm as follows: at each fold the top-k patterns
are extracted from the training set using the best parameters previously found,
then they are exploited as features to map the data in a new feature space,
and finally, the mapped data is used to train and test an SVM classifier. The
transaction mapping process is detailed later on. It is worth remarking that
the final accuracy of the classifier (external supervised measure) can confirm or
contradict the evaluation outcomes based on unsupervised cost functions.

In the latter approach – see Fig. 2(c) – we use parameter sweeping to explore
the maximum accuracy achievable by a given algorithm. The classifier resulting
from every combination of the algorithm parameters is evaluated with same the

cross validation process, and the best accuracy is used to measure the goodness
of the algorithm.

In both methods, a pattern set Πk is extracted from a training set where
the class labels have been removed in advance. Then, every transaction in the
training and test sets is mapped into the pattern space by considering a binary
feature for each approximate pattern in Πk indicating its presence/absence in the
transaction. Note that the algorithms we evaluated produce, for each pattern,
the set of transactions in the training where it occurs, and this set is used for
the mapping. For what regard the test set, we say that an approximate pattern
P ∈ Πk occurs in an unseen test transaction t iff |PI ∩ t|/|PI | ≥ η, where η
is the minimum intersection ratio |PI ∩ t∗|/|PI | for every training transaction
t∗ ∈ PT . The rationale is to accept a pattern P for a test transaction t if it does
not generate more noise than what it has been observed in the training set.

After mapping the transactions into such pattern space, the class labels are
restored in the transformed training set, which is used to train an SVM classifier.
Finally, the classifier is evaluated on the mapped test set. Specifically we adopt
the implementation provided by [10], in which we use a radial basis function as
SVM kernel, and estimate its crucial regularization parameter as in [11].

It is worth noting that, unlike [9], the features extracted from each transaction
only correspond to the patterns discovered by the given algorithm: we do not
consider the singletons as a transaction feature in classifier training/test data,
unless such patterns composed of single items are actually extracted by the
mining algorithm. This is because we want to evaluate exclusively the predictive
power of the mined collection of patterns Πk.

The first of our experiments compares Asso, Hyper+ and PaNDa+ when
their parameters are chosen according to their ability to optimize JA or JE , as

ASS
O (N

oi
se

)

HYP
ER

+
 (N

oi
se

)

Pa
NDa+

 J A
 (N

oi
se

)

Pa
NDa+

 J P
 (N

oi
se

)

ASS
O (M

DL)

HYP
ER

+
 (M

DL)

Pa
NDa+

 J P
 (M

DL)

Pa
NDa+

 J
1.
2

P

 (M
DL)

Pa
NDa+

 J E
 (M

DL)
0

10

20

30

40

50

60

70

80

90

100

A
cc

u
ra

cy

SVM-based Classifier Accuracy

Fig. 3. Box-plots of the accuracy of the SVM-based classifier with pre-optimized al-
gorithm parameters across the various UCI datasets (Hyper+ did not complete on
audiology). Leftmost data correspond to noise-based parameter tuning and rightmost
data to MDL-based parameter tuning.

Table 4. Number of times an algorithm (column) generated better/equal/worse pat-
terns than the baseline (row) based on the corresponding SVM accuracy.

Noise-based parameters MDL-based parameters

Asso Hyper+ PaNDa+ PaNDa+ Asso Hyper+ PaNDa+ PaNDa+ PaNDa+

JP JA JP J1.2
P JE

N
o
is

e
-b

a
se

d Asso (24) 10/2/11 16/1/7 11/1/12 6/9/9 10/1/12 11/1/12 11/1/12 13/2/9
Hyper+ 11/2/10 (23) 15/1/7 14/0/9 11/2/10 7/6/10 13/1/9 13/1/9 12/2/9

PaNDa+ JP 7/1/16 7/1/15 (24) 9/2/13 7/2/15 5/1/17 5/2/17 8/2/14 7/2/15

PaNDa+ JA 12/1/11 9/0/14 13/2/9 (24) 11/1/12 9/0/14 7/1/16 9/1/14 10/1/13

M
D

L
-b

a
se

d Asso 9/9/6 10/2/11 15/2/7 12/1/11 (24) 10/1/12 12/2/10 10/2/12 12/3/9
Hyper+ 12/1/10 10/6/7 17/1/5 14/0/9 12/1/10 (23) 13/1/9 15/1/7 13/1/9

PaNDa+ JP 12/1/11 9/1/13 17/2/5 16/1/7 10/2/12 9/1/13 (24) 12/2/10 11/2/11

PaNDa+ J1.2
P 12/1/11 9/1/13 14/2/8 14/1/9 12/2/10 7/1/15 10/2/12 (24) 12/2/10

PaNDa+ JE 9/2/13 9/2/12 15/2/7 13/1/10 9/3/12 9/1/13 11/2/11 10/2/12 (24)

illustrated in Fig. 2(b) We notice that the performance of Hyper+ are better
than expected. Even if Hyper+ is not able to optimize well neither JA nor JE ,
the resulting patterns provide a reasonably good accuracy. We observe that the
JE cost function leads to poorer patterns on average. This is quite surprising,
since we expected that a purely noise-based cost function would lead to over-
fitting patterns and that the MDL-based cost would promote patterns with a
larger generalization power. The best median is achieved by PaNDa+ JP , which
looks to be a good compromise between noise minimization and generalization
power. In Tab. 4 we report the results of the pairwise comparison, which confirm
the good performance of PaNDa+ JP when its parameters are determined on
the basis of JA.

The above experiments, show that the approximate frequent pattern min-
ing algorithms we took into consideration provide similar performance, with a
slight preference for PaNDa variants, and they also show that optimizing JA is
preferable to optimizing JE .

We also measured the maximum accuracy that each algorithm can achieve,
as illustrated in Fig. 2(c). The results of this experiment are shown in Fig. 4 and
in Table 5. Except for Hyper+, all the algorithms significantly increase their
median accuracy with 10% improvement, the best performing being PaNDa+ JA
with a median accuracy close to 80%. Recall that PaNDa+ JA was not the best

Table 5. Number of times an algorithm (column) generated better/equal/worse pat-
terns than the baseline (row) based on the corresponding SVM accuracy.

Asso Hyper+ PaNDa+ PaNDa+ PaNDa+ PaNDa+

JP JA J1.2
P JE

Asso (24) 4/3/16 13/1/10 17/2/5 14/2/8 14/2/8
Hyper+ 16/3/4 (23) 17/1/5 19/2/2 16/2/5 18/1/4

PaNDa+ JP 10/1/13 5/1/17 (24) 17/1/6 16/1/7 13/0/11

PaNDa+ JA 5/2/17 2/2/19 6/1/17 (24) 6/1/17 6/0/18

PaNDa+ J1.2
P 8/2/14 5/2/16 7/1/16 17/1/6 (24) 14/1/9

PaNDa+ JE 8/2/14 4/1/18 11/0/13 18/0/6 9/1/14 (24)

ASS
O

HYP
ER

+

Pa
NDa+

 J A

Pa
NDa+

 J P

Pa
NDa+

 J
1.
2

P

Pa
NDa+

 J E
0

10

20

30

40

50

60

70

80

90

100

A
cc

u
ra

cy

SVM-based classifier accuracy

Fig. 4. Box-plots of the accuracy of the SVM-based classifier with parameter sweeping
across the various UCI datasets (Hyper+ did not complete on audiology).

algorithm at optimizing JA. Again, we can state that neither JA nor JE are good
hints for the discovery of predictive patterns. Moreover, PaNDa+ JA performs
almost always better the Hyper+, and beats Asso in 17 datasets out of 24. The
difference between PaNDa+ JA and Asso is statistically significant according to
the two-tailed sign test with p = 0.023, and according to the two-tailed Wilkoxon
signed-rank test with p = 0.008.

6 Related Work

We classify related works in three large categories: matrix decomposition based,
database tiling and Minimum Description Length based.

Matrix decomposition based. The methods in this class aim at finding
a product of matrices that describes the input data with a smallest possible
amount of error. These methods include Probabilistic latent semantic indexing
(PLSI) [12], Latent Dirichlet allocation (LDA) [13], Independent Component
Analysis (ICA) [14], Non-negative Matrix Factorization, etc. However, Asso
was shown to outperform such methods on binary datasets.

Database tiling. The maximum k-tiling problem introduced in [15] requires
to find the set of k tiles, possibly overlapping, having the largest coverage of
the given database D. However, this approach is not able to handle the false
positives present in the data, similarly to Hyper [6]. According to [16], tiles
can be hierarchical. Unlike our approach, low-density regions are considered as
important as high density ones, and inclusion of tiles is preferred instead of
overlapping.

Minimum Description Length principle. In [17] a set of item sets, called
cover or code table, is used to encode all the transactions in the database, meaning
that every transaction is represented by the union of some item sets in the cover.

The MDL principle is used to choose the best code table. The proposed Krimp
algorithm selects the item sets of the cover from a pool of candidates. In their
experiments, the authors exploited the collection of all the frequent item sets,
mined with a very low minimum support (till a support of a single transaction)
to achieve good results. There are two significant differences from our approach.
First, patterns that cover a given transaction must be disjoint, increasing the
size and redundancy of the model. Second, noisy occurrences are not allowed.

A similar MDL-based approach is adopted in [18], but in this case, knowledge
on the data marginal distributions is assumed to be known, thus generating a
different kind of patterns. In this work, assume no knowledge on the data in
evaluating the extracted patterns.

In [19] a novel framework is proposed for the comparison of different pat-
tern sets. From a given pattern set, a probability distribution over D is derived
according to the maximum entropy principle, and then the Kullback-Leibler dis-
tance between these two distributions is used to measure the dissimilarity of
two pattern sets. After comparing several algorithms including Asso, Hyper+,
Krimp, and others, the authors conclude that Hyper+ and Asso are the two
best performing algorithms, i.e. producing the set of patterns whose probabil-
ity distribution is closer to the underlying class label distribution. Note that
Hyper+ and Asso are the algorithms analyzed in this work.

7 Conclusions

In this paper we have given a deep insight into the problem of mining approxi-
mate top-k patterns from binary matrixes. Our analysis has explored Asso, Hy-
per+, and PaNDa, three state-of-the-art algorithms that differ for the greedy
strategy adopted and the cost function optimized. We have shown that all these
cost functions can be unified into a unique formulation and plugged into a flexible
algorithmic framework, named PaNDa+, that allow us to greedily mine approx-
imate patterns according to several cost functions. Moreover, we have added to
this framework two other important features: the possibility of optimizing di-
rectly the MDL encoding cost of the solution, and the possibility of dealing with
noise constraints in order to improve the greedy heuristics.

Particular care has been put on the assessment of the various solutions at
hand. We have started from the observation that only measuring the ability of
an algorithm to minimize a given cost function captures more the effectiveness
of its greedy strategy than the quality of the extracted patterns. Moreover, the
lack of standard benchmarking datasets that can be used as a ground truth to
evaluate and compare the quality of solutions, makes very hard to objectively
judge solutions adopting different cost functions. We thus chose to place side by
side two different kinds of evaluations. First we measured for all the algorithms
the goodness of the patterns extracted at describing the input data by means
of noise (JA) and MDL-based encoding (JE) costs. Second, we considered the
accuracy of SVM classifiers built on top of the top-k patterns as a strong signal
for the quality of the pattern set extracted.

The experiments conducted on 24 datasets from the UCI repository show
that PaNDa+ and Asso have similar performance in minimizing the noise and
the MDL-based costs. However, when evaluating the SVM-based classifiers, the
patterns extracted by optimizing JA or JE exhibit limited performance. The best
results achieved by full parameter sweeping show that PaNDa+ outperforms all
the other algorithms with a statistically significant improvement.

References

1. Miettinen, P., Mielikainen, T., Gionis, A., Das, G., Mannila, H.: The discrete basis
problem. IEEE TKDE 20(10) (Oct 2008) 1348–1362

2. Xiang, Y., Jin, R., Fuhry, D., Dragan, F.F.: Summarizing transactional databases
with overlapped hyperrectangles. Data Min. Knowl. Discov. 23(2) (Sep 2011)
215–251

3. Lucchese, C., Orlando, S., Perego, R.: Mining top-k patterns from binary datasets
in presence of noise. In: SDM, SIAM (2010) 165–176

4. Cheng, H., Yu, P.S., Han, J.: AC-Close: Efficiently mining approximate closed
itemsets by core pattern recovery. In: Proc. of ICDM, IEEE (2006) 839–844

5. Miettinen, P., Vreeken, J.: Model order selection for boolean matrix factorization.
In: Proc. of KDD, ACM (2011) 51–59

6. Xiang, Y., Jin, R., Fuhry, D., Dragan, F.F.: Succinct summarization of transac-
tional databases: an overlapped hyperrectangle scheme. In: Proc. of KDD, ACM
(2008) 758–766

7. Rissanen, J.: Modeling by shortest data description. Automatica 14(5) (1978)
465–471

8. Lucchese, C., Orlando, S., Perego, R.: A generative pattern model for mining
binary datasets. In: SAC, ACM (2010) 1109–1110

9. Cheng, H., Yan, X., Han, J., wei Hsu, C.: Discriminative frequent pattern analysis
for effective classification. In: Proc. of ICDE, ACM (2007) 716–725

10. Joachims, T.: Learning to Classify Text Using Support Vector Machines: Methods,
Theory and Algorithms. Kluwer (2002)

11. Cherkassky, V., Ma, Y.: Practical selection of svm parameters and noise estimation
for svm regression. Neural Netw. 17(1) (Jan 2004) 113–126

12. Hofmann, T.: Probabilistic latent semantic indexing. In: Proc. of SIGIR, ACM
(1999) 50–57

13. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn.
Res. 3 (2003) 993–1022

14. Hyvärinen, A., Karhunen, J., Oja, E.: Independent component analysis. John and
Wiley (2001)

15. Geerts, F., Goethals, B., Mielikäinen, T.: Tiling databases. Discovery Science
(2004) 278–289

16. Gionis, A., Mannila, H., Seppänen, J.: Geometric and combinatorial tiles in 0-1
data. In: Proc. of PKDD (2004) 173–184

17. Vreeken, J., van Leeuwen, M., Siebes, A.: Krimp: mining itemsets that compress.
Data Min. Knowl. Discov. 23(1) (2011) 169–214

18. Kontonasios, K.N., Bie, T.D.: An information-theoretic approach to finding infor-
mative noisy tiles in binary databases. In: Proc. of SDM, SIAM (2010) 153–164

19. Tatti, N., Vreeken, J.: Comparing apples and oranges - measuring differences
between data mining results. In: ECML-PKDD (2011) 398–413

