
Surviving the Web: A Journey into Web Session Security
(Extended Abstract)

Stefano Calzavara
Università Ca’ Foscari Venezia
stefano.calzavara@unive.it

Riccardo Focardi
Università Ca’ Foscari Venezia

focardi@unive.it

Marco Squarcina
Università Ca’ Foscari Venezia

squarcina@unive.it

Mauro Tempesta
Università Ca’ Foscari Venezia

tempesta@unive.it

ABSTRACT
We survey the most common attacks against web sessions, i.e.,
attacks which target honest web browser users establishing an au-
thenticated session with a trusted web application. We then review
existing security solutions which prevent or mitigate the different
attacks, by evaluating them along four different axes: protection,
usability, compatibility and ease of deployment. Based on this sur-
vey, we identify five guidelines that, to different extents, have been
taken into account by the designers of the different proposals we
reviewed. We believe that these guidelines can be helpful for the
development of innovative solutions approaching web security in
a more systematic and comprehensive way.

CCS CONCEPTS
• Security and privacy→ Browser security;Web application
security;Web protocol security;

KEYWORDS
Web sessions, HTTP cookies, web attacks, web defenses.

ACM Reference Format:
Stefano Calzavara, Riccardo Focardi, Marco Squarcina, and Mauro Tempesta.
2017. Surviving the Web: A Journey into Web Session Security: (Extended
Abstract). In Proceedings of The Web Conference. ACM, New York, NY, USA,
5 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
TheWeb is the primary access point to on-line data and applications.
It is extremely complex and variegate, as it integrates a multitude
of dynamic contents by different parties to deliver the greatest
possible user experience. This heterogeneity makes it very hard to
effectively enforce security, since putting in place novel security
mechanisms typically prevents existing websites from working cor-
rectly or negatively affects the user experience, which is generally
regarded as unacceptable, given the massive user base of the Web.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
The Web Conference, 23-27 April, 2018, Lyon, France
© 2017 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

However, this continuous quest for usability and backward com-
patibility had a subtle effect on web security research: designers
of new defensive mechanisms have been extremely cautious and
the large majority of their proposals consists of very local patches
against very specific attacks. This piecemeal evolution hindered a
deep understanding of many subtle vulnerabilities and problems,
as testified by the proliferation of different threat models against
which different proposals have been evaluated, occasionally with
quite diverse underlying assumptions. It is easy to get lost among
the multitude of proposed solutions and almost impossible to under-
stand the relative benefits and drawbacks of each single proposal
without a full picture of the existing literature.

In this work, we take the delicate task of performing a systematic
overview of a large class of common attacks targeting the current
Web and the corresponding security solutions proposed so far. We
focus on attacks against web sessions, i.e., attacks which target
honest web browser users establishing an authenticated session
with a trusted web application. This kind of attacks exploits the
intrinsic complexity of the Web by tampering, e.g., with dynamic
contents, client-side storage or cross-domain links, so as to corrupt
the browser activity and/or network communication. Our choice is
motivated by the fact that attacks against web sessions cover a very
relevant subset of serious web security incidents [14] and many
different defenses, operating at different levels, have been proposed
to prevent these attacks.

We consider typical attacks against web sessions and we system-
atise them based on: (i) their attacker model and (ii) the security
properties they break. This first classification is useful to under-
stand precisely which intended security properties of a web session
can be violated by a certain attack and how.We then survey existing
security solutions and mechanisms that prevent or mitigate the
different attacks and we evaluate each proposal with respect to the
security guarantees it provides. When security is guaranteed only
under certain assumptions, we make these assumptions explicit.
For each security solution, we also evaluate its impact on both
compatibility and usability, as well as its ease of deployment. These
are important criteria to judge the practicality of a certain solution
and they are useful to understand to which extent each solution, in
its current state, may be amenable for a large-scale adoption on the
Web. Moreover, since there are several proposals in the literature
which aim at providing robust safeguards against multiple attacks,
we also provide an overview of them. For each of these proposals,
we discuss which attacks it prevents with respect to the attacker

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

The Web Conference, 23-27 April, 2018, Lyon, France Stefano Calzavara, Riccardo Focardi, Marco Squarcina, and Mauro Tempesta

model considered in its original design and we assess its adequacy
according to the criteria described above.

Finally, we synthesize from our survey a list of five guidelines
that, to different extents, have been taken into account by the
designers of the different solutions. We observe that none of the
existing proposals follows all the guidelines and we argue that this
is due to the high complexity of the Web and the intrinsic difficulty
in securing it. We believe that these guidelines can be helpful for
the development of innovative solutions approaching web security
in a more systematic and comprehensive way.

Reference to Journal Publication. This extended abstract provides
a short overview of a published journal paper with the same title.
We refer to the original publication [8] for full details.

2 ATTACKINGWEB SESSIONS
A web session is a semi-permanent information exchange between
a browser and a web server that involves multiple requests and
responses. Since HTTP is a stateless protocol, i.e., each request
is treated independently from all the others, the vast majority of
web applications use cookies to implement stateful sessions. When
the user successfully authenticates to a website, a fresh cookie
is generated by the server and sent back to the browser. Further
requests originating from the browser automatically include the
cookie as a proof of being part of the session established upon
password-based authentication.

The cookie plays the role of the password in all the subsequent
requests to theweb server, thus it is enough to leak its value to hijack
the session and fully impersonate the user, without compromising
the network connection or the server. We call authentication cookie
any cookie which identifies a web session.

2.1 Security Properties
We consider two standard security properties formulated in the set-
ting of web sessions. They represent typical targets of web session
attacks:
• Confidentiality: data transmitted inside a session should not
be disclosed to unauthorized users;
• Integrity: data transmitted inside a session should not be
modified or forged by unauthorized users.

Interestingly, the above properties are not independent and a viola-
tion of one might lead to the violation of the other. For instance,
compromising session confidentiality might reveal authentication
cookies, which would allow the attacker to perform arbitrary ac-
tions on behalf of the user, thus breaking session integrity.

2.2 Threat Model
We focus on two main families of attackers: web attackers and net-
work attackers. A web attacker controls at least one web server
that responds to any HTTP(S) requests sent to it with arbitrary
malicious contents chosen by the attacker. We assume that a web at-
tacker can obtain trusted HTTPS certificates for all the web servers
under his control and is able to exploit content injection vulnera-
bilities on trusted websites. A slightly more powerful variation of
the web attacker, known as the related-domain attacker, can also
host malicious web pages on a domain sharing a “sufficiently long”

suffix with the domain of the target website [5]. This additional
capability allows the attacker to set valid (domain) cookies for the
target website that are indistinguishable from the ones set by the
legitimate site [3]. Network attackers extend the capabilities of
traditional web attackers with the ability of inspecting, forging and
corrupting all the HTTP traffic sent on the network, as well as the
HTTPS traffic using untrusted certificates.

2.3 Attacks Overview
We provide now an overview of the most important attacks against
web sessions. For each class of attacks, we report the security prop-
erties of web sessions which it violates.

2.3.1 Content Injection (XSS). This wide class of attacks allows
a web attacker to inject harmful contents into trusted web applica-
tions. Content injections can be mounted in many different ways,
but they are always enabled by an improper or missing sanitization
of some attacker-controlled input in the web application. These
attacks are traditionally assimilated to Cross-Site Scripting (XSS),
i.e., injections of malicious JavaScript code; however, the lack of
a proper sanitization may also affect HTML contents (markup in-
jection) or even CSS rules [13, 20]. Content injection attacks are
usually classified as either reflected or stored, depending on the
persistence of the threat. In the reflected variant, part of the input
supplied in the request is “reflected” into the response without
proper sanitization. Stored attacks, instead, are those where the
injected content is permanently saved on the target server, e.g., in
a message appearing on a discussion board. The malicious content
is then automatically interpreted by any browser which visits the
attacked page.

Since content injections allow an attacker to sidestep the same-
origin policy (SOP), which is the baseline security policy of standard
web browsers, they can have catastrophic consequences on both the
confidentiality and the integrity of a web session. Specifically, they
can be used to steal sensitive data from trusted websites, such as
authentication cookies and user credentials, and to actively corrupt
the page contents, so as to undermine the integrity of a web session.

2.3.2 Cross-Site Request Forgery (CSRF). A CSRF is an instance
of the “confused deputy” problem [12] in the context of web brows-
ing. In a CSRF, the attacker forces the user browser into sending
HTTP(S) requests to a website where the user has already estab-
lished an authenticated session, e.g. by including some tags
to the vulnerable website in pages hosted by the attacker. When
rendering these HTML elements, the browser will send HTTP(S)
requests to the target website that automatically include the authen-
tication cookies of the user. From the target website perspective,
these forged requests are indistinguishable from legitimate ones
and thus they can be abused to trigger a dangerous side-effect, e.g.,
to force a bank transfer to the attacker account.

A CSRF attack allows the attacker to inject an authenticated
message into a session with a trusted website, hence it constitutes
a threat to session integrity. It is less known that CSRFs may also
be employed to break confidentiality by sending cross-site requests
that return sensitive user data bound to the user session, e.g., as in
the attack against the cloud service SpiderOak [2].

Surviving the Web: A Journey into Web Session Security The Web Conference, 23-27 April, 2018, Lyon, France

2.3.3 More Attacks. Other less known web attacks include login
CSRF, cookie forcing and session fixation. We refer to the full sur-
vey [8] for an explanation of them, as well as of traditional network
attacks enabled by the (partial) adoption of HTTP.

3 DEFENDINGWEB SESSIONS
In this section we present the criteria adopted to evaluate the solu-
tions proposed in the literature and by standards to protect from at-
tacks against web sessions. We also discuss a couple of well-known
defenses against content injection, namely HttpOnly cookies and
CSP. In [8] we discuss more than 40 solutions that either tackle
specific web attacks or try to provide a more comprehensive degree
of protection from different threats.

3.1 Evaluation Criteria
We evaluate existing defenses along four different axes:

(1) protection: we assess the effectiveness of the proposed de-
fense against the conventional threat model of the attack. If
the proposal does not prevent the attack in the most general
case, we discuss under which assumptions it may still be
effective;

(2) usability: we evaluate whether the proposed mechanism
affects the end-user experience, for instance by impacting on
the perceived performances of the browser or by involving
the user into security decisions;

(3) compatibility: we discuss how well the defense integrates
into the web ecosystem with respect to the current stan-
dards, the expected functionalities of websites, and the per-
formances provided by modern network infrastructures. For
example, solutions that prevent some websites from working
correctly are not compatible with the existing Web. On the
other hand, a minor extension to a standard protocol which
does not break backward compatibility is acceptable;

(4) ease of deployment: we consider how practical would be a
large-scale deployment of the defensive solution by evaluat-
ing the overall effort required by web developers and system
administrators for its adoption.

3.2 Two Defenses for Content Injection
3.2.1 HttpOnly Cookies. HttpOnly cookies have been intro-

duced in 2002 with the release of Internet Explorer 6 SP1 to prevent
the theft of authentication cookies via content injection attacks.
Available on all major browsers, this simple yet effective mecha-
nism limits the scope of cookies to HTTP(S) requests, making them
unavailable to malicious JavaScript injected in a trusted page.

The protection offered by the HttpOnly attribute is only limited
to the theft of authentication cookies. The presence of the attribute
is transparent to users, hence it has no impact on usability. Also, the
attribute perfectly fits the web ecosystem in terms of compatibility
with legacy web browsers, since unknown cookie attributes are
ignored. Finally, the solution is easy to deploy, assuming there is no
need of accessing authentication cookies via JavaScript for generic
reasons [21].

3.2.2 Content Security Policy. The Content Security Policy (CSP)
[16] is a web security policy standardized by W3C that allows to

specify the origins from which the browser is permitted to fetch the
resources embedded in a web page. The policy is communicated to
the browser via an HTTP header and it is fairly granular, allowing
one to distinguish between different types of resources, such as
JavaScript, CSS and XHR targets. By default, CSP does not allow
inline scripts and CSS directives (which can be used for data exfil-
tration) and the usage of particularly harmful JavaScript functions
(e.g., eval). However, these constraints can be disabled by using the
unsafe-inline and the unsafe-eval rules. With the introduction
of CSP Level 2 [17], it is possible to selectively white-list inline
resources without allowing indiscriminate content execution.

When properly configured, CSP provides an effective defense
against XSS attacks. Still, general content injection attacks are not
prevented. CSP policies are written by web developers and transpar-
ent to users, so their design supports usability. Compatibility and
deployment cost are better evaluated together for CSP. On the one
hand, it is easy to write a very lax policy which allows the execu-
tion of inline scripts and puts only mild restrictions on cross-origin
communication: this ensures compatibility. On the other hand, an
effective policy for legacy applications can be difficult to deploy,
since inline scripts and styles should be removed or manually white-
listed, and trusted origins for content inclusion should be carefully
identified [18]. As of now, the deployment of CSP is not particularly
significant or effective [9, 19]. That said, the standardization of CSP
by the W3C suggests that the defense mechanism is not too hard to
deploy on many websites, at least to get some limited protection.

4 PERSPECTIVE
Having examined different proposals, we now identify five guide-
lines for the designers of novel web security mechanisms. This is
a synthesis of sound principles and insights which have, to differ-
ent extents, been taken into account by all the designers of the
proposals we surveyed.

4.1 Guidelines
4.1.1 Transparency. We call transparency the combination of

high usability and full compatibility: we think this is themost impor-
tant ingredient to ensure a large scale deployment of any defensive
solution for the Web, given its massive user base and its hetero-
geneity. It is well-known that security often comes at the cost of
usability and that usability defects ultimately weaken security, since
users resort to deactivating or otherwise sidestepping the available
protection mechanisms [15]. The Web is extremely variegate and
surprisingly fragile even to small changes: web developers who
do not desire to adopt new defensive technologies should be able
to do so, without any observable change to the semantics of their
web applications when these are accessed by security-enhanced
web browsers; dually, users who are not willing to update their
web browsers should be able to seamlessly navigate websites which
implement cutting-edge security mechanisms not supported by
their browsers.

All the security decisions must be ultimately taken by web de-
velopers. On the one hand, users are not willing or do not have the
expertise to be involved in security decisions. On the other hand,
it is extremely difficult for browser vendors to come up with “one
size fits all” solutions which do not break any website. Motivated

The Web Conference, 23-27 April, 2018, Lyon, France Stefano Calzavara, Riccardo Focardi, Marco Squarcina, and Mauro Tempesta

web developers, instead, can be fully aware of their web application
semantics, thoroughly test new proposals and configure them to
support compatibility.

4.1.2 Security byDesign. Supporting the currentWeb and legacy
web applications is essential, but developers of new websites should
be provided with tools which allow them to realize applications
which are secure by design. Our feeling is that striving for back-
ward compatibility often hinders the creation of tools which could
actually improve the development process of new web applications.
Indeed, backward compatibility is often identified with problem-
specific patches to known issues, which developers of existing
websites can easily plug into their implementation to retrofit it.
The result is that developing secure web applications using the
current technologies is a painstaking task, which involves actions
at many different levels. Developers should be provided with tools
and methodologies which allow them to take security into account
from the first phases of the development process. This necessarily
means deviating from the low-level solutions advocated by many
current technologies, to rather focus on more high-level security
aspects of the web application, like the definition of principals and
their trust relations, the identification of sensitive information, etc.

4.1.3 Ease of Adoption. Server-side solutions should require a
limited effort to be understood and adopted by web developers.
For instance, the usage of frameworks which automatically im-
plement recommended security practices, often neglected by web
developers, can significantly simplify the development of new se-
cure applications. For client-side solutions, it is important that they
work out of the box when they are installed in the user browser:
proposals which are not fully automatic are going to be ignored
or misused. Any defensive solution which involves both the client
and the server is subject to both the previous observations. Since it
is unrealistic that a single protection mechanism is able to accom-
modate all the security needs, it is crucial to design the defensive
solution so that it gracefully interacts with existing proposals which
address orthogonal issues and which may already be adopted by
web developers.

4.1.4 Declarative Nature. To support a large-scale deployment,
new defensive solutions should be declarative in nature: web devel-
opers should be given access to an appropriate policy specification
language, but the enforcement of the policy should not be their
concern. Security checks should not be intermingled with the web
application logic: ideally, no code change should be implemented
in the web application to make it more secure and a thorough un-
derstanding of the web application code should not be necessary to
come up with reasonable security policies. This is dictated by very
practical needs: existing web applications are huge and complex,
are often written in different programming languages and web
developers may not have full control over them.

4.1.5 Formal Specification and Verification. Formal models and
tools have been recently applied to the specification and the verifi-
cation of new proposals for web session security [1, 4, 7, 10]. While
a formal specification may be of no use for web developers, it assists
security researchers in understanding the details of the proposed
solution. Starting from a formal specification, web security design-
ers can be driven by the enforcement of a clear semantic security

property, e.g., non-interference [11] or session integrity [7], rather
than by the desire of providing ad-hoc solutions to the plethora of
low-level attacks which currently target the Web.

This is not merely a theoretical exercise, but it has clear practical
benefits. First, it allows a comprehensive identification of all the
attack vectors which may be used to violate the intended security
property, thus making it harder that subtle attacks are left unde-
tected during the design process. Second, it forces security experts
to focus on a rigorous threat model and to precisely state all the
assumptions underlying their proposals: this helps making a criti-
cal comparison of different solutions and simplifies their possible
integration. Third, more speculatively, targeting a property rather
than a mechanism allows to get a much better understanding of
the security problem, thus fostering the deployment of security
mechanisms which are both more complete and easier to use for
web developers.

4.2 Discussion
Retrospectively looking at the solutions we reviewed, we identify a
number of carefully crafted proposals which comply with several
of the guidelines we presented. Perhaps surprisingly, however, none
of the proposals complies with all the guidelines. We argue that this
is not inherent to the nature of the guidelines, but rather the simple
consequence of web security being hard: indeed, many different
problems at very different levels must be taken into account when
targeting the largest distributed system in the world.

In the full version of the survey [8], we discuss what are the
most peculiar challenges of the web platform and how they have
been driving the evolution of web security research. We also use
our guidelines to advocate the adoption of hybrid client/server
designs as the most effective architecture for novel web security
solutions, recommending the use of formal methods from the first
phases of the design process. A very recent survey discusses why
and how formal methods can be fruitfully applied to web security
and highlights open research directions [6]. The quest for robust
solutions for web session security is far from finished: we refer to [8]
for a discussion on open problems and novel research directions
which are worth investigating.

5 CONCLUSION
We took a retrospective look at different attacks against web ses-
sions and we surveyed the most popular solutions against them. For
each solution, we discussed its security guarantees against different
attacker models, its impact on usability and compatibility, and its
ease of deployment. We then synthesized five guidelines for the
development of new web security solutions, based on the lesson
learned from previous experiences. We believe that these guidelines
can help web security experts in proposing novel solutions which
are both more effective and amenable for a large-scale adoption.

REFERENCES
[1] Devdatta Akhawe, Adam Barth, Peifung E. Lam, John C. Mitchell, and Dawn

Song. 2010. Towards a Formal Foundation of Web Security. In Proceedings of the
23rd IEEE Computer Security Foundations Symposium, CSF 2010. 290–304.

[2] Chetan Bansal, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, and Sergio
Maffeis. 2013. Keys to the Cloud: Formal Analysis and Concrete Attacks on
Encrypted Web Storage. In Proceedings of the 2nd International Conference on
Principles of Security and Trust, POST 2013. 126–146.

Surviving the Web: A Journey into Web Session Security The Web Conference, 23-27 April, 2018, Lyon, France

[3] Adam Barth. 2011. HTTP State Management Mechanism. http://tools.ietf.org/
html/rfc6265. (2011).

[4] Aaron Bohannon and Benjamin C. Pierce. 2010. Featherweight Firefox: For-
malizing the Core of a Web Browser. In USENIX Conference on Web Application
Development, WebApps 2010.

[5] Andrew Bortz, Adam Barth, and Alexei Czeskis. 2011. Origin Cookies: Session
Integrity for Web Applications. InWeb 2.0 Security & Privacy Workshop (W2SP
2011).

[6] Michele Bugliesi, Stefano Calzavara, and Riccardo Focardi. 2017. Formal methods
for web security. Journal of Logical and Algebraic Methods in Programming 87
(2017), 110–126.

[7] Michele Bugliesi, Stefano Calzavara, Riccardo Focardi, Wilayat Khan, and Mauro
Tempesta. 2014. Provably Sound Browser-Based Enforcement of Web Session In-
tegrity. In Proceedings of the IEEE 27th Computer Security Foundations Symposium,
CSF 2014. 366–380.

[8] Stefano Calzavara, Riccardo Focardi, Marco Squarcina, and Mauro Tempesta.
2017. Surviving the Web: A Journey into Web Session Security. ACM Comput.
Surv. 50, 1 (2017), 13:1–13:34.

[9] Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi. 2016. Content Security
Problems? Evaluating the Effectiveness of Content Security Policy in the Wild.
In Proceedings of the 23rd ACM Conference on Computer and Communications
Security, CCS 2016. 1365–1375.

[10] Daniel Fett, Ralf Küsters, and Guido Schmitz. 2014. An Expressive Model for the
Web Infrastructure: Definition and Application to the Browser ID SSO System.
In Proceedings of the 35th IEEE Symposium on Security and Privacy, S&P 2014.
673–688.

[11] WillemDeGroef, Dominique Devriese, Nick Nikiforakis, and Frank Piessens. 2012.
FlowFox: a Web Browser with Flexible and Precise Information Flow Control.
In Proceedings of the 19th ACM Conference on Computer and Communications
Security, CCS 2012. 748–759.

[12] Norman Hardy. 1988. The Confused Deputy (or why capabilities might have
been invented). Operating Systems Review 22, 4 (1988), 36–38.

[13] Mario Heiderich, Marcus Niemietz, Felix Schuster, Thorsten Holz, and Jörg
Schwenk. 2012. Scriptless Attacks: Stealing the Pie Without Touching the Sill.
In Proceedings of the 19th ACM Conference on Computer and Communications
Security, CCS 2012. 760–771.

[14] OWASP. 2013. Top 10 Security Threats. https://www.owasp.org/index.php/Top_
10_2013-Top_10. (2013).

[15] Mary Frances Theofanos and Shari Lawrence Pfleeger. 2011. Guest Editors’
Introduction: Shouldn’t All Security Be Usable? IEEE Security & Privacy 9, 2
(2011), 12–17.

[16] W3C. 2012. Content Security Policy. http://www.w3.org/TR/CSP/. (2012).
[17] W3C. 2015. Content Security Policy Level 2. https://www.w3.org/TR/CSP2/.

(2015).
[18] Joel Weinberger, Adam Barth, and Dawn Song. 2011. Towards Client-side HTML

Security Policies. In 6th USENIX Workshop on Hot Topics in Security, HotSec 2011.
[19] Michael Weissbacher, Tobias Lauinger, and William K. Robertson. 2014. Why Is

CSP Failing? Trends and Challenges in CSP Adoption. In Proceedings of the 17th
International Symposium on Research in Attacks, Intrusions and Defenses, RAID
2014. 212–233.

[20] Michal Zalewski. 2011. Postcards From the Post-XSS World. (2011). http:
//lcamtuf.coredump.cx/postxss/.

[21] Yuchen Zhou and David Evans. 2010. Why Aren’t HTTP-only Cookies More
Widely Deployed?. In Web 2.0 Security and Privacy Workshop, W2SP 2010.

http://tools.ietf.org/html/rfc6265
http://tools.ietf.org/html/rfc6265
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://www.w3.org/TR/CSP/
https://www.w3.org/TR/CSP2/
http://lcamtuf.coredump.cx/postxss/
http://lcamtuf.coredump.cx/postxss/

	Abstract
	1 Introduction
	2 Attacking Web Sessions
	2.1 Security Properties
	2.2 Threat Model
	2.3 Attacks Overview

	3 Defending Web Sessions
	3.1 Evaluation Criteria
	3.2 Two Defenses for Content Injection

	4 Perspective
	4.1 Guidelines
	4.2 Discussion

	5 Conclusion
	References

