
CCSP: Controlled Relaxation of Content Security Policies
by Runtime Policy Composition

Stefano Calzavara, Alvise Rabitti and Michele Bugliesi
Università Ca’ Foscari Venezia

Abstract

Content Security Policy (CSP) is a W3C standard de-
signed to prevent and mitigate the impact of content in-
jection vulnerabilities on websites by means of browser-
enforced security policies. Though CSP is gaining a lot
of popularity in the wild, previous research questioned
one of its key design choices, namely the use of static
white-lists to define legitimate content inclusions. In this
paper we present Compositional CSP (CCSP), an exten-
sion of CSP based on runtime policy composition. CCSP
is designed to overcome the limitations arising from the
use of static white-lists, while avoiding a major overhaul
of CSP and the logic underlying policy writing. We per-
form an extensive evaluation of the design of CCSP by
focusing on the general security guarantees it provides,
its backward compatibility and its deployment cost. We
then assess the potential impact of CCSP on the web and
we implement a prototype of our proposal, which we test
on major websites. In the end, we conclude that the de-
ployment of CCSP can be done with limited efforts and
would lead to significant benefits for the large majority
of the websites.

1 Introduction

Content Security Policy (CSP) is a W3C standard intro-
duced to prevent and mitigate the impact of content in-
jection vulnerabilities on websites [11]. It is currently
supported by all modern commercial web browsers and
deployed on a number of popular websites, which justi-
fied a recently growing interest by the research commu-
nity [20, 5, 13, 1, 18, 10].

A content security policy is a list of directives supplied
in the HTTP headers of a web page, specifying browser-
enforced restrictions on content inclusion. Roughly, the
directives associate different content types to lists of
sources (web origins) from which the CSP-protected web
page can load contents of that specific type. For instance,

the following policy:

script-src https://example.com;

img-src *;

default-src ’none’

specifies these restrictions: scripts can only be loaded
from https://example.com, images can be loaded
from any web origin, and contents of different type, e.g.,
stylesheets, cannot be included. Moreover, CSP prevents
by default the execution of inline scripts and bans a few
dangerous JavaScript functions, like eval; these restric-
tions can be explicitly deactivated by policy writers to
simplify deployment, although they are critical for the
security of CSP.

Simple as it looks, however, CSP is typically hard to
deploy correctly on real websites [19, 20, 1, 18] and there
are several, diverse reasons for this:

1. an effective content security policy must not relax
the default restrictions which forbid inline scripts
and eval-like functions. However, removing inline
scripts from existing websites proved to require a
significant effort [19, 20], hence relaxing the default
restrictions of CSP is a common routine even for
major websites [18, 1];

2. white-lists are hard to get right. On the one hand,
if a white-list is too liberal, it can open the way
to security breaches by allowing the communica-
tion with JSONP endpoints or the inclusion of li-
braries for symbolic execution, which would enable
the injection of arbitrary malicious scripts [18]. On
the other hand, if a white-list is too restrictive, it
can break the intended functionality of the protected
web page [1]. The right equilibrium is difficult to
achieve, most notably because it is hard for policy
writers to predict what needs to be included by ac-
tive contents (scripts, stylesheets, etc.) loaded by
their web pages;

3. many web contents have a dynamic nature, which
is not easily accommodated by means of the static
white-lists available in CSP. For instance, writing
appropriate content security policies may be hard
when using CDNs for load balancing, when includ-
ing advertisement libraries based on real-time bid-
ding, or in presence of HTTP redirects [20, 1].

The industry was relatively quick in realizing that the
pervasive presence of inline scripts is a serious obstacle
to the widespread adoption of CSP and more recent ver-
sions of the standard introduced controlled mechanisms
based on hashes and nonces to white-list individual inline
scripts [15]. This is an interesting approach to deal with
the first problem we mentioned: by selectively enabling
only a few known inline scripts, web developers can sig-
nificantly improve the security of their websites against
script injection, while avoiding a major overhaul of their
code base by moving inline scripts to external files.

However, the other two problems which hinder a wider
and more effective deployment of CSP are still largely
unsolved, since they both stem from the inherent com-
plexity of accurately predicting the capabilities dynami-
cally needed by real, content-rich web applications. The
recent Strict CSP proposal [4] based on CSP Level 3 [16]
may help in dealing with these challenges in some practi-
cal cases, but unfortunately it only provides a very partial
solution to them (see Section 2 for a discussion).

1.1 Goals and Contributions
The goal of the present paper is proposing a simple ex-
tension of CSP which naturally and elegantly solves the
delicate issues discussed above. The most important de-
sign goal of our proposal is to avoid both a major over-
haul of the existing CSP specification and a dramatic
change to the logic behind policy writing, so as to sim-
plify its practical adoption by web developers who are
already familiar with CSP.

Our proposal builds on the pragmatic observation that
static white-lists are inherently complex to write down
for modern web applications and do not really fit the
dynamic nature of common web interactions, so we de-
vise Compositional CSP (CCSP), an extension of CSP
based on runtime policy composition. In CCSP an ini-
tial, simple content security policy is incrementally re-
laxed via the interactions between the protected page and
its content providers. More precisely, content providers
can loosen up the policy of the protected page to accom-
modate behaviours which were not originally admitted
by the latter, although the protected page reserves itself
the last word on its security by specifying suitable upper
bounds for policy relaxation. Notably, by introducing
a dynamic dimension to CSP and by delegating part of
the policy specification efforts to the content providers,

it is possible to come up with white-lists which are much
more precise than those which could be realistically writ-
ten by the developers of the protected page alone, since
they often lack an in-depth understanding of the exter-
nally included contents and their dependencies.

Concretely, we make the following contributions:

1. we provide a precise specification of CCSP and we
discuss two realistic use cases which may benefit
from this extension of the CSP standard. We show
CCSP policies for these use cases and we discuss
how the enforcement model of CCSP supports de-
sirable security guarantees (Section 3);

2. we perform an extensive evaluation of the design of
CCSP by focusing on the general security guaran-
tees it provides, its backward compatibility and its
deployment cost (Section 4);

3. we assess the potential impact of CCSP in the wild
by building and analysing a dataset of CSP vi-
olations found on the Alexa Top 100k websites.
Specifically, we show that violations are pervasive
and mostly caused by behaviours which are hard to
accommodate in CSP, which confirms the need for a
more expressive mechanism like CCSP. We also es-
tablish that only a few selected players need to em-
brace CCSP to provide a significant benefit to the
majority of the websites (Section 5);

4. we develop a proof-of-concept implementation of
CCSP as a Chromium extension and we test it by
manually writing CCSP policies for a few popu-
lar websites which normally trigger CSP violations.
Our experiments show that CCSP is easy to deploy
and fully supports the intended functionality of the
tested websites (Section 6).

2 Motivations

2.1 Example
Consider a web page w including the following script tag
in its HTML contents:

<script src="https://a.com/stats.js"/>

The stats.js script, in turn, is implemented as follows:

// load dependency.js from https://b.com

var s = document.createElement(’script’);

s.src = ’https://b.com/dependency.js’;

document.head.appendChild(s);

...

// load banner.jpg from https://c.com

var i = document.createElement(’img’);

i.src = ’https://c.com/banner.jpg’;

document.body.appendChild(i);

This script includes another script from https://b.com

and an image from https://c.com and all these con-
tents must be allowed by the content security policy of w
to let the web page work correctly.

CSP 1.0 and CSP Level 2. Both CSP 1.0 [14] and CSP
Level 2 [15] restrict the inclusion of external contents
purely by means of a white-listing approach. This means
that the content security policy of w must not only white-
list https://a.com as a valid source for script inclu-
sion to load stats.js, but it must also white-list all the
dependencies of stats.js with their correct type. An
appropriate content security policy for w would thus be:

script-src https://a.com https://b.com;

img-src https://c.com

This approach has two significant problems. First, the
definition of the policy is complex, since it requires one
to carefully identify all the dependencies of the scripts
included by w, including those recursively loaded, like
dependency.js. Second, the policy above is brittle: if
the developers of stats.js or dependency.js change
the implementation of their scripts, for instance to in-
clude additional libraries from other sources, the policy
of w must correspondingly be updated to white-list them.

In principle, these limitations pay off in terms of secu-
rity, since the developers of w have full control on which
contents can be included by scripts loaded by their page.
Unfortunately, previous research showed that web devel-
opers typically write an overly liberal white-list to avoid
issues with their websites, for instance by allowing the
inclusion of scripts from any domain [20, 1, 18].

CSP Level 3 (Strict CSP). Recently, the CSP commu-
nity realized that the white-list approach advocated by
CSP 1.0 and CSP Level 2 is often inconvenient to use,
because it may be hard to write white-lists which are nei-
ther too liberal, nor too restrictive. The latest version of
the standard, called CSP Level 3 [16], thus added new
mechanisms which support a different policy specifica-
tion style, known as Strict CSP [4]. Strict CSP drives
away from the complexities of white-lists and simplifies
the process of recursive script inclusion by transitively
propagating trust. Concretely, the example web page w
must be changed to bind a randomly generated nonce to
its script tag as follows:

<script src="https://a.com/stats.js"

nonce="ab3f5k"/>

Correspondingly, its content security policy is adapted as
follows:

script-src ’nonce-ab3f5k’ ’strict-dynamic’;

img-src https://c.com

Under this policy, only those scripts whose tag includes
the nonce ab3f5k are allowed to be loaded, irrespec-
tive of the web origin where they are hosted. Since
the nonce value is random and unpredictable, an at-
tacker cannot inject malicious scripts with a valid nonce
on w. Since nonce-checking may break benign scripts
which are dynamically inserted without a valid nonce,
the ’strict-dynamic’ source expression is included in
the policy: this ensures that any script request triggered
by a non-parser-inserted script element like stats.js is
also allowed by CSP [16].

Besides making policy specification simpler, nonces
also make the resulting policies stronger against script
injection attacks. Since a valid nonce is only bound to
the script tag loading https://a.com/stats.js, other
dangerous contents hosted on https://a.com cannot
be unexpectedly loaded and abused by an attacker. More-
over, the use of ’strict-dynamic’ simplifies the def-
inition of policies when recursive script inclusion is
needed. In our example, the script dependency.js can
be relocated from https://b.com to https://d.com

without any need of updating the content security pol-
icy of w. Also, both stats.js and dependency.js can
include new libraries without violating the policy of w,
again thanks to the presence of ’strict-dynamic’.

2.2 Criticisms to Strict CSP
Limited Scope. The ’strict-dynamic’ source ex-
pression only targets the problem of recursive script in-
clusion, but it does not solve similar issues for other con-
tent types. In our example, if the script stats.js is
updated to load its image from https://d.com rather
than from https://c.com, or if the script is left un-
changed but the image is relocated to https://d.com

by means of a HTTP redirect, the content security policy
of w must also be updated to ensure a correct rendering
of the website. This means that the developers of w must
change their content security policy to deal with some-
thing which is unpredictable and not under their control.

Generalizing ’strict-dynamic’ to deal with these
cases would have a negative “snowball effect” on the ef-
fectiveness of CSP, since basically all the content restric-
tions put in place by the policy would need to be ignored.

Poor Granularity. The ’strict-dynamic’ source
expression uniformly applies to all the scripts loaded by
a web page, thus offering an all-or-nothing relaxation
mechanism. We believe there are two sound motivations
underlying this design: ease of policy specification and
the fact that the main security goal of Strict CSP is pro-
tecting against XSS. The key observation justifying the
design of ’strict-dynamic’ is that, if a script loaded
by a web page is malicious, it can already attack the page,

without any need of abusing ’strict-dynamic’ to load
other malicious scripts from external domains.

However, it is worth noticing that the design of
’strict-dynamic’ does not support the principle of
least privilege, since it gives all scripts with a valid nonce
the ability of putting arbitrary relaxations on script inclu-
sion, even though not every script requires this capabil-
ity. As a matter of fact, most scripts included in a trusted
website are not actually malicious, but they may have
bugs or be developed by programmers who are not se-
curity experts, and there is no way for a benign script to
declare that it only needs limited policy relaxation capa-
bilities to perform its intended functionalities, thus limit-
ing the room for unintended harmful behaviours.

Use of Nonces. Nonces are a convenient specification
tool, but they also have severe drawbacks. First, the secu-
rity of nonces is questionable: it is now recognized that
the protection offered by their use can be sidestepped,
most notably because nonces are still included in the
DOM. This leaves room for attacks, for instance when
script injection happens in the scope of a valid nonce1

or when nonces are exfiltrated by means of scriptless at-
tacks2; also other attacks have been found recently3.

Moreover, the use of nonces makes the security review
of a page deploying CSP much harder to carry out: one
cannot just inspect the content security policy of the page
to understand which security restrictions are put in place,
but she must also check the code of the page to detect
which scripts are bound to a valid nonce. (In fact, the use
of nonces makes particularly troublesome to compare the
permissiveness of two content security policies, which
instead is a fundamental building block of the upcoming
CSP Embedded Enforcement mechanism [17].) Finally,
nonces are not easily assigned to dynamically generated
script tags in legacy code: ’strict-dynamic’ is just
one way to circumvent this issue, but it comes with the
limitations we previously discussed.

Discussion. Strict CSP provides significant improve-
ments over CSP 1.0 and CSP Level 2 in terms of both
security and ease of deployment, and there is pragmatic
evidence about the effectiveness of ’strict-dynamic’
at major websites [18]. Nevertheless, we discussed prac-
tical cases where ’strict-dynamic’ is not expressive
enough to fix CSP violations and web developers still
need to account for these behaviors by means of exten-
sive white-listing. This complicates policy specification
and maintenance, because policy changes may be dic-
tated by elements which are not under the direct control

1http://blog.innerht.ml/csp-2015/
2http://sirdarckcat.blogspot.com/2016/12/

how-to-bypass-csp-nonces-with-dom-xss.html
3http://sebastian-lekies.de/csp/bypasses.php

of the policy writers, such as script dependencies and
HTTP redirects. We confirm the existence of these ex-
pressiveness issues of Strict CSP in the wild in Section 5.

CCSP complements Strict CSP with more flexible
tools for policy specification, while supporting the prin-
ciple of least privilege and removing security-relevant in-
formation from the page body, thus simplifying policy
auditing and preventing subtle security bypasses. More-
over, its design is backward compatible to ensure a seam-
less integration with the existing CSP deployment.

3 Compositional CSP (CCSP)

3.1 Overview
In our view, web developers should be able to keep their
content security policies as simple as possible by focus-
ing only on the direct dependencies required by their web
pages, largely ignoring other dependencies needed by the
contents they include. In CCSP, direct dependencies are
specified by means of fine-grained white-lists reminis-
cent of CSP 1.0 and CSP Level 2, since these dependen-
cies are relatively easy to identify for web developers and
it is feasible to come up with reasonably strict and se-
cure white-lists for them. Indirect dependencies, instead,
are dealt with by dynamically composing the policy of
the protected web page with additional content security
policies which define the dependencies of the included
contents. These policies are written and served by the
content providers, who are the only ones who can accu-
rately know the dependencies of the contents they serve
and keep them constantly updated. Ideally, only the least
set of dependencies required to work correctly should be
white-listed to respect the principle of least privilege and
avoid weakening protection unnecessarily. To keep un-
der control the power on policy specification delegated to
external content providers, CCSP grants web developers
the ability of putting additional restrictions on the policy
relaxation mechanism.

Concretely, let us move back to our example. In our
proposal, the web page w would send to the browser the
following headers:

CSP-Compose

script-src https://a.com/stats.js;

CSP-Intersect

scope https://a.com/stats.js;

script-src https://*;

img-src *;

default-src ’none’

The CSP-Compose header contains the initial content se-
curity policy of the protected page: in this case, it speci-
fies that only the script https://a.com/stats.js can

be included in the page. The CSP-Intersect header, in-
stead, tracks that the script https://a.com/stats.js
is entitled to relax the content security policy of w up to
the specified upper bound, expressed again in terms of
CSP. For instance, in this case the script can relax the
content security policy of the protected page to white-list
any HTTPS script and any image, but nothing more. Dif-
ferent scripts can be assigned different upper bounds on
policy relaxation.

When delivering stats.js, the script provider can at-
tach it the following header:

CSP-Union

script-src https://b.com/dependency.js;

img-src https://c.com

The CSP-Union header includes what stats.js needs
to operate correctly. In this case, the additional script
dependency is white-listed very precisely, while there is
much more liberality on images, since any image from
https://c.com is white-listed by the policy.

A CCSP-compliant web browser would join together
the original policy of the page and the policy supplied by
the script provider before including stats.js, while en-
forcing the upper bounds on policy relaxation specified
by the developers of the protected page. In this case, the
policy supplied by the script provider is compliant with
said upper bounds, hence the browser would update the
content security policy of the page as follows:

script-src https://a.com/stats.js

https://b.com/dependency.js;

img-src https://c.com

This policy is reminiscent of the policy we would write
using CSP 1.0 or CSP Level 2, but it is assembled dy-
namically by interacting with the content providers. This
significantly simplifies the specification of the original
policy for the page developers and makes it naturally ro-
bust to changes in the included contents, as long as the
capabilities required by the updated contents still comply
with the original upper bounds on policy relaxation spec-
ified by the page developers. This flexibility is crucial
to appropriately deal with highly dynamic web contents,
which can hardly be accommodated by static white-lists,
and with complex chains of dependencies, which may be
difficult to predict for page developers.

It is also worth noticing that, since the burden of policy
specification is now split between page developers and
content providers, CCSP makes it feasible in practice to
white-list individual contents rather than entire domains,
which makes the resulting policy stricter and more se-
cure. In the end, the resulting policy can realistically be
as strict and precise as a nonce-based policy, but all the
security information is available in the HTTP headers,
thus overcoming the typical limitations associated with

the use of nonces. Finally, observe that the dynamically
enforced policy is much tighter than the upper bound for
policy relaxation specified by the protected web page.
Though the page developers could deploy a standard CSP
policy which is as liberal as the upper bound, that policy
would be significantly more permissive than the enforced
CCSP policy built at runtime.

3.2 Example Use Cases
We discussed how our proposal overcomes some impor-
tant limitations of CSP, but we now observe that these
improvements come with a cost on the content providers,
which in our proposal become actively involved in the
policy specification process. We believe that many ma-
jor content providers would be happy to contribute to this
process, because mismatches between the capabilities re-
quired by their contents and the content security policies
of their customers may lead to functionality issues re-
sulting in economic losses, like in the case of broken ad-
vertisement. To further exemplify the benefits of CCSP,
however, we discuss now two concrete use cases.

As a first use case, we pick a provider of JavaScript
APIs, for example Facebook. The lead developer of
the Facebook APIs may stipulate that all the develop-
ers in her team are allowed to use external libraries in
the scripts they write, but only if they are hosted on
https://connect.facebook.net, because libraries
which are put there are always updated, subject to a care-
ful security scrutiny and delivered over a secure channel.
The lead developer can thus ensure that the following
header is attached to all the available JavaScript APIs:

CSP-Union

script-src https://connect.facebook.net

This way, Facebook can make its customers aware of the
fact that the API code only needs to access internal con-
tents to operate correctly, which may increase its level
of trust and simplify a security auditing. If a Facebook
API contained a bug or was developed by an uncaring
developer who did not respect the indications of the lead
developer, a sufficiently strong content security policy on
the pages using the API may still prevent the unintended
inclusion of dangerous contents.

As a second use case, we consider an advertisement
library. Web advertisement may involve delicate trust re-
lationships: it is not uncommon for web trackers to col-
laborate and share information about their visitors4. For
instance, an advertisement library developed by a.com

may actually import an external advertisement library by
b.com. Developers at a.com may want to mitigate the
impact of vulnerabilities in the b.com library, since the

4https://blog.simeonov.com/2013/04/17/

anatomy-of-an-online-ad/

end user of the advertisement library may be unaware
of the inclusion of external contents and just blame the
developers of a.com for any security issue introduced
by the advertisement system. The a.com developers can
thus attach the following headers to their library:

CSP-Union

script-src https://b.com/adv.js;

CSP-Intersect

scope https://b.com/adv.js;

img-src *://b.com;

default-src ’none’

This way, the developers at a.com declare their need of
including a script by b.com, but they only grant it enough
capabilities to relax the content security policy of the em-
bedding page to white-list more images from its own do-
main (using any protocol) and nothing more. This signif-
icantly reduces the impact of bugs in the script by b.com,
as long as the page using the advertisement library de-
ploys a reasonably strong content security policy in the
first place.

3.3 Specification
Preliminaries. We start by reviewing some terminol-
ogy from the original CSP specification. A content secu-
rity policy is a list of directives, defining content restric-
tions on protected resources (web pages or iframes) by
means of a white-listing mechanism. White-lists are de-
fined by binding different content types (images, scripts,
etc.) to lists of source expressions, noted as ~se, which are
a sort of regular expressions used to succinctly express
sets of URLs. The inclusion of a content of type t from
a protected resource r is only allowed if the URL u of
the content matches any of the source expressions bound
to the type t in the content security policy of r. We ab-
stract from the details of the matching algorithm of CSP
and we just write matches(u,~se) if u matches any of the
source expressions in the list ~se.

We let P stand for the set of the content security poli-
cies and we let p range over it. We let v stand for the bi-
nary relation between content security policies such that
p1 v p2 if and only if all the content inclusions allowed
by p1 are also allowed by p2. It can be proved that (P,v)
is a bounded lattice and there exist algorithmic ways to
compute the join t and the meet u of any two content se-
curity policies. The join t allows a content inclusion if
and only if it is allowed by at least one of the two policies
(union of the rights), while the meet u allows a content
inclusion if and only if it is allowed by both policies (in-
tersection of the rights). We let> and⊥ stand for the top
and the bottom elements of the lattice respectively. In the
following, we do not discuss how the join and the meet

of two policies are actually computed, but we provide an
abstract specification of CCSP which uses these opera-
tions as a black box. The formal metatheory is presented
in Appendix A for the sake of completeness.

Security Headers. The CCSP specification is based on
three new security headers:

1. CSP-Compose: only used by the web developers of
the protected resource. It includes a content security
policy specifying the initial content restrictions to
be applied to the protected resource;

2. CSP-Union: only used by the content providers. It
includes a content security policy which should be
joined with the content security policy of the pro-
tected resource to accommodate the intended func-
tionality of the supplied contents;

3. CSP-Intersect: (optionally) used by both the web
developers of the protected resource and the content
providers. It includes a list of bindings between a
source expression list (a scope) and a content secu-
rity policy, expressing that contents retrieved from
a URL matching a given scope are entitled to relax
the policy of the protected resource only up to the
specified upper bound.

The next paragraph makes these intuitions more precise.

Enforcement Model. Conceptually, each protected re-
source needs to keep track of two elements: the enforced
content security policy p and the upper bounds on policy
relaxation R = {(~se1, p1), . . . ,(~sen, pn)} collected via the
CSP-Intersect headers. We call R a relaxation policy
and we refer to the pair (p,R) as the protection state of
the protected resource.

In the protection state (p,R), a content inclusion is al-
lowed if and only if it is allowed by the content security
policy p, whose weakening is subject to the relaxation
policy R. Initially, the protection state is set so that p is
the policy delivered with the CSP-Compose header of the
protected resource and R = {(~se1, p1), . . . ,(~sen, pn)} is
the CSP-Intersect header originally attached to it. The
protection state can be dynamically updated when the
protected resource includes contents with a CSP-Union

header. To formalise the update of the protection state,
it is convenient to introduce a few auxiliary definitions.
First, we define the set of the upper bounds for policy
relaxation given to the URL u by the relaxation policy R.

Definition 1 (Specified Upper Bounds). Given a URL u
and a relaxation policy R, we define the specified upper
bounds for u under R as:

bnds(u,R) = {p | ∃~se : (~se, p) ∈ R∧matches(u,~se)}.

Using this auxiliary definition, we can define the upper
bound for policy relaxation as follows:

Definition 2 (Upper Bound). Given a URL u and a re-
laxation policy R, we define the upper bound for u under
R as:

ub(u,R) =

p1t . . .t pn if bnds(u,R) = {p1, . . . , pn}

with n > 0
⊥ if bnds(u,R) = /0

Though simple, this definition is subtle. If no upper
bound for a given URL u is defined in a relaxation policy
R, then ub(u,R) =⊥ and no policy relaxation is possible
when processing a response from u. However, if mul-
tiple upper bounds are specified for u, then their join is
returned. This means that, if multiple content providers
specify different, possibly conflicting upper bounds on
policy relaxation, then all of them will be honored, which
is the most liberal behaviour. This design choice is cru-
cial to ensure the functionality of the protected resource,
as we extensively discuss in Section 4.

We are now ready to explain how the protection state
of a resource gets updated. Let (p,R) be the current pro-
tection state and assume that a content is loaded from
the URL u. Assume also that the corresponding HTTP
response attaches the following headers: a CSP-Union

header including the content security policy p′ and a
CSP-Intersect header defining the relaxation policy
R′. Then, the protection state (p,R) is updated to:

(pt (p′uub(u,R)),

R∪{(~sei, piuub(u,R)) | (~sei, pi) ∈ R′}).
(1)

In words, the protection state of the protected resource is
updated as follows:

1. the content security policy p is relaxed to allow all
the content inclusions allowed by p′ which are com-
patible with the restrictions ub(u,R) enforced on u
by the relaxation policy R. This means that all the
content inclusions allowed by p′ are also allowed to
the protected resource, unless the relaxation policy
R specifies a tighter upper bound for u;

2. the relaxation policy R is extended to allow all
the behaviours allowed by R′ which are compatible
with the restrictions ub(u,R) enforced on u by the
relaxation policy R. This prevents trivial bypasses
of the relaxation policy R, where u specifies a more
liberal upper bound than ub(u,R) for other contents
recursively loaded by itself.

Observe that CCSP gives web developers the possibil-
ity of granting different capabilities on policy relaxation
to different content providers, but content security poli-
cies are still enforced per-resource (web page or iframe),

rather than per-content. Though certainly useful in prin-
ciple, enforcing different content security policies on
different contents is not possible without deep browser
changes, whose practical feasibility and backward com-
patibility are unclear.

3.4 Example
To exemplify the enforcement model of CCSP, we show
our proposal at work on the advertisement library exam-
ple of Section 2. Recall the example focuses on a library
developed by a.com and importing an external library
from b.com. Since the users of the a.com library are
not necessarily aware of the inclusion of contents from
b.com, the developers at a.com are careful in limiting
the capabilities granted to the imported library. In par-
ticular, they deploy the following CCSP policy declaring
the need of importing a script from b.com, which in turn
should only be allowed to load images from the same
domain, using any protocol:

CSP-Union

script-src https://b.com/adv.js;

CSP-Intersect

scope https://b.com/adv.js;

img-src *://b.com;

default-src ’none’

A user of the a.com library may not know exactly what
the library needs to work correctly. However, since she
trusts the provider of the library, she may deploy the fol-
lowing CCSP policy on her homepage:

CSP-Compose

script-src https://a.com/lib.js;

CSP-Intersect

scope https://a.com/lib.js;

script-src https://*;

img-src https://*;

default-src ’none’

Hence, in the initial protection state, the page is only al-
lowed to load the a.com library, but the library is also
granted the capability of relaxing the content security
policy of the page to include more scripts and images
over HTTPS. After loading the a.com library and pro-
cessing its CCSP headers, the content security policy of
the protected page is updated as follows:

script-src https://a.com/lib.js

https://b.com/adv.js;

This allows the inclusion of the external script from
b.com. What is more interesting, however, is how the

relaxation policy of the homepage is updated after pro-
cessing the response from a.com. Specifically, the re-
laxation policy will include a new entry for b.com of the
following format:

scope https://b.com/adv.js;

img-src https://b.com;

default-src ’none’

This entry models the combined requirement that the im-
ported script from b.com can only relax the content se-
curity policy of the protected page to load images from
its own domain (as desired by a.com), but only using
the HTTPS protocol (as desired by the protected resource
and originally enforced on the importer at a.com).

Assume now that the script from b.com sends the fol-
lowing CCSP header:

CSP-Union

img-src *

When processing the response from b.com, the page will
further relax its content security policy as follows:

script-src https://a.com/lib.js

https://b.com/adv.js;

img-src https://b.com

Hence, even though b.com asked for the ability of load-
ing arbitrary images from the web, the restrictions put in
place by a.com actually ensured that the content security
policy of the protected page was only relaxed to load im-
ages from b.com. At the same time, the protected page
successfully enforced that these images are only loaded
over HTTPS.

4 Design Evaluation

4.1 Security Analysis
Threat Model. CCSP is designed to assist honest con-
tent providers in making their end users aware of the ca-
pabilities needed by the contents they make available and
simplify their robust integration with the content security
policy of the embedding resource. As such, CCSP aims
at mitigating the impact of accidental security vulnera-
bilities, whose threats can be prevented by the mismatch
between the unintended harmful behaviours and the ex-
pected capabilities requested in the CCSP headers. If we
assume that both the initial content security policy of the
protected resource and the following relaxations (by hon-
est content providers) comply with the principle of the
least privilege, imported contents can only recursively
load additional contents served from sources which were
white-listed to implement a necessary functionality: this
greatly reduces the room for dangerous behaviours.

However, CCSP is not designed to protect against ma-
licious content providers. If a protected resource imports
malicious contents, the current CSP standard offers little
to no protection against data exfiltration and serious in-
tegrity threats [13]. Since CCSP ultimately relies on CSP
to implement protection, the same limitations apply to it,
though attackers who are not aware of the deployment of
(C)CSP on the protected resource may see their attacks
thwarted by the security policy.

Policy Upper Bounds. In CCSP, the initial protection
state (p,R) is entirely controlled by the developers of the
protected resource. If R = /0, no policy relaxation is pos-
sible and the security guarantees offered to the protected
resource are simply those provided by the initial content
security policy p. Observe that no policy relaxation is
allowed even if a content provider at u sends its own re-
laxation policy R′ 6= /0, since all the relaxation bounds in
R′ will be set to ub(u,R) =⊥ when updating the protec-
tion state, thanks to the use of the meet operator in Equa-
tion 1. Otherwise, let R = {(~se1, p1), . . . ,(~sen, pn)} with
n > 0 be the initial relaxation policy. In this case, the
most liberal content security policy eventually enforced
on the protected resource can be pt p1 t . . .t pn, again
because the initial upper bounds on policy relaxation can
never be weakened when the protection state is updated,
due to the use of the meet operator in Equation 1. Re-
markably, this bound implies that the developers of the
protected resource still have control over the most liberal
content security policy enforced on it and may reliably
use CCSP to rule out undesired behaviours, e.g., loading
images over HTTP, just by writing an appropriate initial
policy and upper bounds on policy relaxation.

Notice that the upper bounds defined by the initial re-
laxation policy may be way more permissive than the ac-
tual policy enforced on the protected resource, since the
policy relaxation process happens dynamically and de-
pends on the responses of the different content providers.
In particular, if all the content providers are honest and
prudent, they should comply with the principle of the
least privilege, hence the enforced policy will realisti-
cally be much tighter than the original upper bounds.

4.2 Compatibility Analysis
Legacy Browsers. Legacy browsers lacking support
for CCSP will not recognise the new security headers
defined by our proposal, hence these headers will just be
ignored by them. If we stipulate that CCSP-compliant
browsers should only enforce standard content security
policies in absence of CCSP policies, which is a rea-
sonable requirement being CCSP an extension of CSP,
developers of protected resources can provide support
for legacy browsers just by sending both a CCSP policy

(enforced by CCSP-compliant browsers) and a standard
content security policy (enforced by legacy browsers).

Clearly, the latter policy would need to white-list all
the legitimate content inclusions, though, as we said,
these are often hard to predict correctly. Luckily, there
is a simple way to build a working content security pol-
icy from a CCSP policy, which is including all the upper
bounds specified by the relaxation policy directly in the
content security policy. This can be done automatically
by a server-side proxy and it will produce a policy which
is typically more liberal than necessary, yet permissive
enough to make the protected resource work correctly
(and not necessarily weaker than the policy the average
web developer would realistically write using CSP).

Legacy Content Providers. Legacy content providers
will not attach any CSP-Union header to the contents
they serve, although developers of resources protected by
CCSP may expect them to supply this information to re-
lax their policies. There are two alternative ways to deal
with the absence of a CSP-Union header, both of which
are plausible and worth discussing:

1. perform no policy relaxation: this conservative be-
haviour can break the functionality of protected re-
sources, but it ensures that, whenever policy relax-
ation happens, both the developers of the protected
resource and the content providers agreed on the
need of performing such a sensitive operation;

2. relax the policy to the upper bound specified for the
content provider: this alternative choice privileges
a correct rendering of contents served by legacy
content providers, at the cost of enforcing a policy
which may be more permissive than necessary. No-
tice, however, that this still takes into account the
(worst case) expectations of the developers of the
protected resource.

Though both choices are sensible, we slightly prefer the
first option as the default in CCSP, most notably because
it is consistent with a similar design choice taken in the
latest draft of CSP Embedded Enforcement [17], where
the lack of an expected header on an embedded content
triggers a security violation on the embedding resource.
We do not exclude, however, that it could be useful to
extend CCSP to give developers a way to express which
of these two choices should be privileged.

Compatibility Issues from Security Enforcement. In
CCSP, the content security policy of the protected re-
source can never be restricted by an interaction with a
content provider, but it can only be made more liberal,
hence it can never happen that a content provider forbids
a content inclusion which is needed and allowed by the

protected resource. It is also important to remark that
different content providers can specify different, possi-
bly conflicting upper bounds for policy relaxation with
the same scope, but conflicts cannot lead to compatibility
issues in practice, because all bounds are joined together
(see Definition 2) and taken into account upon policy re-
laxation. This choice privileges the correct rendering of
contents over security, but the opposite choice of taking
the meet of the upper bounds would make the integra-
tion of contents from different providers too difficult to
be practical, because these providers are not necessar-
ily aware of the presence of each other in the same pro-
tected resource and may disagree on the relaxation needs.
Moreover, taking the meet of the upper bounds would
open the room to “denial of service” scenarios, where
two competitor content providers could maliciously put
unduly restrictions on each other.

If the content security policy of the protected resource
is not liberal enough to let a content be rendered cor-
rectly, there are only two possibilities:

1. the original content security policy of the protected
resource was not permissive enough in the first
place and was never appropriately relaxed;

2. the content was loaded by a provider enforcing
overly tight restrictions on policy relaxation for con-
tents recursively loaded by another provider.

The first possibility may already occur in CSP and it is
inherent to the nature of any whitelist-based protection
mechanism. The second possibility, instead, is specific to
CCSP, but it is not really a compatibility issue, because
providers are not forced to put restrictions on policy re-
laxation and they are assumed to behave rationally, i.e.,
they do not deliberately put restrictions to break contents
which are recursively loaded from other providers as part
of their intended functionality.

4.3 Deployment Considerations
Deployment on Websites. Two actors must comply
with CCSP to benefit of its protection: developers of pro-
tected resources and content providers. Assuming a rea-
sonably large deployment of CCSP by content providers,
developers who are willing to deploy a standard content
security policy on their websites would have a much sim-
pler life if they decided to run CCSP instead, because the
policies written in the CSP-Compose headers are a subset
of the policies which would need to be written using the
standard CSP; moreover, the direct dependencies of the
protected resource are much simpler to identify than the
indirect ones. Writing accurate CSP-Intersect headers
for controlled policy relaxation might be more complex
for the average web developer, but quite liberal policies

would be easy to write and still appropriate for content
providers with a high level of trust.

Content providers, instead, would need to detect the
(direct) dependencies of the contents they serve and write
appropriate CSP-Union headers. We think this a much
simpler task for them rather than for the end users of their
contents, because they have a better understanding of
their implementation. We also believe that pushing part
of the policy specification effort on the content providers
is beneficial to a wide deployment of CCSP, because in
practice few selected providers supply a lot of contents
to the large majority of the websites. Configuring cor-
rectly the CSP-Union headers of these providers would
thus provide benefits to a significant fraction of the web,
which is a much more sensible practice than hoping that
most web developers are able to identify correctly the de-
pendencies of the contents they include. We substantiate
these claims with the experiments in Section 5.

Deployment in Browsers. CCSP does not advocate
any major change to the CSP specification and uses it
as a black box, because the content restrictions applied
to a CCSP-protected page follow exactly the semantics
of a standard content security policy. The only differ-
ence with respect to CSP is that the protection state of
the protected resource is not static, but can change dy-
namically, so that different content security policies are
applied on the same protected resource at different points
in time. This means that CCSP should be rather easy to
deploy on existing browsers, because the implementation
of CSP available therein could be directly reused.

Incremental Deployment. Given that CCSP is an ex-
tension of CSP, it naturally supports the coexistence
of CCSP-compliant and legacy content providers in the
same policy. Developers of protected resources can write
CSP-Intersect headers for CCSP-compliant providers
and trust that they provide appropriate CSP-Union head-
ers for their contents; at the same time, however, devel-
opers can also include the dependencies of legacy con-
tent providers directly in the CSP-Compose header. This
allows an incremental deployment of CCSP on the web,
which is particularly important because not all content
providers may be willing to deploy CCSP.

4.4 Criticisms to CCSP
CCSP is more expressive than Strict CSP, because it
extends the possibility of relaxing the white-listed con-
tent inclusions beyond what is allowed by the use of
’strict-dynamic’. In this section, we argued for the
security, the backward compatibility and the ease of de-
ployment of CCSP. Still, there are a few potential criti-
cisms to CCSP that we would like to discuss.

Practical Adoption. A first criticism to CCSP is fun-
damental to its design: achieving the benefits of CCSP
requires adoption by third-party content providers. One
may argue that it is difficult enough to get first parties to
adopt CSP, let alone convince third parties to write CCSP
policies. Two observations are in order here.

First, as anticipated, content providers typically have
an economic interest on the correct integration between
the contents they supply and the CSP policies of the em-
bedding pages, such as in the case of advertisements,
hence content providers often do not need further con-
vincing arguments to deploy CCSP. Moreover, one may
argue that the challenges faced by the first-party adop-
tion of CSP may actually depend on the lack of third-
party support for policy deployment, which proved to
be difficult for web developers [9, 20, 1, 18]. If con-
tent providers could provide the correct policies for the
content they supply, then also the first parties might be
more willing to adopt CCSP, because they will encounter
significantly less challenges upon deployment. Major
content providers supporting CSP, such as Google, could
play an important role in pushing the adoption of CCSP.

Increased Complexity. We acknowledge that CCSP is
more complex than CSP and its enforcement model is
subtle, because it aims at reconciling security, flexibil-
ity and backward compatibility. Complexity may be a
concern for the practical adoption of CCSP, though one
may argue that the simplicity of CSP bears limits of ex-
pressiveness which may actually complicate its deploy-
ment when ’strict-dynamic’ is not enough, e.g., in
the presence of complex script dependencies or HTTP
redirects.

That said, we designed CCSP as an extension of CSP
exactly to ensure that web developers who do not need
the additional expressive power of CCSP can ignore its
increased complexity. On the contrary, web developers
who need more flexibility in policy writing can find in
CCSP useful tools to accommodate their needs.

Complex Debugging. A peculiarity of CCSP is that
the enforced security policy changes dynamically, which
can make policy debugging more complex than for CSP.
This is a legitimate concern: even if content providers
write appropriate CSP-Union headers for their resources,
policy violations may arise due to some additional re-
strictions enforced by the CSP-Intersect headers sent
by the protected resource.

We propose to make these conflicts apparent by ex-
tending the monitoring facilities of CCSP so that all the
policy relaxations performed by a protected resource are
reported to web developers. However, we acknowledge
that designing a robust reporting system for CCSP is a

complex and delicate problem, which we plan to investi-
gate further as future work.

5 Impact of CCSP

To evaluate the benefits offered by CCSP, we built and
extensively analyzed a dataset of CSP violations col-
lected in the wild, finding a number of cases which are
difficult to accommodate in CSP (and, indeed, were not
correctly supported by policy writers). Our investigation
confirms the need for a more expressive mechanism like
CCSP. We then quantitatively assess that only few con-
tent providers need to deploy CCSP to fix most of the
policy violations on the websites we visited, which sub-
stantiates the practical importance of our proposal.

5.1 Methodology
We developed a simple Chromium extension which inter-
cepts the CSP headers of incoming HTTP(S) responses
and changes them to report the detected CSP violations
to a web server run by us (we do this by leveraging the
report-uri directive available in CSP). We then used
Selenium to guide Chromium into accessing the home-
pages of the 1,352 websites from the Alexa Top 100k
running CSP5. This way, we were able to collect a dataset
of CSP violations from existing websites. Notice that this
is only a subset of all the CSP violations which may be
triggered on these websites, since our crawler does not
exercise any website functionality besides page loading.

We then performed a breakdown of the collected CSP
violations. In particular, we focused on two categories
of violations which are difficult to fix robustly in CSP,
but are simple to address with CCSP: (i) violations trig-
gered by the recursive inclusion of contents by any of
the scripts loaded on the website, and (ii) violations trig-
gered by HTTP redirects towards URLs which are not
white-listed in the content security policy of the website.
Both these scenarios are common, but challenging for
CSP, since they involve elements which are not under the
direct control of the developers of the websites.

To detect the violations in the first category, we re-
lied on the structure of the collected violation reports,
which includes both the URI of the website (named
document-uri) and the URI of the element triggering
the violation (named source-file); if there is a mis-
match between the two, we put the violation into the first
category. As to the second category of violations, we
kept track of the detected HTTP redirects using our ex-
tension, storing the content of their Location header,

5We only focus on websites running CSP in enforcement mode.
There are way more websites running CSP in report-only mode, but we
excluded them from our analysis, because their policies are not neces-
sarily accurate and intended to be eventually enforced [1].

and we performed a cross-check between this informa-
tion and the dataset of violations: if there is a violation
due to the inclusion of a content located at a URL found
in a Location header, we put the violation in the second
category. Violations can belong to both categories.

5.2 Results
Overall, we found 959 CSP violations in 154 websites.
We assigned 231 violations from 51 websites to the first
category and 199 violations from 73 websites to the sec-
ond category; we found only 7 violations belonging to
both categories.

Table 1 provides the breakdown of the 231 violations
due to script dependencies with respect to the violated
CSP directive. One can readily observe that scripts of-
ten need to recursively include other scripts as expected,
but they also typically load a bunch of other contents of
different nature, most notably fonts, frames and images.
The use of ’strict-dynamic’ can fix the 96 violations
related to the script-src directive, which however rep-
resent only the 41.6% of the total number of violations in
this category. To properly fix the other 135 cases in CSP,
one would need to identify the missing dependencies of
the included scripts and adapt the content security policy
of the website accordingly, but this is not always easy for
web developers, as testified by the fact that these viola-
tions occurred on popular websites.

Violated Directive Violations Sites
script-src 96 30
font-src 72 3
frame-src 32 25
img-src 17 5
connect-src 12 6
style-src 2 2

Table 1: Violations triggered by script dependencies

Table 2 reports the top 10 script providers by number
of violations produced by the scripts they serve, as well
as the number of websites where these violations are trig-
gered. An interesting observation here is that, by writing
appropriate CCSP headers for these 10 providers, one
could fix 88 violations, which amount to the 38.1% of
all the violations due to script dependencies we observed
in the wild. Remarkably, this would fix violations in 37
websites, which amount to the 72.5% of all the websites
which presented a violation in the first category. This
suggests that the use of CCSP by the top script providers
could provide a benefit to the majority of the websites.

As to the 199 violations due to HTTP redirects, we
noticed that they were caused by redirectors from 46 dif-
ferent domains. Table 3 shows the top 10 redirectors by

Script Provider Violations Sites
www.googletagmanager.com 26 9
apis.google.com 13 13
pagead2.googlesyndication.com 11 2
api.dmp.jimdo-server.com 8 4
assets.jimstatic.com 7 4
vogorana.ru 7 2
www.googleadservices.com 7 6
www.googletagservices.com 4 2
s.adroll.com 3 3
js-agent.newrelic.com 2 2

Table 2: Top script providers by number of violations

number of violations, as well as the number of websites
where these violations are triggered. It is worth notic-
ing that, by writing appropriate CCSP headers for these
10 redirectors, one could already prevent 136 violations,
which amount to the 68.3% of all the violations due to
redirects. This would fix violations in 61 websites, which
amount to the 83.6% of all the websites which presented
a violation in the second category. This confirms again
that a limited deployment of CCSP at major services
could have a significant impact on the entire Web.

Redirector Violations Sites
www.google.com 47 38
www.ingbank.pl 20 2
www.google-analytics.com 14 13
d.adroll.com 12 3
ads.stickyadstv.com 9 1
mc.yandex.ru 9 1
www.clearslide.com 8 2
cnfm.ad.dotandad.com 6 1
stats.g.doubleclick.net 6 6
ssl.google-analytics.com 5 5

Table 3: Top redirectors by number of violations

6 Implementation and Testing

6.1 Prototype Implementation
We developed a proof-of-concept implementation of
CCSP as a Chromium extension. The extension essen-
tially works as a proxy based on the webRequest API6. It
inspects all the incoming HTTP(S) responses looking for
CCSP headers: if they are present, the extension parses

6https://developer.chrome.com/extensions/

webRequest

them following the syntax described in the present pa-
per and then strips away standard CSP headers (if any)
to avoid conflicts. The extension internally keeps track
of the protection state of all the open pages, closely fol-
lowing the CCSP enforcement model described in Sec-
tion 3.3. Outgoing requests are then inspected to check
whether they are allowed by the content security policy
enforced in the current protection state of the page send-
ing them: if this is not the case, the request is blocked.

Our prototype does not support any source expres-
sion which does not deal with outgoing requests, like
’unsafe-inline’, since they are not trivial to handle
via a browser extension (assuming it is even possible).
The goal of the prototype is just providing a way to get
hands-on experience with CCSP on existing websites and
testify that it is possible to write accurate CCSP policies
for them. On the long run, we would like to implement a
more mature prototype of CCSP directly in Chromium:
this should be relatively easy to do, because CCSP can
use the existing CSP implementation as a black box.

6.2 Testing in the Wild

In our experiments, we fixed CSP violations found on
two popular websites by using CCSP. We started by
stipulating that their CSP-Compose headers should con-
tain exactly the original content security policy and we
then wrote appropriate CSP-Union and CSP-Intersect
headers to fix the observed CSP violations. We finally
injected these CCSP headers in the appropriate HTTP(S)
responses via a local proxy.

Twitter. On Jan 13th 2017 we found that the con-
tent security policy of twitter.com was broken by the
inclusion of a script from https://cdn5.userzoom.

com, loaded by a script from https://abs.twimg.com.
Since twimg.com is controlled by Twitter, we decided

to assume a high level of trust for all its sub-domains and
we wrote the following CSP-Intersect header for the
homepage of twitter.com:

CSP-Intersect:

scope *.twimg.com;

script-src https://*;

default-src ’none’;

This gives contents hosted on twimg.com the ability of
relaxing the content security policy of Twitter to load
arbitrary scripts over HTTPS. This is a very liberal be-
haviour, but it may be a realistic possibility if the team
working at abs.twimg.com develops products indepen-
dently from their final users at Twitter.

We then injected the following CSP-Union header in
the script provided by abs.twimg.com:

CSP-Union:

script-src https://cdn5.userzoom.com;

In this specific case, we cannot white-list the exact script,
QzI2OVQxNDQg.js, as its name is taken from the DOM
and cannot be known by the server. However, the do-
main https://cdn5.userzoom.com is hard-coded in
the script at abs.twimg.com, so we can reliably use that
information for white-listing.

These two CCSP headers fixed the policy violation we
found and allowed the script from abs.twimg.com to
change its imported scripts without any intervention from
the Twitter developers, as long as it correctly updates its
CSP-Union header.

Orange. On Jan 23rd 2017 we detected three CSP vi-
olations at www.orange.sk, a national website of the
popular telecommunication provider Orange.

The first violation was due to a script imported from
static.hotjar.com, which was trying to create an
iframe including contents from vars.hotjar.com. We
fixed it by writing the following CSP-Intersect header
for the homepage of www.orange.sk:

CSP-Intersect:

scope static.hotjar.com;

frame-src *.hotjar.com;

default-src ’none’;

We then attached the following CSP-Union header to
the script from vars.hotjar.com:

CSP-Union:

frame-src https://vars.hotjar.com/rcj-b2

c1bce0a548059f409c021a46ea2224.html

Notice that this time we were able to white-list exactly
the required contents, since the whole URL is readily
available in the script code.

The other two violations were triggered by two images
imported from www.google.com for tracking purposes,
which were redirected to a national Google website not
included in the content security policy. The web develop-
ers at www.orange.sk probably noticed these violations
and tried to fix them by adding www.google.sk to the
img-src directive, but since we were visiting the web-
site from Italy, we got redirected to www.google.it and
this domain was not included in the content security pol-
icy of www.orange.sk.

We then fixed these issues by adding the following in-
formation to the headers sent by www.orange.sk:

CSP-Intersect:

scope www.google.com;

img-src *;

default-src ’none’;

and by including the following headers to the redirect
sent from www.google.com:

CSP-Union:

img-src www.google.it

Notice that the correct top-level domain is known to
the server, because it is also issuing the redirect request.

Other Websites. We discussed two practical examples
of CCSP deployment, but one may wonder how difficult
it is to write CCSP headers for other websites. To get a
rough estimate about the challenges of the CCSP deploy-
ment more in general, we inspected our dataset of CSP
violations and we collected for the top 10 script providers
(by number of violations) the following information: the
number of scripts they serve, the number of CSP vio-
lations triggered by these scripts, and the type of these
violations. The results are in Table 4.

We think that the perspective offered by the table is
pretty encouraging, because it suggests that even popular
script providers only serve a small number of scripts to
their customers, which means that the number of CCSP
headers to write for them is typically limited. Moreover,
scripts often load a very limited number of resources and
only few of them need to load contents of variegate type.
These two factors combined suggest that writing policies
for scripts should be relatively easy on average, because
these policies would have limited size and complexity.

7 Related Work

Several studies analysed the extent and the effectiveness
of the CSP deployment in the wild and highlighted that
web developers have troubles at configuring CSP cor-
rectly [9, 20, 1, 18]. Indeed, there have been a num-
ber of complementary proposals, with different level of
complexity, on how to automatically generate content se-
curity policies for existing websites [2, 3, 7, 8]. The ef-
fectiveness of these proposals is still unclear, since au-
tomatically generating content security policies which
are at the same time accurate and secure turned out to
be extremely challenging, requiring a combination of
static analysis, runtime monitoring and code rewriting.
However, even a perfect policy generation algorithm can
still lead to functionality problems upon content inclu-
sion, due to unanticipated changes in the behaviour of
included contents due to, e.g., the use of HTTP redirects
or the relocation of script dependencies. CCSP was de-
signed to support these behaviours under the assumption
that most content providers are not actually malicious. It
is also worth mentioning that CCSP is naturally effective
at simplifying the policy specification process for web
developers, assuming that content providers are willing

Script Provider Scripts Violations Types of Violations
www.googletagmanager.com 9 1 script
apis.google.com 13 1 frame
pagead2.googlesyndication.com 3 5 script, img
api.dmp.jimdo-server.com 4 4 connect, img
assets.jimstatic.com 2 2 script, img
vogorana.ru 3 6 script, frame, connect
www.googleadservices.com 6 2 frame
www.googletagservices.com 3 3 script
s.adroll.com 3 2 script
js-agent.newrelic.com 1 2 script

Table 4: Types of violations for popular script providers

to dedicate some efforts to foster the integration between
their contents and the content security policies of the em-
bedding resources.

The idea of dynamically changing the enforced CSP
policy advocated in CCSP is also present in the design of
COWL, a confinement system for JavaScript code [12].
COWL assigns information flow labels to contexts (e.g.,
pages and iframes) and restricts their communication
based on runtime label checks. Labels are allowed to
change dynamically using meet and join operators, and
implemented on top of CSP, which makes runtime pol-
icy composition part of COWL. However, COWL targets
more ambitious security goals than (C)CSP by enforcing
non-interference on labeled contexts and, as such, it is
less flexible and harder to retrofit on existing websites.
For these reasons, we believe that COWL and (C)CSP
are complementary: one system may be better than the
other one, depending on the desired security properties.

CSP Embedded Enforcement is a draft specification
by the W3C which allows a protected resource to em-
bed an iframe only if the latter accepts to enforce upon
itself an embedder-specified set of restrictions expressed
in terms of CSP [17]. The embedder advertises the re-
strictions using a new Embedding-CSP header includ-
ing a content security policy, while the embedded con-
tent must attach a Content-Security-Policy header
including a policy with at least the same restrictions to
declare its compliance. It is worth noticing that CSP Em-
bedded Enforcement is a first step towards making the
CSP enforcement depend upon an interaction between
the protected resource and the content providers, though
the problems it addresses are orthogonal to CCSP. Simi-
larly to CSP, CSP Embedded Enforcement asks web de-
velopers to get a thorough understanding of the contents
they include to write a content security policy for them.

Other papers on CSP studied additional shortcomings
of the standard, touching on a number of different issues:
ineffectiveness against data exfiltration [13], difficult in-

tegration with browser extensions [5], unexpected bad
interactions with the Same Origin Policy [10] and sub-
optimal protection against code injection [6].

8 Conclusion

We proposed CCSP, an extension of CSP based on run-
time policy composition. By shifting part of the policy
specification process to content providers and by adding
a dynamic dimension to CSP, CCSP reconciles the pro-
tection offered by fine-grained white-listing with a rea-
sonable policy specification effort for web developers
and a robust support for the highly dynamic nature of
common web interactions. We analysed CCSP from dif-
ferent perspectives: security, backward compatibility and
deployment cost. Moreover, we assessed its potential im-
pact on the current web and we implemented a working
prototype, which we tested on major websites. Our ex-
periments show that popular content providers can de-
ploy CCSP with limited efforts, leading to significant
benefits for the large majority of the web.

As future work, we plan to implement CCSP directly
in Chromium and carry out a large-scale analysis of its
effectiveness, including a performance evaluation. We
would also like to investigate automated ways to generate
CCSP policies for both websites and content providers:
since CCSP splits policy specification concerns between
these two parties, we hope there is room for simplifying
the automated policy generation process and making it
more effective than for CSP. Finally, we would like to
investigate the problem of supporting robust debugging
facilities for CCSP in web browsers.

Acknowledgements
We thank Daniel Hausknecht, Artur Janc, Sebastian
Lekies, Andrei Sabelfeld, Michele Spagnuolo and Lukas
Weichselbaum for the lively discussions about the cur-

rent state of CSP. We also thank the anonymous review-
ers for their useful comments and suggestions, and our
shepherd Adam Doupé for his assistance in the realiza-
tion of the final version of the paper. The paper acknowl-
edges support by the MIUR project ADAPT.

References

[1] CALZAVARA, S., RABITTI, A., AND BUGLIESI,
M. Content Security Problems? Evaluating the ef-
fectiveness of Content Security Policy in the wild.
In CCS (2016), pp. 1365–1375.

[2] DOUPÉ, A., CUI, W., JAKUBOWSKI, M. H.,
PEINADO, M., KRUEGEL, C., AND VIGNA, G.
dedacota: toward preventing server-side XSS via
automatic code and data separation. In CCS (2013),
pp. 1205–1216.

[3] FAZZINI, M., SAXENA, P., AND ORSO, A. Au-
tocsp: Automatically retrofitting CSP to web appli-
cations. In ICSE (2015), pp. 336–346.

[4] GOOGLE. Strict CSP, 2016. https://csp.

withgoogle.com/docs/strict-csp.html.

[5] HAUSKNECHT, D., MAGAZINIUS, J., AND
SABELFELD, A. May I? - Content Security Pol-
icy endorsement for browser extensions. In DIMVA
(2015), pp. 261–281.

[6] JOHNS, M. Script-templates for the Content Secu-
rity Policy. J. Inf. Sec. Appl. 19, 3 (2014), 209–223.

[7] KERSCHBAUMER, C., STAMM, S., AND BRUN-
THALER, S. Injecting CSP for fun and security. In
ICISSP (2016), pp. 15–25.

[8] PAN, X., CAO, Y., LIU, S., ZHOU, Y., CHEN, Y.,
AND ZHOU, T. Cspautogen: Black-box enforce-
ment of content security policy upon real-world
websites. In CCS (2016), pp. 653–665.

[9] PATIL, K., AND FREDERIK, B. A measurement
study of the Content Security Policy on real-world
applications. I. J. Network Security 18, 2 (2016),
383–392.

[10] SOME, D. F., BIELOVA, N., AND REZK, T. On the
Content Security Policy violations due to the Same-
Origin Policy. In WWW (2017), pp. 877–886.

[11] STAMM, S., STERNE, B., AND MARKHAM, G.
Reining in the web with Content Security Policy.
In WWW (2010), pp. 921–930.

[12] STEFAN, D., YANG, E. Z., MARCHENKO, P.,
RUSSO, A., HERMAN, D., KARP, B., AND
MAZIÈRES, D. Protecting users by confining
javascript with COWL. In OSDI (2014), pp. 131–
146.

[13] VAN ACKER, S., HAUSKNECHT, D., AND
SABELFELD, A. Data exfiltration in the face of
CSP. In ASIA CCS (2016), pp. 853–864.

[14] W3C. Content Security Policy 1.0, 2012. https:
//www.w3.org/TR/2012/CR-CSP-20121115/.

[15] W3C. Content Security Policy Level 2, 2015.
https://www.w3.org/TR/CSP2/.

[16] W3C. Content Security Policy Level 3, 2016.
https://w3c.github.io/webappsec-csp/.

[17] W3C. CSP Embedded Enforcement,
2016. https://www.w3.org/TR/

csp-embedded-enforcement/.

[18] WEICHSELBAUM, L., SPAGNUOLO, M., LEKIES,
S., AND JANC, A. CSP is dead, long live CSP! On
the insecurity of whitelists and the future of Content
Security Policy. In CCS (2016), pp. 1376–1387.

[19] WEINBERGER, J., BARTH, A., AND SONG, D.
Towards client-side HTML security policies. In
HotSec (2011).

[20] WEISSBACHER, M., LAUINGER, T., AND
ROBERTSON, W. K. Why is CSP failing? Trends
and challenges in CSP adoption. In RAID (2014),
pp. 212–233.

A Theory

Our theory of joins and meets is based on a core frag-
ment of CSP called CoreCSP. This fragment captures the
essential ingredients of the standard and defines their (de-
notational) semantics, while removing uninspiring low-
level details.

A.1 CoreCSP

We presuppose a denumerable set of strings, ranged over
by str. The syntax of policies is shown in Table 5, where
we use dots (. . .) to denote additional omitted elements
of a syntactic category (we assume the existence of an
arbitrary but finite number of these elements).

This a rather direct counterpart of the syntax of CSP.
The most notable points to mention are the following:

Content types t ::= script | style | . . .
Schemes sc ::= http | https | data

| blob | filesys | il
| . . .

Policies p ::= ~d | p+ p
Directives d ::= t-src v

| default-src v
Directive values v ::= {se1, . . . ,sen}
Source expressions se ::= h | unsafe-inline

| inline(str)
Hosts (sc 6= il) h ::= self | sc | he | (sc,he)
Host expressions he ::= ∗ | ∗ .str | str

Table 5: Syntax of CoreCSP

1. we assume the existence of a distinguished scheme
il, used to identify inline scripts and stylesheets.
This scheme cannot occur inside policies, but it is
convenient to define their formal semantics;

2. we do not discriminate between hashes and nonces
in source expressions, since this is unimportant at
our level of abstraction. Rather, we uniformly repre-
sent them using the source expression inline(str),
where str is a string which uniquely identifies the
white-listed inline script or stylesheet;

3. we define directive values as sets of source expres-
sions, rather than lists of source expressions. This
difference is uninteresting in practice, since source
expression lists are always parsed as sets;

4. for simplicity, we do not model ports and paths in
the syntax of source expressions.

To simplify the formalization, we only consider well-
formed policies, according to the following definition.

Assumption 1 (Well-formed Policies). We assume that
policies are well-formed, i.e., for each directive value v
occurring therein, we have that unsafe-inline ∈ v im-
plies inline(str) 6∈ v.

The syntax of CSP is more liberal, because it al-
lows one to write policies violating the constraint above.
However, there is no loss of generality in focusing only
on well-formed policies, since if both unsafe-inline

and inline(str) occur in the same directive, only one
of them is enforced: browsers supporting CSP 1.0 would
ignore inline(str), while browsers implementing more
recent versions of CSP would ignore unsafe-inline.

The definition of the semantics of CoreCSP is based
on three main entities: locations are uniquely identified

sources of contents; subjects are HTTP(S) web pages en-
forcing a CSP policy; and objects are contents available
for inclusion by subjects.

Definition 3 (Locations). A location is a pair l =
(sc,str). We let L stand for a denumerable set of lo-
cations and we let L range over subsets of L .

Definition 4 (Subjects). A subject is a pair s = (l,str)
where l = (sc,str′) with sc ∈ {http,https}.

Definition 5 (Objects). An object is a pair o = (l,str).
We let O stand for a denumerable set of objects and we
let O range over subsets of O .

We use the projection functions π1(·) and π2(·) to ex-
tract the components of a pair (location, subject or ob-
ject). We also make the following typing assumption.

Assumption 2 (Typing of Objects). We assume that ob-
jects are typed. Formally, this means that O is partitioned
into the subsets Ot1 , . . . ,Otn , where t1, . . . , tn are the avail-
able content types. We also assume that, for all objects
o = ((il,str′),str), we have o ∈ Oscript∪Ostyle.

The judgement se s L defines the semantics of
source expressions. It reads as: the source expression se
allows the subject s to include contents from the locations
L. The formal definition is given in Table 6, where we let
B be the smallest reflexive relation on schemes such that
httpBhttps. The judgement generalizes to values by
having: v s {l | ∃se ∈ v,∃L⊆L : se s L∧ l ∈ L}.

self s {π1(s)} sc s {l | π1(l) = sc}

∗ s {l | π1(l) 6∈ {data,blob,filesys,il}}

str s {l | π1(π1(s))Bπ1(l)∧π2(l) = str}

∗.str s {l | π1(π1(s))Bπ1(l)∧∃str′ : π2(l) = str′.str}

(sc,str) s {(sc,str)}

(sc,∗.str) s {l | π1(l) = sc∧∃str′ : π2(l) = str′.str}

(sc,∗) s {l | π1(l) = sc}

unsafe-inline s {l | π1(l) = il}

inline(str) s {(il,str)}

Table 6: Semantics of Source Expressions (se s L)

We then define operators to get the value bound to a
directive in a policy. Given a list of directives ~d and a

content type t, we define ~d ↓ t as the value bound to the
first t-src directive, if any; otherwise, the value bound
to the first default-src directive, if any; and in absence
of both, we let it be the wildcard {∗}.

Definition 6 (Lookup). Given a list of directives ~d and a
content type t, we define ~d.t as follows:

~d.t =

v if ~d = ~d1, t-src v, ~d2∧

∀d ∈ {~d1},∀v′ : d 6= t-src v′

⊥ otherwise

We then define the lookup operator ~d ↓ t as follows:

~d ↓ t =

~d.t if ~d.t 6=⊥
v if ~d.t =⊥∧ ~d = ~d1,default-src v, ~d2∧

∀d ∈ {~d1},∀v′ : d 6= default-src v′

{∗} otherwise

The judgement p ` s�t O defines the semantics of
policies. It reads as: the policy p allows the subject s to
include as contents of type t the objects O. The formal
definition is given in Table 7.

(D-VAL)
~d ↓ t = v v s L

~d ` s�t {o ∈ Ot | π1(o) ∈ L}

(D-CONJ)
p1 ` s�t O1 p2 ` s�t O2

p1 + p2 ` s�t O1∩O2

Table 7: Semantics of Policies (p ` s�t O)

The semantics of a CSP policy depends on the subject
restricted by the policy. This makes reasoning on CSP
policies quite complicated, hence we introduce a class of
policies, called normal policies, whose semantics does
not depend on a specific subject. The restriction to nor-
mal policies does not bring any loss of generality in prac-
tice, since any policy can be translated into an equivalent
normal policy by using a subject-directed compilation.

The syntax of normal policies is obtained by replacing
the occurrences of h in Table 5 with h, where:

h ::= sc | ∗ | (sc,he).

We define normal source expressions and normal direc-
tive values accordingly.

Definition 7 (Normalization). Given a source expression
se and a subject s, we define the normalization of se un-

der s, written 〈se〉s, as follows:

〈se〉s =

{π1(s)} if se = self

{(sc,str) | π1(π1(s))B sc} if se = str
{(sc,∗.str) | π1(π1(s))B sc} if se = ∗.str
{se} otherwise

The normalization of a directive value v under s is de-
fined as 〈v〉s =

⋃
se∈v〈se〉s. The normalization of a policy

p under s, written 〈p〉s, is obtained by normalizing under
s each directive value occurring in p.

Lemma 1 (Properties of Normalization). The following
properties hold true:

1. for all policies p and subjects s, 〈p〉s is normal;

2. for all policies p, subjects s and content types t, we
have p ` s�t O if and only if 〈p〉s ` s�t O;

3. for all normal policies p, subjects s1,s2 and content
types t, we have that p` s1�t O1 and p` s2�t O2
imply O1 = O2.

A.2 Technical Preliminaries
We now introduce the technical ingredients needed to
implement our proposal. We start by defining a binary
relation vsrc on normal source expressions. Intuitively,
we have se1 vsrc se2 if and only if se1 denotes no more
locations than se2 (for all subjects).

Definition 8 (vsrc Relation). We let vsrc be the least re-
flexive relation on normal source expressions defined by
the following rules:

sc 6∈ {data,blob,filesys,il}
scvsrc ∗

sc 6∈ {data,blob,filesys,il}
(sc,he)vsrc ∗

scvsrc (sc,∗)

(sc,he)vsrc sc (sc,str)vsrc (sc,∗)

(sc,∗.str)vsrc (sc,∗) (sc,str′.str)vsrc (sc,∗.str)

inline(str)vsrc unsafe-inline

To compare policy permissiveness, however, there are
a couple of issues left to be addressed:

1. a policy p may enforce multiple restrictions on the
same content type t, specifically when p = p1 + p2
for some p1, p2. In this case, multiple directive
values must be taken into account when reasoning
about the inclusion of contents of type t;

2. a policy p may enforce restrictions on the inclusion
of contents of type t by using directives of two dif-
ferent formats, namely t-src v or default-src v′.
One has then to ensure that the appropriate directive
value is chosen when reasoning about the inclusion
of contents of type t.

We address these issues by defining a smart lookup op-
erator p ⇓ t which, given a policy p and a content type
t, returns a directive value which captures all the restric-
tions put in place by p on t. This operator is based on the
following definition of meet of directive values.

Definition 9 (Meet of Values). Given two normal direc-
tive values v1,v2, we define their meet v1 ./ v2 as follows:

v1 ./ v2 = {se ∈ v1 | ∃se′ ∈ v2 : sevsrc se′}
∪ {se ∈ v2 | ∃se′ ∈ v1 : sevsrc se′}.

Lemma 2 (Correctness of Meet). For all normal direc-
tive values v1,v2 and subjects s, we have v1 s L1 and
v2 s L2 if and only if v1 ./ v2 s L1∩L2.

Definition 10 (Smart Lookup). Given a normal policy p
and a content type t, we define p ⇓ t as follows:

p ⇓ t =

{
~d ↓ t if p = ~d
(p1 ⇓ t) ./ (p2 ⇓ t) if p = p1 + p2

Lemma 3 (Correctness of Smart Lookup). For all nor-
mal policies p, subjects s and content types t, we have:

p ` s�t {o ∈ Ot | ∃L⊆L : p ⇓ t s L∧π1(o) ∈ L}.

A.3 Join and Meet
The join of two policies allows a subject to include some
content if and only if at least one of the two policies does.

Definition 11 (Join of Policies). Given two policies
p1, p2 and a subject s, we define the join p1 ts p2 as the
least policy s.t. (p1ts p2).t = (〈p1〉s ⇓ t)∪ (〈p2〉s ⇓ t).

Theorem 1 (Correctness of Join). p1 ` s�t O1 and p2 `
s�t O2 iff p1ts p2 ` s�t O1∪O2.

Proof. Let p1 ` s�t O1, p2 ` s�t O2 and p1 ts p2 `
s�t O, we show that O = O1∪O2 by proving O⊆O1∪
O2 and O⊇ O1∪O2:

(⊆) Let o∈O, then there exists v such that (p1ts p2).t =
v and v s L for some L such that π1(o)∈ L. By def-
inition, this means that there exists se ∈ v such that
se s L′ for some L′ such that π1(o) ∈ L′. By defi-
nition of join, we have v = (〈p1〉s ⇓ t)∪ (〈p2〉s ⇓ t).
Hence, we have either se ∈ 〈p1〉s ⇓ t or se ∈ 〈p2〉s ⇓
t. Assume that se ∈ 〈p1〉s ⇓ t, then o ∈ O1 by us-
ing Lemma 3 and the observation that normalization
does not change the semantics of policies. The case
se ∈ 〈p2〉s ⇓ t is symmetric;

(⊇) Let o ∈ O1∪O2, then either o ∈ O1 or o ∈ O2. As-
sume that o ∈ O1, the other case is symmetric. By
using Lemma 3 and the observation that normaliza-
tion does not change the semantics of policies, there
exists v such that 〈p1〉s ⇓ t = v and v s L for some
L such that π1(o)∈ L. By definition of join, we have
(p1ts p2).t = v′ for some v′ such that v′ s L′ with
L⊆ L′. This implies o ∈ O.

The meet of two policies allows a subject to include
some content if and only if both policies do. Defining
the meet is more complicated in CSP, because not all
browsers correctly handle the conjunction of two poli-
cies [1]. The key idea of the definition is to reuse
the meet operator ./ defined for directive values, since
we proved that v1 s L1 and v2 s L2 if and only if
v1 ./ v2 v L1∩L2 (see Lemma 2).

Definition 12 (Meet of Policies). Given two policies
p1, p2 and a subject s, we define the meet p1us p2 as the
least policy s.t. (p1us p2).t = (〈p1〉s ⇓ t) ./ (〈p2〉s ⇓ t).

Theorem 2 (Correctness of Meet). p1 ` s�t O1 and
p2 ` s�t O2 iff p1us p2 ` s�t O1∩O2.

Proof. Let p1 ` s�t O1, p2 ` s�t O2 and p1 us p2 `
s�t O, we show that O = O1∩O2 by proving O⊆O1∩
O2 and O⊇ O1∩O2:

(⊆) Let o∈O, then there exists v such that (p1us p2).t =
v and v s L for some L such that π1(o)∈ L. By def-
inition of meet, we have v = (〈p1〉s ⇓ t) ./ (〈p2〉s ⇓
t). Let 〈p1〉s s L1 and 〈p1〉s s L2, then π1(o) ∈
L1 ∩L2 by Lemma 2. This implies π1(o) ∈ L1 and
π1(o) ∈ L2 by definition of intersection. Hence, we
have o ∈ O1 and o ∈ O2 by using Lemma 3 and the
observation that normalization does not change the
semantics of policies;

(⊇) Let o ∈ O1 ∩O2, then o ∈ O1 and o ∈ O2. By us-
ing Lemma 3 and the observation that normalization
does not change the semantics of policies, there ex-
ist v1,v2 such that 〈p1〉s ⇓ t = v1, 〈p2〉s ⇓ t = v2,
v1 s L1 for some L1 such that π1(o) ∈ L1, and
v2 s L2 for some L2 such that π1(o) ∈ L2. This
implies that π1(o) ∈ L1∩L2. By definition of meet,
we have (p1 us p2).t = v1 ./ v2 and we know that
v1 ./ v2 s L1∩L2 by Lemma 2, hence o ∈ O.

Observe that both the definitions of join and meet are
parametric with respect to a subject. In the case of nor-
mal policies, however, this subject can be dropped. Since
all policies can be transformed into equivalent normal
policies (Lemma 1), in the body of the paper we just
write t and u for simplicity.

