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Browser-based defenses have recently been advocated as an effective mechanism to protect potentially in-
secure web applications against the threats of session hijacking, fixation, and related attacks. In existing
approaches, all such defenses ultimately rely on client-side heuristics to automatically detect cookies con-
taining session information, to then protect them against theft or otherwise unintended use. While clearly
crucial to the effectiveness of the resulting defense mechanisms, these heuristics have not, as yet, undergone
any rigorous assessment of their adequacy. In this paper, we conduct the first such formal assessment, based
on a ground truth of 2,464 cookies we collect from 215 popular websites of the Alexa ranking.

To obtain the ground truth, we devise a semi-automatic procedure that draws on the novel notion of au-
thentication token, which we introduce to capture multiple web authentication schemes. We test existing
browser-based defenses in the literature against our ground truth, unveiling several pitfalls both in the
heuristics adopted and in the methods used to assess them. We then propose a new detection method based
on supervised learning, where our ground truth is used to train a set of binary classifiers, and report on ex-
perimental evidence that our method outperforms existing proposals. Interestingly, the resulting classifiers,
together with our hands-on experience in the construction of the ground truth, provide new insight on how
web authentication is actually implemented in practice.

1. INTRODUCTION
Both HTTP and its secure variant HTTPS, the workhorse protocols of the current
World Wide Web, are stateless by design, hence they require web servers to imple-
ment their own authentication mechanisms to keep track of state information across
different requests. The most widespread solution for tracking state on HTTP(S) re-
lies on cookies, i.e., key-value pairs which are chosen by the server so as to identify
the user’s browser and sent to it. The browser will automatically attach the cookies to
any subsequent request to the server: upon receiving back the cookies, the server may
use them to pinpoint the requesting client across multiple requests, thus effectively
implementing a stateful communication over a stateless protocol.

Modern web applications are complex, and interacting with them involves highly
structured communications (i.e., sessions), often requiring users to present their cre-
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dentials to log in and authenticate. Correspondingly, the sets of cookies exchanged
along such sessions are just as structured and include cookies registered for a variety
of purposes: among these, of specific interest for our present concerns are the cookies
registered in response to the user presenting her authentication credentials, which we
call authentication cookies1.

Authentication cookies are widespread, as they conveniently act as substitutes for
the user’s credentials during an authenticated session. At the same time (and for the
very same reasons), they constitute a primary target of attack, since their inadvertent
disclosure may allow an intruder to fully impersonate the user and exploit her privi-
leges in the authenticated session. The complexity of web applications makes room for
a large attack surface against authentication cookies, requiring web servers to deploy a
variety of counter-measures to achieve a satisfactory degree of protection: for instance,
web developers should mark the authentication cookies set by their web applications
with the HTTP-Only flag, which instructs the browser to prevent any access to them by
malicious scripts under the control of the attacker. Unfortunately, as reported in the
literature, websites often fail to implement recommended security practices [Zhou and
Evans 2010; Nikiforakis et al. 2011; Bugliesi et al. 2014a].

A complementary line of defense, advocated in a series of recent papers, may be built
directly within the browser through client-side protection mechanisms [Tang et al.
2011; De Ryck et al. 2012; De Ryck et al. 2011; Bugliesi et al. 2014a; Bugliesi et al.
2014b]. The key idea underlying such mechanisms is to apply the security practices
neglected by the server by detecting authentication cookies at the client-side, and en-
forcing a more conservative browser behavior when accessing them, for instance by
applying them the HTTP-Only flag when it is not set by the web developers. This pro-
cess ultimately hinges on an authentication cookie detector, i.e., a heuristic which tries
to automatically identify the cookies associated with the user credentials among all
the cookies stored in the browser, with no support by the user or the remote server.
The challenge here is to strike a good balance between security and usability. On the
one hand (security) such detector should not miss any authentication cookie, as any
miss may leave room for attacks. At the same time (usability), they should not over-
approximate too much the real set of authentication cookies, since the conservative
security policy applied to them may harm the user experience. For instance, if a cookie
storing the user’s preferences is incorrectly detected as an authentication cookie and
marked with the HTTP-Only flag, then any legitimate access to it by JavaScript will be
forbidden, thus preventing the correct rendering of the website.

Somewhat surprisingly, in spite of their fundamental importance for the effective-
ness of the resulting defense mechanisms, none of the heuristics adopted in current
systems has, as yet, undergone any rigorous assessment of its adequacy. In fact, exist-
ing detectors have so far been evaluated on the basis of intuitive claims assumed as
ground truth in the evaluation phase (e.g., any cookie whose value is sufficiently long
and random is likely used for authentication). Reasonable as they might appear, such
claims are obviously biased and, as we show in this paper, hardly adequate for any
quality assessment of existing and future client-side defenses.

Contributions. Our first contribution is the design of a (semi-)automatic method to
build a ground truth of authentication cookies, i.e., a verified dataset where authen-
tication cookies are isolated and identified correctly. The outcome of this process is a
real-world dataset of 2,464 cookies derived from a sample of 215 amongst the today’s
most popular websites of the Alexa ranking, which we make available for public down-

1In Section 3, we define the notion of authentication cookie formally, and make it far more accurate; at this
stage, however, the informal characterization given here suffices.
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load at http://bit.ly/1u8Qfiz. Interestingly, our experience in the construction of the
ground truth has unveiled a number of subtleties in the role that different cookies play
in web authentication, which appear to have largely been overlooked so far. Based on
that experience, we devise a new notion of authentication token, which captures mul-
tiple web authentication schemes and nicely fits different real-world scenarios. Addi-
tionally, as we discuss in the paper, authentication tokens can be used to define a more
accurate measure of the protection offered by different security mechanisms built on
top of an authentication cookie detector.

Our second contribution is a rigorous evaluation of four existing authentication
cookie detectors, based on formal performance measures and conducted against the
ground truth we constructed. Our analysis shows a significant degree of misclassifica-
tion in these detectors, which correspondingly hinders the effectiveness of the client-
side defenses built on top of them. Even worse, our data show that the assessment of
the existing heuristics is often coarse and ultimately too optimistic, providing a false
sense of security. Based on our experiments, we conclude that all the authentication
cookie detectors proposed so far are too naïve to be effective in practice.

Our third contribution is, then, the development of a set of binary classifiers aimed at
automatically and accurately identifying authentication cookies, based on supervised
learning techniques. We provide experimental evidence that our proposal outperforms
existing solutions, realigning the actual effectiveness of client-side defenses for cookie-
based sessions with the optimistic estimations we just mentioned.

Additional Contents. Compared with a previous conference paper [Calzavara et al.
2014], which this work extends, the novel contributions can be summarized as follows:

(1) All the experiments are performed on a much larger ground truth of cookies (2,464
vs. 327) collected from many more websites (215 vs. 70). This allows us to give
further and more significant evidence of the problems we identified in our previous
work and of the effectiveness of the solutions we proposed therein;

(2) Building a larger ground truth poses new challenges both in terms of computa-
tional efficiency and in terms of implementation choices. We discuss a non-trivial
optimization of the original algorithm, which runs in linear time (with respect to
the number of cookies) for the large majority of the websites and is much faster in
practice than the original solution. The new implementation is based on the Se-
lenium2 Python package rather than on Mechanize3, since the lack of support for
JavaScript in Mechanize prevents the correct functionality of many websites. By
using Selenium, we are able to include in the ground truth all the cookies which are
set by JavaScript, which we excluded from our previous study;

(3) We experimentally confirm a popular assumption from the literature: the number
of authentication cookies which is set by JavaScript is negligible, since we observe
that only 4 out of 215 websites (1.9%) use JavaScript to set an authentication cookie;

(4) We formalize a novel measure of protection, which we use to evaluate further the
effectiveness of previous heuristics from the literature, as well as our approach;

(5) The larger ground truth we consider in this work is skewed: approximately, only
1 out of 7 cookies is used for authentication purposes. Since the ground truth is
skewed, it is more difficult to train an effective classifier. We then revise and make
more systematic the machine learning approach to overcome this new challenge and
solve the performance problems we observed.

2https://pypi.python.org/pypi/selenium
3https://pypi.python.org/pypi/mechanize
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The rest of the paper is organized as follows. Section 2 provides background about
cookie-based session security. Section 3 describes the ground truth construction. Sec-
tion 4 presents a formal evaluation of existing authentication cookie detectors. Sec-
tion 5 describes the design of the classifier and contrasts its performance against the
state of the art. Section 6 reports on related work, and Section 7 concludes.

2. BACKGROUND: WEB SESSION SECURITY
Cookies are the standard way of implementing a stateful communication paradigm
between a client and a server over the HTTP(S) protocol, as showed in Fig. 1 below.

B S

request login page //

login pageoo

send credentials (u,p) //

[SID=31f4...] welcome uoo

[SID=31f4...] access u’s account //

Fig. 1: A typical cookie-based session

The browser B requests a login page to the server S, which requires authentica-
tion to access a private area. The user inputs her username u and her password p
into the login form, which is then submitted to S. Upon verification of the supplied
credentials, the server replies with a welcome page and stores a cookie named SID in
the user’s browser. The value of the cookie is typically a long and random identifier,
which uniquely identifies the user’s account: since further requests to S will include
the cookie, the user will be authenticated with no need to supply her credentials again.

Given that the improper disclosure of the cookie value may allow an attacker to im-
personate the user with full privileges, ensuring the confidentiality of authentication
cookies like SID is a fundamental issue in modern web browsing.

2.1. Cross-site Scripting (XSS)
Web browsers prevent cookies registered by a given domain from being accessed by
scripts running on behalf of a different domain, according to the so-called same-origin
policy. Unfortunately, this simple protection mechanism can be easily circumvented
by code injection attacks like XSS, where a script crafted by the attacker runs in the
security context of a trusted website [Fogie et al. 2007]. The attack is enabled by a flaw
in the input sanitization process by the website, which allows the injection of malicious
scripts through the input parameters of its web pages. For instance, assume that the
website hosts a search page, which reads a number of keywords from the user and
queries a database for results [Nikiforakis et al. 2011]:

<?php
session_start ();
...
$query = $_GET ['q'];
print "Search results for: <u> $query </u>";
...

?>
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The PHP function session_start creates a new authentication cookie, or resumes the
current session if a previously generated cookie is attached to the request to the page.
The vulnerability arises when the web server generates the result page, since the latter
includes the value of the parameter q sent by the GET request to the search page. An
attacker can steal the authentication cookie just by providing the following link to the
victim, e.g., by including it in a malicious web page:

http://weak.com/search.php?q=</u><script>
document.write ('<img src ="http://attacker.com/
leak.php?ck =' + document.cookie + '">');
</script>

The parameter q supplied to the search page is a malicious script, which is injected
into the result page; hence, the script runs on behalf of the target website and can
access its cookies through the object document.cookie, which is sent to the attacker’s
website as the parameter ck.

Since XSS attacks are widespread, web servers can employ the HTTP-Only flag to
qualify cookies which should not be made available to client-side scripts: HTTP-Only
cookies will only be accessed by the browser when transmitting HTTP(S) requests to
the domain which set them. A few research works suggest to automatically apply the
HTTP-Only flag to authentication cookies at the browser side when the remote server
fails to protect them [Tang et al. 2011; Nikiforakis et al. 2011; Bugliesi et al. 2014a].

2.2. Eavesdropping
Standard web browsers attach all the cookies registered by a given domain to any
HTTP(S) request transmitted to that domain. Thus, whenever a page loaded over
HTTPS retrieves additional contents (e.g., an image) through an HTTP connection
to the same domain, the authentication cookies are leaked over HTTP to any attacker
who is able to eavesdrop the unencrypted web traffic [Jackson and Barth 2008]. Notice
that even websites which are entirely deployed over HTTPS may improperly disclose
their authentication cookies over HTTP, whenever the attacker is able to inject non-
existent HTTP links to these websites in unrelated web pages, since the browser will
still try to access these broken links.

The Secure flag can be used by web servers to designate cookies that should only be
sent over HTTPS connections and never be attached to HTTP requests, thus rectifying
the issues above. Similarly to the HTTP-Only flag, the Secure flag can be selectively
applied to authentication cookies at the client-side, thus achieving additional protec-
tion against powerful network attackers [Bugliesi et al. 2014a; Bugliesi et al. 2014b].
Another solution against eavesdropping is HSTS [Hodges et al. 2012], a browser se-
curity policy which forces any HTTP communication attempt to protected domains to
be upgraded to HTTPS. A very recent study recommends the adoption of the Secure
flag even by websites implementing HSTS, due to a subtle behaviour on sub-domain
accesses which can be easily exploited by network attackers to force a leakage of the
authentication cookies over HTTP [Kranch and Bonneau 2015].

2.3. Session Fixation
In a session fixation attack, the attacker is able to designate the value of the authen-
tication cookies which will identify the user’s session [Johns et al. 2011]. The attacker
first gets a set of cookies from the target website and then forces them in the user’s
browser, for instance by exploiting an XSS vulnerability on the target website. If the
website does not refresh the value of its authentication cookies whenever the privilege
level of the session changes, i.e., after the user has authenticated by submitting her
password, the attacker may be able to impersonate the user just by replaying the orig-
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inal set of cookies fixated in the browser. Notice that in this attack the authentication
cookies are never leaked to the attacker, but rather he knows them in advance, hence
the previous protection mechanisms are clearly bound to fail.

A typical server-side solution against session fixation attacks is to generate a fresh
set of authentication cookies upon password checking: since the new cookies will differ
from the fixated ones, the attacker will not be able to hijack the session. If the server
does not implement this recommended security practice, the attack surface for session
fixation can still be significantly reduced at the client-side, by requiring that authen-
tication cookies attached to HTTP(S) requests are only registered through HTTP(S)
headers [De Ryck et al. 2012]. The intuition here is that HTTP(S) headers are a much
more unlikely attack vector than XSS.

2.4. Preventing Session Hijacking
A recent and interesting web security trend is preventing session hijacking by making
useless the knowledge of authentication cookies by the attacker. For instance, one-time
cookies [Dacosta et al. 2012] use an HMAC construction to authenticate any request
sent by the browser, thus preventing the attacker from replaying a stolen cookie and
hijack the session. Similarly, origin bound certificates [Dietz et al. 2012] propose to
bind the authentication cookies to the TLS channel used for communication, so that
any cookie replay attempt on a different TLS channel will be useless.

Although these solutions are not widely deployed, we do not exclude that existing
websites may actually implement some custom technique to mitigate the dangers con-
nected to the disclosure of an authentication cookie by an attacker; however, the real
deployment and effectiveness of these countermeasures is very hard to assess, hence
properly protecting the authentication cookies at the browser-side is a much safer se-
curity practice in the current Web.

3. A GROUND TRUTH OF COOKIES
Building a ground truth of cookies is important to rigorously evaluate the effectiveness
of authentication cookie detection techniques and to understand if they actually sup-
port a good degree of protection. The construction consists of two steps: (i) collecting
sets of cookies from different websites, and (ii) marking each cookie with a binary label
to identify the cookie as an authentication cookie or not.

Step (i) has already been recognized as a tedious manual process [Tang et al. 2011].
Indeed, one needs personal accounts on the websites of interest to authenticate to
their private areas, which in turn often employ mechanisms like CAPTCHAs to pre-
vent non-human users from registering to them. Step (ii), instead, has been largely
overlooked by prior research, while our hands-on experience with web authentication
unveils a number of subtle challenges which deserve attention. To tackle these chal-
lenges, we introduce the novel concept of authentication token, which captures the web
authentication schemes adopted by different websites.

3.1. Authentication Tokens
The concept of authentication token is best introduced with an example. As anyone
possessing a Facebook4 account can easily verify, Facebook registers several cookies on
the user’s browser, for a variety of purposes. From our experience, the only effective
way to understand the role of such cookies, and in particular their role in Facebook’s
authentication mechanism, is to log into the website and observe the effects of delet-
ing the cookies, one by one. Doing that, one notices that deleting either of the cookies
c_user and xs is enough to break the session and get logged out; on the other hand,

4http://www.facebook.com
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deleting any cookie other than c_user and xs has no effect on the authenticated ses-
sion. In other words, both c_user and xs convey authentication, but neither is enough
to authenticate the user. The set {c_user, xs} may thus be identified as the authenti-
cation token for Facebook, and c_user and xs be referred to as authentication cookies.

Generalizing the Facebook case, we define an authentication token as a minimal set
of cookies which allows the server to authenticate the client, restoring the state of the
associated user without asking her to log in again.

Definition 3.1 (Authentication Token). Let S be a server and C the set of cookies it
sends to the browser B upon login. We say that A ⊆ C is an authentication token for S
if and only if the following conditions hold:

(1) authentication: S authenticates B for any request including only the cookies in A;
(2) minimality: S does not authenticate B for any request including only cookies in any

proper subset of A.

Definition 3.2 (Authentication Cookie). A cookie c is an authentication cookie iff
there exists an authentication token A such that c ∈ A.

Notice that, according to this definition, websites may designate multiple (possibly
overlapping) authentication tokens. Indeed, we observed several examples of such au-
thentication scheme in our investigation. For instance, the popular file sharing service
Bitshare5 registers two cookies PHPSESSID and login on the user’s browser, and any of
the two is enough to authenticate the user with the website: according to our termi-
nology, the website designates two authentication tokens of size 1.

3.2. Detecting Authentication Cookies
Having introduced a precise notion of authentication cookie, we now devise an algo-
rithm for detecting all the authentication cookies of a given website. The correctness of
the algorithm hinges on the observation that web authentication is monotonic, i.e., if a
set of cookies allows the client to authenticate, then any of its supersets authenticates
as well.

3.2.1. Overview and Challenges. Let C = {c1, . . . cn} be the set of all the cookies that
server S sends to browser B upon login, we want to identify a labeling ` : C 7−→ {0, 1}
such that `(ci) = 1 iff ci is an authentication cookie. Unfortunately, discovering this
labeling boils down to finding out all the cookies included in the authentication tokens
registered by S. Since any subset of C can potentially be an authentication token, and
more than one token can occur in C, the search space we have to consider to derive
the labeling ` is the powerset of C, whose cardinality is 2n, i.e., exponential in the
number of cookies. The naïve algorithm for labeling would then be unacceptably slow
on many websites; however, we can significantly improve the efficiency of the ground
truth construction by designing a smarter exploration of the search space.

First, we observe that, if a set of cookies A is an authentication token, then all its
supersets authenticate as well, but they can be removed from the search space since
none of them can be an authentication token, due to the minimality condition dictated
by Definition 3.1. We also notice that, given a set of cookies A ⊆ C such that S does
not authenticate B, the same happens with any subset of A. This last property resem-
bles the anti-monotonicity of the frequent itemsets [Agrawal and Srikant 1994]: if an
itemset I is frequent in a transactional database, then any I ′ ⊂ I is frequent as well.
The Apriori algorithm [Agrawal and Srikant 1994] for mining frequent itemsets ex-

5http://www.bitshare.com

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.



A:8 S. Calzavara et al.

ploits this property to reduce its exponential search space, by exploring the candidate
itemsets from the smallest to the largest.

Similarly to Apriori, a possible solution to our problem could be then to iteratively
generate and check subsets of cookies of size k, for increasing values of k ∈ [1, n]: if
we enumerate all the subsets of cookies from the smallest to the largest, as soon as
we find a subset of cookies that authenticates, we know that it surely is an authenti-
cation token, due to the minimality property of the tokens, and we can remove all its
supersets from the search space. This algorithm is correct and, despite an exponen-
tial worst-case complexity, it is reasonably efficient in practice [Calzavara et al. 2014].
Still, when constructing a ground truth of significant size, like the one we target in this
work, it is useful to further refine this idea and come up with a much faster solution.

To improve performances, we exploit a simple observation: even though a general
definition of authentication token is needed for formal reasoning and to deal with the
complexities of the Web, a large majority of the websites still has only one authenti-
cation token (as we experimentally confirm in Section 3.4). For these websites, we can
detect the authentication token in linear time: intuitively, it is enough to check for each
cookie ci ∈ C if the website still authenticates the client when only C \{ci} is sent to the
server; the set of cookies whose removal from C breaks authentication amounts to the
only authentication token. Unfortunately, we do not know in advance if a website has
only one authentication token and, if this is not the case, this simple linear algorithm
does not work: for instance, if a website authenticates either with {c1} or with {c2},
like in the case of Bitshare, deleting cookies one by one from the full set of cookies will
never break the session.

3.2.2. The Algorithm. The key to the development of a correct and fast algorithm for
ground truth construction is the following lemma.

LEMMA 3.3 (INTERSECTION LEMMA). Let C = {c1, . . . cn} be a set of cookies and let
A = {A1, . . . , Am} be the (non-empty) set of authentication tokens included therein. Let:

I = {ci ∈ C | C \ {ci} does not authenticate the client},
then I =

⋂m
i=1Ai.

PROOF. To prove the result, we must show that I ⊆ ⋂m
i=1Ai and

⋂m
i=1Ai ⊆ I:

— Suppose that c ∈ I, we show that c belongs to every Ai, hence c ∈ ⋂m
i=1Ai. Assume by

contradiction that there exists Aj such that c 6∈ Aj . This implies Aj ⊆ C \ {c}, hence
we know that C\{c} authenticates. But this implies that c 6∈ I, which is contradictory;

— Suppose that c ∈ ⋂m
i=1Ai, then we know that c ∈ Aj for each j. This implies that

C \ {c} does not allow the client to authenticate, hence c ∈ I.

Clearly, the set I in the lemma above can be constructed in linear time (w.r.t. the
size of C). To understand why the lemma is useful, assume that I allows the client
to authenticate: it turns out that I is the only authentication token for the website.
Indeed, assume by contradiction that there exist two distinct authentication tokens
A1 and A2: since I ⊂ A1 and/or I ⊂ A2, but I authenticates, we get a contradiction
by the minimality condition of the authentication tokens. Interestingly, the lemma is
helpful also whenever I does not authenticate the client, since we know that all the
authentication tokens must still contain I and we can thus reduce the search space.

Based on this insight, we are finally ready to present the algorithm for finding all
the authentication tokens in a given website (Algorithm 1).
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Algorithm 1: Detecting Authentication Tokens
Input : A set of cookies C = {c1, . . . , cn} sent by a server S to the browser B

upon login
Output: A set of authentication tokens A for S

1 begin
2 I ←− buildIntersection(B,S, C);
3 if isAuthenticated(B,S, I) then
4 return {I};
5 else
6 A ←− ∅;
7 k ←− |I|+ 1;
8 cand (k) ←− {I ∪ {ci} | ci ∈ C \ I};
9 while cand (k) 6= ∅ do

10 foreach C(k) ∈ cand (k) do
11 if isAuthenticated(B,S,C(k)) then
12 A ←− A∪ {C(k)};
13 end
14 end
15 k ←− k + 1;
16 cand (k) ←− Gen&Prune(k, C,A, I);
17 end
18 return A;
19 end
20 end

Let B be a browser, S be a server, and C = {c1, . . . , cn} be the full set of cookies sent to
B by S upon login. We presuppose the existence of a function isAuthenticated(B,S,C),
to check whether the set of cookies C allows B to authenticates at S (a realistic im-
plementation of this function is described in the next section). Using this function, it
is straightforward to define a new function buildIntersection(B,S, C), which returns
the set I defined in Lemma 3.3 in linear time (w.r.t. the size of C). The main algorithm
starts by constructing the set I at line 2. If I allows B to authenticate, the set of au-
thentication tokens includes only I and the algorithm stops, otherwise it generates a
set of candidate authentication tokens of size |I| + 1 by extending I with one of the
cookies which are not already included into it. The algorithm then proceeds by testing
each candidate for authentication: if a candidate allows B to authenticate at S, then
it surely is an authentication token by the minimality condition and it can be added
to the set A of authentication tokens (line 12). At each further step, the set of the new
candidates cand (k) of size k is built by a function Gen&Prune (line 16), defined as follows:

Gen&Prune(k, C,A, I) = {C(k) ⊆ C | @A ∈ A : A ⊂ C(k) ∧ I ⊆ C(k)},

where |C(k)| = k and A is the set of the authentication tokens found so far (of size up to
k − 1). Indeed, we know that any reasonable candidate must contain I by the intersec-
tion lemma, but it must not contain any other authentication token by the minimality
condition, hence we can effectively prune the search space. The algorithm stops when
no candidate of size k is available and it runs in linear time w.r.t. the number of cook-
ies for any website which has only one authentication token, corresponding to the most
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common scenario in the Web. In the worst case, the set I is empty and the algorithm
has an exponential complexity w.r.t. the number of cookies [Calzavara et al. 2014].

The output of Algorithm 1 is the set of authentication tokens A = {A1, . . . , Am} for
the web server S. To build the ground truth of cookies for S, we define the labeling
` : C 7−→ {0, 1} by having `(c) = 1 iff there exists Aj ∈ A such that c ∈ Aj . We repeat
the process for each web server S of a given collection of web servers S to produce the
complete ground truth G:

G =
⋃
S∈S

⋃
c∈CS

(c, `(c)),

where CS denotes the set of all the cookies that a server S ∈ S sends to the browser.

3.2.3. Example. Consider a website registering the set of cookies C = {c1, c2, c3, c4, c5}.
If the website has a single authentication tokenA = {c1, c2}, the algorithm will start by
eliminating the different ci’s one by one, to construct the set I = {c1, c2} including the
cookies whose deletion prevents client authentication. Since the set I authenticates,
the only authentication token A coincides with I itself.

Assume now that a second authentication token A′ = {c1, c3} is set by the website.
The only cookie whose deletion breaks authentication is c1: indeed, if c2 is deleted, then
the presence of A′ authenticates; if c3 is deleted, then the presence of A authenticates.
Let then I ′ = {c1}, since c1 alone does not authenticate, the algorithm looks for the
authentication tokens starting from I ′ thanks to Lemma 3.3: A is found at the first
iteration, while A′ is found at the second one; the other iterations must test {c1, c4},
{c1, c5}, which do not authenticate. Then, the algorithm only needs to test {c1, c4, c5},
which does not authenticate; all the other subsets must not be tested, since they in-
clude at least one authentication token. Hence, the algorithm only explores 10 subsets
of C rather than 32.

3.3. Implementation and Assessment
We implemented the ground truth construction algorithm in Python, using the Sele-
nium package to program a web browser (Firefox) and automate the login process on
a list of websites. The script takes as an input a list of triples (w, u, p), where w is the
URL of a website homepage, u is a username registered on that website, and p is the
corresponding password. For any triple (w, u, p), the script navigates to w, identifies
the login form on the page, and submits the credentials (u, p). If the login operation
succeeds, the script is given access to a set of cookies C registered by w and applies
Algorithm 1 to detect the authentication cookies in C.

The check performed by isAuthenticated (line 8) is implemented as follows. Given a
candidate authentication token C(k), we send an HTTP(S) request to w including only
the cookies in C(k), and return a positive answer if the response from w satisfies any
of the following conditions:

— it does not contain a login form;
— it contains the username u;
— it contains a logout button.

The rationale of this choice is based on common practices implemented by existing
websites, which typically display a login form when the user logs out, include in their
pages the username associated with the ongoing session and present a logout button to
terminate the session. The detection of the login forms and the logout buttons is based
on simple heuristics: for instance, we detect a form as a login form whenever it contains
a text/email field and a password field. To check the correctness of our implementation
and validate the ground truth, we manually accessed all the considered websites from
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Firefox and we assessed the output of the script. Specifically, given a set of cookies C
stored in the browser and an authentication token A ⊆ C identified by our script, we
verified that deleting all the cookies in C \A did not break the session, while removing
any cookie in A was enough to get logged out from the website. We noticed that the
script was very effective in practice and we incrementally refined the isAuthenticated
function to make it more precise.

3.4. The Ground Truth: Construction and Analysis
We used our script to crawl 215 popular websites from the Alexa ranking6, collect-
ing a dataset of 2,464 cookies, including 332 authentication cookies (13.5%). The use
of Selenium has proved invaluably helpful to automate the collection process. Indeed,
though useful for creating a small ground truth of cookies [Calzavara et al. 2014], a
previous version of the script based on the Mechanize library for programmatic web
browsing was not robust enough to scale to a significantly larger construction. Specif-
ically, we faced two main problems with Mechanize: (i) many websites were able to
detect and prevent a programmatic access by the script, and more importantly (ii) the
lack of JavaScript support in Mechanize prevented many websites from working cor-
rectly, thus breaking the authentication process. Both these issues are solved by using
Selenium, since it allows us to program a standard web browser like Firefox.

Having built a ground truth of cookies, we can finally understand better how web
authentication is really deployed in practice and how helpful is our notion of authenti-
cation token. We observe that 175 websites (81.4%) only use one authentication token,
while the remaining 40 (18.6%) register two tokens; no website sets more than two
authentication tokens (see Table I).

Table I: Number of authentication tokens per website
Number of tokens Number of websites

1 175
2 40

It is hard to understand exactly why a website should set more than one authenti-
cation token: an inspection of our data set suggests that some websites are developed
using a combination of different frameworks, e.g., PHP and ASP, and apparently more
than one mechanism for session management is implemented for generic reasons (e.g.,
the presence of legacy code). Besides these cases, we think that the only reasonable
motivation for deploying more than one authentication token is to decouple authen-
tication from authorization: for instance, mixed content websites which are only par-
tially deployed over HTTPS may use two different cookies to authenticate the user;
one cookie is sent over both HTTP and HTTPS and used to keep the authenticated
session alive, while the other one is Secure and only sent over HTTPS to authorize
security-sensitive operations.

Overall, we identified 255 authentication tokens distributed across the 215 websites:
191 tokens (74.9%) contain just one cookie, while 64 tokens (25.1%) are larger. Among
these, 53 tokens are composed of two cookies: a manual investigation reveals that a
fairly common practice for web authentication is to store the username in one cookie
and some random session information in the other cookie. For the remaining cases, it
is harder to provide a definite explanation: a reasonable conjecture is that some web-
sites use cookies to store specific session information at the client side rather than

6http://www.alexa.com
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at the server side; this information is split among different cookies to simplify its re-
trieval, but it must be entirely available to ensure the functionality of the session. We
summarize these numbers in Fig. 2 below.
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Fig. 2: Size of the authentication tokens

Based on these findings, we argue that, as expected, the most common case for real
websites is to just use the authentication cookie informally considered in the literature,
but the percentage of websites whose analysis benefits from the more general notion
of authentication token is not negligible.

Moreover, since the adoption of Selenium allows us to include in the ground truth a
number of cookies set by JavaScript, we can concretely verify the popular assumption
that “authentication cookies are very rarely set via JavaScript” [Calzavara et al. 2014;
De Ryck et al. 2012; Tang et al. 2011]. Experimentally, we detect the cookies which are
not set by JavaScript by inspecting the headers of the incoming HTTP(S) responses: all
the cookies which do not occur therein must be set programmatically. It turns out that
only 4 out of 332 authentication cookies (1.2%) are set by JavaScript. All these cookies
are set by different websites: chomikuj.pl, vevo.com, vube.com and nike.com. After
further investigation, we discovered that the last three websites have been developed
using AngularJS7, an increasingly popular framework for developing web applications.
We summarize our findings in Table II.

Table II: Authentication cookies set by JavaScript
Authentication Cookie
yes no

JavaScript yes 4 1,026
no 328 1,106

Finally, we conclude this section with two last remarks on our ground truth. First,
even though we automated the construction, clearly one still must possess a personal
account on the considered websites to use our script: since the initial registration pro-
cess is inherently manual, extending the ground truth still requires some human ef-
fort. Second, we excluded from the ground truth a number of known cookies set by
JavaScript for advertisement purposes (e.g., some cookies set by Google Analytics). All
these cookies are uninteresting for our study, since they are never used for authenti-
cation purposes and can be ignored by any authentication cookie detector employed by
client-side defenses.

7https://angularjs.org/

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.



A Supervised Learning Approach to Protect Client Authentication on the Web A:13

4. EVALUATING CLIENT-SIDE DEFENSES
In this section, we assess the quality of existing state-of-the-art authentication cookie
detectors against our ground truth. Despite their importance for the underlying client-
side protection mechanisms, all these solutions are quite simple and have been only
informally evaluated so far. Instead, we first introduce rigorous validity measures and
then we evaluate existing solutions with respect to them: as it turns out, previous
evaluations reveal to be way too optimistic, leaving large room for improvement.

4.1. Validity Measures
A standard approach for the evaluation of detectors (or binary classifiers) is based on
the count of the number of true positives (tp), true negatives (tn), false positives (fp), and
false negatives (fn) produced. We refer to “positive” as any example in the ground truth
that is labeled as an authentication cookie, while we use the term “negative” for all the
other examples. Hence, tp and tn represent cookies which the detector labels correctly,
while fp and fn correspond to mislabeled cookies. Specifically, fp/fn are cookies that
the detector labels as positive/negative, but in fact appear as negative/positive in the
ground truth. Based on these numbers, we can compute two standard effectiveness
measures:

specificity =
tn

tn + fp
sensitivity =

tp

tp + fn

Any authentication cookie detector having low specificity typically over-approximates
the real set of authentication cookies, that is, it makes several fp errors and may lead to
usability problems, for instance by marking as HTTP-Only some cookies which should be
legitimately accessed by JavaScript. Conversely, any solution providing low sensitivity
leans towards under-approximating the real set of authentication cookies, i.e., it makes
many fn errors and leaves room for attacks. We occasionally consider as an aggregate
score for an easier comparison also the F-measure of a detector, i.e., the harmonic mean
of specificity and sensitivity:

F -measure = 2 · specificity · sensitivity

specificity + sensitivity

Clearly, not every fp will lead to a usability problem in practice, and not every fn
will correspond to a real security violation: understanding these aspects ultimately
depends on the semantics of the specific client-side defense. However, the measures
above do provide conservative estimation of the effects of deploying a new protection
mechanism built over a given authentication cookie detector: as such, we believe it is
very important to focus on them in the design phase of new defensive solutions.

Besides the standard measures above, we also find it insightful to exploit our no-
tion of authentication token to get an additional measure of protection. Intuitively, a
client-side defense for cookie-based sessions is effective whenever its underlying au-
thentication cookie detector is able to identify at least one authentication cookie for
each authentication token. If this minimal set of authentication cookies is safeguarded,
we are guaranteed that the website is protected against session hijacking8.

Formally, let W be the full set of websites where a detector D is tested. For a website
w ∈ W , let Aw stand for the set of authentication tokens of w and let tpD(w) be the
set of true positives produced by D on w. We define the protection granted by D on W ,

8It may actually be the case that the value of the protected cookies could be easily predicted from the value
of the unprotected ones, but this exclusively depends on the specific implementation of the web application
and a corresponding protection measure would be pretty hard to define in the general case.
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written ρD(W ), as follows:

ρD(W ) =
|{w ∈W | ∀A ∈ Aw : tpD(w) ∩A 6= ∅}|

|W |
Even though previous works [De Ryck et al. 2012; Tang et al. 2011] already tried to
estimate the number of protected websites, their conclusions are not quite accurate, as
we elaborate in the following through the study of our ground truth.

4.2. (Re-)Evaluating Existing Solutions
We focus on the authentication cookie detectors proposed by the following four solu-
tions published in the literature:

— SESSIONSHIELD [Nikiforakis et al. 2011] is a proxy between the browser and the
network which aims at protecting cookie-based sessions against XSS attacks. The
core idea is to automatically detect and store the authentication cookies in a private
database, inaccessible to JavaScript, thus emulating the browser behavior imple-
mented for the HTTP-Only flag;

— SERENE [De Ryck et al. 2012] is a client-side solution against session fixation attacks.
It applies a detection algorithm to spot cookies which are likely used for authentica-
tion, but have not been registered through HTTP headers. Since these cookies can be
potentially fixated by a malicious script, they are stripped away from HTTP requests
and never used for authentication;

— COOKIEXT [Bugliesi et al. 2014a] is an extension for Google Chrome designed to
ensure the confidentiality of authentication cookies against both XSS attacks and
network eavesdropping. COOKIEXT selectively applies both the HTTP-Only and the
Secure flag to authentication cookies, while forcing a redirection from HTTP to
HTTPS for supporting websites;

— ZAN [Tang et al. 2011] is an extension for the OP2 web browser aimed at protect-
ing legacy web applications against different kinds of vulnerabilities. Notably, ZAN
automatically applies the HTTP-Only flag to the authentication cookies it detects, to
prevent their leakage via XSS.

All the authentication cookie detectors adopted by these tools are based on the same
empirical observation: authentication cookies are typically longer and “more random”
than other cookies, and they often contain authentication-related words in their keys
(e.g., “sess”). Though the various tools differ in several aspects (for instance, random-
ness can be estimated in several ways, and different weights and thresholds can be
empirically set for the same feature), we abstract from the details here, and we just
summarize the aspects that are most relevant to our present needs. For any further in-
formation, we refer to the original papers cited above. Similarly, we omit details about
some standard measures of randomness: Shannon entropy [Shannon 1948], index of
coincidence [Friedman 1922] and password strength [Florêncio and Herley 2007].

Table III provides an intuitive description of the features used by each detector to
mark a cookie c = (k, v) as an authentication cookie.

In Table IV, we represent each detector as a boolean formula φ(c), which holds true
if and only if the cookie c is recognized as an authentication cookie.

For instance, COOKIEXT marks c = (k, v) as an authentication cookie whenever k
contains some specific authentication-related words, or v has a low index of coincidence
and is long enough (the thresholds have been empirically set).

4.2.1. Criticisms to Previous Assessments. The assessment of existing authentication
cookie detectors has so far been organized around (i) the collection of a dataset of cook-
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Table III: Features used to label the cookie c = (k, v) as an authentication cookie
Check Description SHIELD SERENE COOKIEXT ZAN

auth(k) k contains authentication terms (e.g., “sess”) 4 4 4 4
known(k) k is a standard name (e.g., PHPSESSID) 4
len(v) length of v is above a threshold 4 4 4 4
H(v) Shannon entropy of v is above a threshold 4
IC(v) index of coincidence of v is below a threshold 4
s(v) password strength of v is above a threshold 4 4
dict(v) v matches a dictionary word 4 4

Table IV: Checks to label the cookie c = (k, v) as an authentication cookie

SHIELD(c) , (auth(k) ∧ len(v)) ∨ (s(v) ∨ ¬dict(v))
SERENE(c) , known(k) ∨ (auth(k) ∧ s(v) ∧ ¬dict(v) ∧ len(v))

COOKIEXT(c) , auth(k) ∨ (IC(v) ∧ len(v))

ZAN(c) , (auth(k) ∧ (H(v) ∨ len(v))) ∨ (¬auth(k) ∧H(v) ∧ len(v))

ies from existing websites, followed by (ii) a manual investigation aimed at estimating
the number of fp and fn produced by the detector.

This approach suffers from two fundamental flaws. First, and most importantly, the
manual investigation is not carried out by authenticating to the considered websites,
but rather by inspecting the structure of each cookie marked positive (or negative)
by the detector: misclassifications are then estimated based on the expected syntac-
tic structure of a standard session identifier. For example, any cookie containing a long
random value which is marked negative by the detector is considered a fn (the dual rea-
soning leads to an estimate of the number of fp). Clearly, this approach is convenient
to carry out in practice, but provides a very coarse and overly optimistic estimation,
which is ultimately biased by the idea of assessing the effectiveness of the detector
against the very same observations underlying its design.

The second flaw in existing assessment methods is that, in general, the number
of fp and fn is not a statistically significant measure of the performance of a detec-
tor, since the distribution of the correctly labeled instances (tp and tn) cannot be ig-
nored [Mitchell 1997]. This is particularly important when the classes of positive and
negative examples are highly skewed like in our setting, where authentication cookies
are far less than non-authentication ones. Unfortunately, the lack of any precise re-
port about the number of tp and tn produced by previous detectors prevented us from
computing specificity and sensitivity for existing evaluations, which is something we
would have liked to consider for further comparison.

4.2.2. Results of Our Own Assessment. We evaluate each of the four authentication
cookie detectors by constructing a corresponding confusion matrix. This is a 2×2 table,
where tp and tn are given in the main diagonal, while the antidiagonal contains fn and
fp. We start with the detector adopted by SESSIONSHIELD, whose confusion matrix is
shown in Table V.

Table V: Confusion matrix for SESSIONSHIELD

Predicted
positive negative

Actual positive tp: 297 fn: 35
negative fp: 1,226 tn: 906

We notice that the sensitivity is impressive (89%), since the algorithm produces only
35 fn. Indeed, our protection measure reveals that the 99.5% of the websites are pro-
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tected! On the other hand, the specificity is very low (42%), as 1,226 fp are produced
by the detector on our dataset of 2,464 cookies. This strongly conflicts with the prelim-
inary evaluation performed by the authors of SESSIONSHIELD, who estimated only 19
fp in a set of 2,167 collected cookies: the difference between the informal estimation
above and the formal evaluation we conduct in this work is of two orders of magni-
tude. Interestingly, the authors of SERENE initially tried to reuse the authentication
cookie detector employed by SESSIONSHIELD, but eventually realized they needed a
much more accurate solution to deal with several usability issues, due to a rather high
number of fp identified in practice [De Ryck et al. 2012]. We conclude that the detection
algorithm of SESSIONSHIELD is too inaccurate to live up to any large-scale usability
study of a client-side defense based on it.

Next, we turn to SERENE, whose confusion matrix is given in Table VI below.

Table VI: Confusion matrix for SERENE

Predicted
positive negative

Actual positive tp: 126 fn: 206
negative fp: 336 tn: 1,796

The number of fp significantly decreases (336 vs. 1,226) with respect to the authen-
tication cookie detector of SESSIONSHIELD and the specificity greatly improves (84%).
On the other hand, we notice that only 126 out of 332 authentication cookies are suc-
cessfully recognized, and the sensitivity of the detector is really low (38%). In the orig-
inal paper on SERENE [De Ryck et al. 2012], the authors empirically estimated that
their solution is able to protect the 83.4% of the considered websites. However, by eval-
uating SERENE against our ground truth, we discover that the tool would be able to
protect only the 41.4% of the websites.

To be fair, we also evaluate COOKIEXT, a solution proposed by two of the authors of
this paper. Similarly to what happened for the other proposals, we acknowledge that
our initial evaluation of COOKIEXT provided some overly optimistic results. We report
in Table VII the result of our later assessment against the ground truth.

Table VII: Confusion matrix for COOKIEXT

Predicted
positive negative

Actual positive tp: 192 fn: 140
negative fp: 494 tn: 1,698

The protection offered by COOKIEXT appears significantly stronger than the previ-
ous one, since the number of fn produced by the detector is much lower (140 vs. 206)
and the sensitivity increases (58%). Still, the degree of protection is lower than our
original estimate, and certainly needs improvement: indeed, our informal estimate in
the COOKIEXT paper identified only 29 potential fn in a set of 2,291 collected cookies.
The difference between the formal evaluation and the informal estimation is then of
one order of magnitude and the impact on security is significant. By computing the
protection measure, we observe that COOKIEXT is able to protect the 64.2% of the
websites, something which we did not consider in the original paper.

We conclude with ZAN, whose confusion matrix is given in Table VIII.
Again, we have a considerable number of fn, since 141 out of 332 authentication

cookies are misclassified, and the sensitivity is not very satisfactory (58%). However,
the original paper on ZAN did not consider the accuracy of the authentication cookie
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Table VIII: Confusion matrix for ZAN

Predicted
positive negative

Actual positive tp: 191 fn: 141
negative fp: 443 tn: 1,689

detector itself, rather it provided an evaluation about the gain in protection enabled by
the tool through an analysis at the website level. In particular, the authors stated that
103 out of 136 considered websites (75.7%) were successfully protected by ZAN: all the
33 failures were due to the underlying detection algorithm. If we compute the protec-
tion of ZAN, however, we discover that only the 65.1% of the websites are protected.
The difference is less significant than in the previous cases, but still worth noticing.

To conclude, as we summarize in Fig. 3, we argue that the only authentication cookie
detector which presents a satisfactory degree of protection is the one employed by SES-
SIONSHIELD, which safeguards the 99.5% of the websites. Unfortunately, that detec-
tor has very low specificity and has proven impractical when initially implemented in
SERENE; based on our measurements, we actually argue that it would not be fit for
any practical client-side defense. For all the other detectors, our evaluation highlights
an unexpectedly low degree of protection, which significantly limits their effectiveness,
since at most the 65% of the websites are protected.
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Fig. 3: Evaluation of the different detectors

5. IMPROVING CLIENT-SIDE DEFENSES
Given the inaccuracy of existing solutions, we leverage machine learning techniques
to devise a novel authentication cookie detector, which is able to provide a high degree
of protection, while being precise enough to be usable in practice. We emphasize that
the existence of such a detector is not obvious at all, mainly due to a number of incon-
sistencies across different websites, which make the authentication cookie detection
problem difficult to solve even by manual inspection: this is one of the reasons why
previous informal evaluations turned out to be imprecise and ultimately unreliable.
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5.1. A Supervised Learning Approach
The problem of automatically discovering authentication cookies can be reduced to an
instance of the binary classification problem: the goal is to synthesize an algorithm
which is able to effectively discriminate cookies that are part of at least one authenti-
cation token from those which are not. To uniform with standard terminology, we see
authentication and non-authentication cookies as two separate classes of interest. We
refer to any observed cookie whose class membership is known as a labeled instance;
the classification problem exploits a sample of labeled instances, called training set, in
order to predict which class a new (i.e., out-of-sample) instance belongs to.

Usually, each instance is represented by a set of individual, measurable properties
of the observation called feature vector, and the resulting vector space is referred to as
feature space. More specifically, in our setting we denote by X the cookie feature space,
and we represent each cookie c with a d-dimensional feature vector c = (x1, . . . , xd)

T ,
where each feature xi describes a particular property of the cookie. We presuppose a
feature extraction function χ : C 7−→ X, which transforms each cookie from the popula-
tion C into its corresponding feature space representation.

Given a ground truth G, we can construct a sample training set Dtrain by picking
some Gtrain ⊆ G and by transforming each cookie occurring therein with its feature
space representation. Formally, we let:

Dtrain =
⋃

(c,`(c))∈Gtrain

(χ(c), `(c)).

A supervised learning algorithm infers from Dtrain a function λ : X 7−→ {0, 1}, which
maps feature vectors into an expected class label. The corresponding binary classifier
is then the function λ ◦ χ : C 7−→ {0, 1}, which predicts the class of an arbitrary cookie
from its feature space representation. Clearly, the choice of different learning algo-
rithms will lead to different classifiers, and among these we want to choose the most
accurate one; it is well-known that different approaches may perform well or poorly, de-
pending on the specific application task [Brodley and Utgoff 1995; Perlich et al. 2003].
We refer the interested reader to Appendix A.1 for a discussion on the main challenges
of supervised learning in our setting.

5.2. Choosing the Best Features
An important design choice we make is considering only features which can be com-
puted from the set of cookies registered by a given website through a single HTTP
response. This is the key to make the classifier work properly in practice, e.g., when
it is included in a browser extension aimed at protecting authentication cookies. We
explore not only well-known features that were already proposed in the literature (Sec-
tion 5.2.1), but also a novel class of contextual features (Section 5.2.2). We report on our
most interesting findings, by evaluating the capability of these features to properly dis-
criminate between authentication and non-authentication cookies in our ground truth.

5.2.1. Non-contextual Features. We first started by exploring the effectiveness of some
features illustrated in Table III, and exploited by authentication cookie detectors pre-
sented in the literature. All these features are extracted from a single cookie c = (k, v),
without considering its “context”, i.e., other cookies registered by the same web server.

Known Names. Perhaps the most surprising evidence we got from our investigation
is that many cookies which comply with standard naming conventions for authentica-
tion cookies are not actually authentication cookies. For instance, it is not true that all
the cookies called PHPSESSID (the standard name adopted by PHP for authentication
cookies) are really used for authentication purposes. To conclude this, we matched the
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cookie names occurring in our ground truth against an extensive list of 45 known stan-
dard names employed by SERENE. The distribution of these cookies in the two classes
is shown in Table IX.

Table IX: Distribution of cookies with known authentication cookie names
Authentication Cookie
yes no

known(k)
yes 55 56
no 277 2,076

We isolated 111 matching cookies overall: interestingly, only 55 of them are really
authentication cookies (49.5%). We do not have any definite explanation about this
unexpected behavior, though we occasionally observed that web developers generate
random cookies through some session management API of the underlying framework,
and then populate other cookies with these randomly generated values to implement
a custom authentication scheme. We observe then that 277 out of 332 (83.4%) authen-
tication cookies in our ground truth do not follow standard naming conventions, which
confirms that many websites do not adopt existing APIs for session management.

Still, despite the lack of definite standards, we are also able to confirm that custom
names of authentication cookies typically contain authentication-related terms. We
isolated from our ground truth all the cookies whose name contains any of the following
strings: sess, sid, auth, user, token, acc, password, hash, login, key, security. The
distribution of the two classes of cookies over the partition induced by the outcome of
the name matching test is shown in Table X.

Table X: Distribution of cookies with names including authentication-related terms
Authentication Cookie
yes no

auth(k)
yes 194 303
no 138 1,829

We observe that 194 out of 332 authentication cookies (58.4%) include at least one
of the strings above in their name. The occurrence of those strings in the names of
non-authentication cookies is much less frequent, since only 303 out of 2,132 non-
authentication cookies (14.2%) pass the naming test.

Value Length. We investigated whether the length of a cookie value is useful to sin-
gle out the authentication cookies. Fig. 4 provides a box-plot of the distribution of the
two classes of cookies with respect to the length of their value.

We can confirm that most of the authentication cookies are rather long as expected,
in that their values include at least 25 characters, even though we observe that some
authentication cookies are surprisingly short. We performed a further investigation
on these unexpected cases and we noticed that most of them are confined into specific
websites, which rely on authentication tokens of size 2 to track the requesting client.
Typically, these authentication tokens contain a (short) user identifier and a (longer)
session identifier, which is likely derived from the user’s password and some random
value to ensure freshness.
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Value Randomness. We finally investigated which measure of randomness is more
effective at detecting authentication cookies: the password strength s, the Shannon
entropy H or the index of coincidence IC. We summarize our findings in Fig. 5. All
the three measures look useful for detecting authentication cookies, with the index of
coincidence being clearly the most discriminating feature.
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Fig. 5: Distribution of cookies with respect to randomness measures
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Expiration Date. A cookie can be assigned by the remote server an expiration date
expressed as a Unix timestamp, to instruct the browser to delete it after a given time.
Before we started our investigation, we thought that authentication cookies typically
had a rather short expiration date, since using the same cookie for a large time window
ultimately weakens the session against hijacking. Instead, we noticed that several
authentication cookies present a fairly late expiration date, hence this feature is not
very effective in practice, as it is highlighted by the box-plot in Fig. 6.
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Fig. 6: Distribution of cookies with respect to their expiration date (Unix timestamps)

It seems that different choices correspond to different web application semantics:
security-critical websites typically adopt authentication cookies with an early expira-
tion date, while websites with more relaxed security requirements register authenti-
cation cookies which expire much later, thus enhancing the experience of users who
will need to re-authenticate themselves far less frequently.

5.2.2. Novel Contextual Features. After a careful evaluation of existing proposals, we
manually inspected our ground truth, trying to identify novel distinctive features use-
ful for detecting authentication cookies. Our key insight is that the Web is highly het-
erogeneous and that, in general, features which are effective for a given website are
not necessarily adequate for another website. We discovered, however, that taking into
account all the cookies C registered by a given website, that is considering the “context”
of a given cookie c ∈ C, we can assign more discriminating features to c.

Term Frequency-Inverse Document Frequency. Assume that some cookies are
marked as HTTP-Only and/or Secure. It would be tempting to conclude that all these
cookies are likely used for authentication, since they are explicitly protected by web de-
velopers. On the other hand, several studies highlight that the adoption of these cookie
flags is largely disregarded by existing websites [Bugliesi et al. 2014a; Zhou and Evans
2010; Nikiforakis et al. 2011]. We show in Table XI the distribution of our two classes
of cookies with respect to the presence of the HTTP-Only flag, which confirms the pre-
vious observation: the flag should likely play a role for classification purposes, but it
does not provide a definite evidence of the cookie being used for authentication.

Interestingly, though, a manual investigation of our ground truth reveals that the
usage of the cookie flags follows several different patterns, which can (and should)
be effectively exploited to single out authentication cookies: first, there are websites
which explicitly protect only cookies containing session information; then, we have
some high-security websites, e.g., Dropbox, which protect all the cookies they register,
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Table XI: Distribution of cookies with respect to the HTTP-Only flag
Authentication Cookie
yes no

httponly(c)
yes 143 219
no 189 1,913

irrespective of the nature of their contents; and finally, we have several websites which
just completely ignore the adoption of the available cookie protection mechanisms.

Intuitively, if a website registers a set of cookies, but only one (or very few) of those
is labeled as HTTP-Only, then that cookie is likely used for authentication purposes. In-
stead, if all the cookies (or no cookies at all) from the website are labeled as HTTP-Only,
the presence (or the absence) of the flag should not play any significant role during
classification. To catch this behavior, we borrow an idea from the Information Retrieval
(IR) field, where the effectiveness of an IR system also depends on an accurate estimate
of the importance of each word with respect to the text documents in a given corpus.
This estimate is typically captured by the term frequency-inverse document frequency
(tf -idf ) score [Salton and McGill 1986], which increases proportionally to the number
of times a word appears in a document, but is penalized by the frequency of the word
in the whole corpus.

Specifically, let C = {c1, . . . , cn} be a set of cookies registered by a given website and
let nh ≤ n be the number of HTTP-Only cookies in C. We define the “term frequency” of
the HTTP-Only flag for a given cookie ci as:

tf HTTP-Only(ci) =

{
1 if ci is HTTP-Only

0 otherwise.

We then define the “inverse document frequency” of the HTTP-Only flag with respect to
the set C as:

idf HTTP-Only(C) = log2

(
n

nh + 1

)
.

According to the definition of tf -idf , we then compute:

tf -idf HTTP-Only(ci, C) = tf HTTP-Only(ci) · idf HTTP-Only(C).
In Fig. 7 we show the corresponding box-plot.
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Fig. 7: Distribution of cookies with respect to tf -idf HTTP-Only
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We observe that the large majority (around 75%) of the non-authentication cookies
gathers between -0.5 and 0, while approximately half of the authentication cookies
gathers between 0 and 1, hence the feature looks promising for classification.

Z-Score. We observed before that authentication cookies typically contain rather
long values. Still, two caveats apply. First, the notion of “long” is inherently dependent
on the specific website; indeed, it would be much more accurate to state that authen-
tication cookies are usually longer than any other cookie registered by the same web-
site. Second, we occasionally noticed some short authentication cookies that contradict
the previous observation. However, we also discussed that these cookies are typically
paired with other, longer authentication cookies, and protecting the latter would be
enough to safeguard the website. Hence, reasoning at the website level seems effective
also to protect scenarios implementing the authentication scheme discussed before,
and we thus propose to consider the Z-score [Kreyszig 1979] of the cookie length.

In general, given a feature of interest, the Z-score measures the (signed) number of
standard deviations an example is above the mean of the population. Concretely, for
each ci = (ki, vi) in a set of cookies C registered by a given website, this is computed as:

Zlength(ci, C) =
length(vi)− µC

σC
,

where µC and σC are the population mean and standard deviation of the cookie lengths
in C, respectively. It is worth noting that we are associating each website to a separate
random variable, which represents all the possible values of cookie length that are
found in C. Therefore, it makes sense assuming to know both µC and σC , since the
sample of observed cookies in C we used to compute their unbiased estimates (i.e.,
µ̂C and σ̂C , respectively) is actually the whole population of observable data for that
particular website.

We show the box-plot of the Z-score of the value length with respect to the two classes
of cookies in Fig. 8. Again, we observe a nice discriminative power of a contextual
feature, which suggests its adoption for classification purposes.
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Fig. 8: Distribution of cookies with respect to the Z-score of their length

5.2.3. Feature Selection. The analysis conducted on the previous section gives a good
intuition about the features which look most useful for classification. Based on an
initial set of apparently promising features, we identified the subset of the 15 most
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useful features by using the feature selection facility implemented in the scikit-learn9

Python package. Concretely, we used a forest of trees to derive features importances:
each tree provides a relative measure known as “Gini importance”, which is defined
as the improvement in the “Gini gain” splitting criterion; by averaging these relative
importances over several randomized trees, it is possible to reduce the variance of the
estimate and use it for feature selection [Breiman 2001; Archer and Kimes 2008].

We show in Fig. 9 the importance of the 15 best features, estimated on our dataset
using a forest of 250 trees. The bars show the feature importances estimated by scikit-
learn, along with their inter-trees standard deviation. It is worth noting that, the high-
est the importance score (i.e., rank) of a feature the more “powerful” and “effective”
that feature is on classifying instances.
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Fig. 9: Feature importance

5.3. Training and Evaluating Classifiers
We trained different machine learning algorithms from the comprehensive collection
available in scikit-learn, we applied the learned models to predict the class of cookies
in the ground truth, and finally we computed the validity measures introduced in Sec-
tion 4.1. Since the distribution of the two classes in our ground truth is highly skewed,
we have to expect that the plain classifiers trained on this dataset may lead to poor
performances, since the predictions are dominated by the most common class (nega-
tives in our applications). This is confirmed by the results reported in Fig. 10. It turns
out that only the Bernoulli Naïve Bayes classifier provides acceptable performances,
behaving better than the heuristics proposed in the literature so far. However, the sen-
sitivity of the classifier is still too low to guarantee a satisfactory level of protection: we
observe that only 216 out of 332 authentication cookies are detected and only the 73%
of the websites can be protected. All the other classifiers tend to over-predict the most
frequent class: for instance, this is apparent in the confusion matrix of the Random
Forest classifier, given in Table XII.

To improve the classifier performances in presence of training sets with skewed class
distribution, a common solution is to adopt cost-sensitive learning, illustrated in Ap-
pendix A.1. Luckily, this technique significantly improves the performances of all the

9http://scikit-learn.org/stable/
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Fig. 10: Evaluation of different classifiers (no cost matrix)

Table XII: Confusion matrix for Random Forest (no cost matrix)
Predicted

positive negative

Actual positive tp: 128 fn: 204
negative fp: 106 tn: 2,026

induced classifiers. We summarize the experimental results of the most effective clas-
sifiers in Fig. 11.
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Fig. 11: Evaluation of different classifiers (with cost matrix)

We immediately notice that our machine learning approach outperforms the dis-
cussed hand-coded heuristics (see Fig. 3 for comparison), obtaining a remarkable
trade-off between sensitivity and specificity, in that the F-measure of the worst clas-
sifier (0.82) is significantly higher than the F-measure of the best heuristic (0.67).
Overall, we observe that the considered classifiers are able to protect more than 90%
of the considered websites, while the best performing heuristics could only safeguard
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approximately the 65% of the websites, with the exception of the detector implemented
in SESSIONSHIELD, which however has a poor specificity and is not usable in practice.
This huge improvement in protection does not come at the cost of usability, since the
specificity of each classifier is no worse than the specificity computed for the differ-
ent heuristics. Only the heuristic adopted in SERENE is slightly better in this respect,
but it could only protect around the 40% of the websites. Different trade-offs between
security and usability may be chosen by training and testing other classifiers.

For the sake of completeness, we also report in Table XIII the confusion matrix for
the Random Forest classifier, assuming that a non-uniform cost matrix is used: note
that we are now able to correctly detect 291 out of 332 authentication cookies (88%),
whereas we could only detect 128 of these cookies (39%) under the uniform cost model
used to build Table XII.

Table XIII: Confusion matrix for Random Forest (with cost matrix)
Predicted

positive negative

Actual positive tp: 291 fn: 41
negative fp: 436 tn: 1,696

6. RELATED WORK
In Section 4 we have already conducted an in-depth discussion of various existing
client-side defenses for cookie-based sessions [Bugliesi et al. 2014a; Nikiforakis et al.
2011; De Ryck et al. 2012; Tang et al. 2011]. Browser-based protection mechanisms
have also been proposed against other web security threats, most notably CSRF at-
tacks [De Ryck et al. 2010; De Ryck et al. 2011; Johns and Winter 2006]. Simply put,
the core idea underlying these solutions is to strip all the cookies which would be at-
tached to cross-site HTTP(S) requests: we believe that these defenses could be made
less invasive and more usable by deploying them on top of our classifier, to selectively
remove from cross-origin requests only the authentication cookies.

Accurately detecting authentication cookies becomes more and more important as
the security policy applied by the client-side defense mechanism gets more invasive
and complicated. A very recent paper proposes SESSINT, a browser extension aimed
at protecting web authentication against a wide range of different threats [Bugliesi
et al. 2014b]. The security policy enforced by this extension is significantly more so-
phisticated than competitor solutions, but the current prototype of SESSINT reuses the
simple authentication cookie detector employed by COOKIEXT. We believe that the us-
ability of SESSINT could significantly benefit of the introduction of a more accurate
classifier for authentication cookie detection.

Another recent research paper sharing interesting similarities with our approach
focuses on the privacy implications of third-party cookies [Roesner et al. 2012]. The
authors devise a taxonomy for third-party trackers on the Web, based on their observ-
able behavior, and create a Firefox add-on called TrackingTracker, which automati-
cally classifies web trackers at the client-side according to this taxonomy. The tool is
used to collect data about real-word third party trackers and design more effective so-
lutions to improve user’s privacy. Notably, however, the classification process does not
require machine learning techniques, since it is just accounted for by simple checks on
the browser-server interactions.

The security implications of using cookies for authentication purposes have been
first studied in a classic paper by Fu et al. [Fu et al. 2001]. The work underlines
the cryptographic weaknesses of many cookie schemes deployed in 2001 and provides
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guidelines for implementing cookies correctly. Using authentication cookies which are
hard to guess and forge is crucial for web session security, but in this paper we address
the orthogonal problem of securing cookies which have been properly designed.

To the best of our knowledge, we are the first to leverage machine learning tech-
niques to protect web authentication. Machine learning approaches, however, have
been proposed in other areas of computer security, including intrusion detection sys-
tems [Sommer and Paxson 2010] and spam filters [Guzella and Caminhas 2009]. In
this work, we do not need to consider the challenges of an adversary trying to con-
fuse the machine learning algorithm to avoid detection: websites may not comply with
recommended security practices, but they are not deliberately trying to hide which
cookies are used for authentication purposes.

7. CONCLUSION
We showed that all the client-side defenses proposed so far to automatically strengthen
web authentication are based on heuristics for authentication cookie detection which
perform much worse than expected when they are evaluated on a ground truth of
authentication cookies. We argue that these simple heuristics are inherently limited,
since client authentication on the Web is based on complex, often hard-to-predict us-
ages of authentication cookies. Our conclusion is then that any protection mechanism
built on top of these heuristics is bound to either negatively affect the user experience
or to provide an unsatisfactory level of protection when deployed on a large scale.

We thus advocated the adoption of supervised learning techniques to automatically
detect authentication cookies at the client side: such a machine learning approach
builds on powerful, well-established tools to automatically build detectors which out-
perform current state-of-the art solutions. We experimentally showed a significant im-
provement in the classification process with respect to existing approaches: our super-
vised learning solution is very precise, being able to strike a good balance between
security and usability. We believe that future client-side defenses for web authentica-
tion could significantly benefit from the usage of authentication cookie detectors based
on supervised learning techniques.

As a next step, we plan to investigate the generalization of our approach to iden-
tify tracking cookies stored in the browser [Roesner et al. 2012]. We would also like
to study the definition of a simple contract language for cookie classification purposes,
aimed at providing remote servers with an effective way to inform the browsers about
the usage of the cookies they register: this would be very important to define and en-
force more expressive client-side security policies. Finally, we plan to leverage Amazon
Mechanical Turk10 as an effective tool to extend the construction of our ground truth
of cookies: by asking humans to register to other websites of interest, we could reuse
our Python script to automatically collect many more authentication cookies.

ACKNOWLEDGMENTS

We would like to thank Nick Nikiforakis, Philippe De Ryck, and Shuo Tang for disclosing full details about
the authentication cookie detectors employed by SESSIONSHIELD, SERENE, and ZAN. The anonymous re-
viewers provided valuable feedback to improve the presentation of the paper.

REFERENCES
Rakesh Agrawal and Ramakrishnan Srikant. 1994. Fast algorithms for mining association rules. In Inter-

national Conference on Very Large Data Bases (VLDB). 487–499.
Kellie J. Archer and Ryan V. Kimes. 2008. Empirical characterization of random forest variable importance

measures. Computational Statistics & Data Analysis 52, 4 (2008), 2249–2260.

10https://www.mturk.com/mturk/welcome

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.



A:28 S. Calzavara et al.

L. Breiman. 2001. Random Forests. Machine Learning 45 (2001), 5–32.
Carla E. Brodley and Paul E. Utgoff. 1995. Multivariate Decision Trees. Machine Learning 19, 1 (1995),

45–77. http://dblp.uni-trier.de/db/journals/ml/ml19.html#BrodleyU95
Michele Bugliesi, Stefano Calzavara, Riccardo Focardi, and Wilayat Khan. 2014a. Automatic and robust

client-side protection for cookie-based sessions. In Engineering Secure Software and Systems (ESSoS).
161–178.

Michele Bugliesi, Stefano Calzavara, Riccardo Focardi, Wilayat Khan, and Mauro Tempesta. 2014b. Prov-
ably sound browser-based enforcement of web session integrity. In IEEE Computer Security Foundations
Symposium (CSF). To appear.

Stefano Calzavara, Gabriele Tolomei, Michele Bugliesi, and Salvatore Orlando. 2014. Quite a mess in my
cookie jar!: leveraging machine learning to protect web authentication. In 23rd International World
Wide Web Conference, WWW ’14, Seoul, Republic of Korea, April 7-11, 2014. 189–200.

Nitesh V. Chawla. 2005. Data Mining for Imbalanced Datasets: an Overview. (2005).
Italo Dacosta, Saurabh Chakradeo, Mustaque Ahamad, and Patrick Traynor. 2012. One-time cookies: Pre-

venting session hijacking attacks with stateless authentication tokens. ACM Transactions on Internet
Technology 12, 1 (2012), 1.

Philippe De Ryck, Lieven Desmet, Thomas Heyman, Frank Piessens, and Wouter Joosen. 2010. CsFire:
Transparent Client-Side Mitigation of Malicious Cross-Domain Requests. In Engineering Secure Soft-
ware and Systems (ESSoS). 18–34.

Philippe De Ryck, Lieven Desmet, Wouter Joosen, and Frank Piessens. 2011. Automatic and Precise Client-
Side Protection against CSRF Attacks. In European Symposium on Research in Computer Security
(ESORICS). 100–116.

Philippe De Ryck, Nick Nikiforakis, Lieven Desmet, Frank Piessens, and Wouter Joosen. 2012. Serene: Self-
Reliant Client-Side Protection against Session Fixation. In Distributed Applications and Interoperable
Systems (DAIS). 59–72.

P.A. Devyver and J. Kittler. 1982. Pattern Recognition: A Statistical Approach. Prentice-Hall.
Michael Dietz, Alexei Czeskis, Dirk Balfanz, and Dan S. Wallach. 2012. Origin-Bound Certificates: A Fresh

Approach to Strong Client Authentication for the Web. In Proceedings of the 21th USENIX Security
Symposium, Bellevue, WA, USA, August 8-10, 2012. 317–331.

Charles Elkan. 2001. The Foundations of Cost-Sensitive Learning. In In Proceedings of the Seventeenth
International Joint Conference on Artificial Intelligence. 973–978.

Dinei A. F. Florêncio and Cormac Herley. 2007. A large-scale study of web password habits. In International
Conference on World Wide Web (WWW). 657–666.

Seth Fogie, Jeremiah Grossman, Robert Hansen, Anton Rager, and Petko D. Petkov. 2007. XSS Attacks:
Cross Site Scripting Exploits and Defense. Syngress Publishing.

William F. Friedman. 1922. The index of coincidence and its applications to cryptanalysis. Cryptographic
Series.

Kevin Fu, Emil Sit, Kendra Smith, and Nick Feamster. 2001. The Dos and Don’ts of Client Authentication
on the Web. In 10th USENIX Security Symposium, August 13-17, 2001, Washington, D.C., USA.

Stuart Geman, Elie Bienenstock, and René Doursat. 1992. Neural networks and the bias/variance dilemma.
Neural Computation 4, 1 (January 1992), 1–58.

Thiago S. Guzella and Walmir M. Caminhas. 2009. A review of machine learning approaches to Spam filter-
ing. Expert Systems with Applications 36, 7 (2009), 10206–10222.

Jeff Hodges, Collin Jackson, and Adam Barth. 2012. HTTP Strict Transport Security. Available online at
http://tools.ietf.org/html/rfc6797. (2012).

Collin Jackson and Adam Barth. 2008. ForceHTTPS: protecting high-security web sites from network at-
tacks. In International Conference on World Wide Web (WWW). 525–534.

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2014. An Introduction to Statistical
Learning: With Applications in R. Springer Publishing Company, Incorporated.

Nathalie Japkowicz and Shaju Stephen. 2002. The class imbalance problem: A systematic study. Intelligent
Data Analysis 6, 5 (2002), 429–449.

Martin Johns, Bastian Braun, Michael Schrank, and Joachim Posegga. 2011. Reliable protection against
session fixation attacks. In ACM Symposium on Applied Computing (SAC). 1531–1537.

Martin Johns and Justus Winter. 2006. RequestRodeo: client side protection against session riding. Proceed-
ings of the OWASP Europe Conference (2006), 5–17.

Michal Kranch and Joseph Bonneau. 2015. Upgrading HTTPS in mid-air: an empirical study of strict trans-
port security and key pinning. In Network and Distributed System Symposium (NDSS). To appear.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.



A Supervised Learning Approach to Protect Client Authentication on the Web A:29

E. Kreyszig. 1979. Advanced Engineering Mathematics (4 ed.). Wiley.
Thomas M. Mitchell. 1997. Machine Learning (1 ed.). McGraw-Hill, Inc., New York, NY, USA.
Nick Nikiforakis, Wannes Meert, Yves Younan, Martin Johns, and Wouter Joosen. 2011. SessionShield:

Lightweight Protection against Session Hijacking. In Engineering Secure Software and Systems (ES-
SoS). 87–100.

Claudia Perlich, Foster Provost, and Jeffrey S. Simonoff. 2003. Tree induction vs. logistic regression: a
learning-curve analysis. Journal of Machine Learning Research 4 (December 2003), 211–255.

M. M. Rahman and D. N. Davis. 2013. Addressing the class imbalance problem in medical datasets. Inter-
national Journal of Machine Learning and Computing 3, 3 (2013), 224–228.

Franziska Roesner, Tadayoshi Kohno, and David Wetherall. 2012. Detecting and defending against third-
party tracking on the web. In USENIX Conference on Networked Systems Design and Implementation
(NSDI). 1–14. http://dl.acm.org/citation.cfm?id=2228298.2228315

G. Salton and M. J. McGill. 1986. Introduction to Modern Information Retrieval. McGraw-Hill, Inc., New
York, NY, USA.

Claude Shannon. 1948. A Mathematical Theory of Communication. The Bell System Technical Journal 27
(1948), 379–423. http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf

Robin Sommer and Vern Paxson. 2010. Outside the Closed World: On Using Machine Learning for Network
Intrusion Detection. In IEEE Symposium on Security and Privacy. 305–316.

Shuo Tang, Nathan Dautenhahn, and Samuel T. King. 2011. Fortifying web-based applications automati-
cally. In ACM Conference on Computer and Communications Security (CCS). 615–626.

Gary M. Weiss, Kate McCarthy, and Bibi Zabar. 2007. Cost-Sensitive Learning vs. Sampling: Which is Best
for Handling Unbalanced Classes with Unequal Error Costs? (2007).

Yuchen Zhou and David Evans. 2010. Why Aren’t HTTP-Only Cookies More Widely Deployed. In Web 2.0
Security and Privacy Workshop (W2SP’10).

APPENDIX
A.1. Challenges of a Supervised Learning Approach
In the following, we discuss the main aspects which have to be carefully considered
when designing any supervised learning solution, with a special emphasis on the
choices we applied to our specific setting. We use the same notation introduced in
Section 5.1 above.

A.1.1. Choosing the Best Features. A key aspect which deserves attention concerns the
choice of the feature space X used to represent instances: indeed, the selected features
are crucial for any classifier to be effective. Intuitively, we want to identify highly dis-
tinctive properties of the cookies, which would allow the learned classifier to correctly
discriminate between instances belonging to different classes. To tackle this problem,
we first perform a preliminary manual investigation of a subset of our ground truth
and we identify apparently promising features; then, we compute some basic statistics
on each of those features with respect to the two classes of cookies from the entire
dataset, to get sense of how much discriminant each feature is.

Based on this preliminary investigation, we identify an initial set of apparently use-
ful features and we then apply an automatic feature selection process to identify the
subset of the features which most positively affect the learning of our classifier. Reduc-
ing the set of features is important for three reasons: first, it makes the classification
process faster; second, it helps avoiding the risk of overfitting the training set (see be-
low); and third, it provides a better understanding of the classification problem. We
report the details and the results of this process in Section 5.2.

A.1.2. Bias-Variance Tradeoff. From a formal perspective, finding a good estimate λ ◦ χ
of the unknown labeling function ` is actually an optimization problem which usually
requires to minimize a cost function. In most cases, the cost function to minimize is
the training error rate (or in-sample error rate), namely the rate of mistakes the clas-
sifier does when labeling instances of the training set Dtrain. A misclassification occurs
whenever the actual class label of a cookie c is different from the class label predicted
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by the classifier, i.e., whenever `(c) 6= λ(χ(c)). In practice, however, we would like to
choose the classifier with the smallest test error rate (or out-of-sample error rate), which
measures the misclassification rate for instances that are not part of the training set.

Unfortunately, a classifier with the smallest training error rate does not necessarily
turn into one with the smallest test error rate: this issue is also known as the bias-
variance tradeoff [Geman et al. 1992]. Roughly speaking, we desire the ability of a
learning algorithm to perform effectively on the training set (i.e., preventing under-
fitting), while being flexible enough to fit other datasets than the one on which it is
trained (i.e., avoiding overfitting).

An immediate way to tackle this problem is to use the so-called hold-out method.
The idea is to randomly split the ground truth G into two separate datasets: Gtrain ⊂ G
and Gtest = G \ Gtrain. The former is used to build the training set Dtrain for learning,
i.e., to compute an estimate of ` as λ ◦ χ, whereas the latter is used to build the test set
Dtest, employed to measure the test error rate for the found estimate λ◦χ. Though con-
ceptually simple and easy to implement, this approach is very sensitive to the choice
of the specific splitting and tends to overestimate the true test error rate. To obtain a
less biased estimate, k-fold cross-validation is adopted [Devyver and Kittler 1982].

The idea behind k-fold cross-validation is to use the whole ground truth of observa-
tions to derive the initial training set Dtrain, so that Gtrain = G. Then, Dtrain is randomly
partitioned into k equally-sized subsets (folds): k− 1 subsets are used as training data
to learn a classification model and the remaining subset is retained as the hold-out
data to assess the model as described above. The cross-validation process is repeated
k times, with each of the k subsets used exactly once as the test set: the k validation
errors so obtained are then averaged to produce a single estimate of the test error rate.
In this paper, we use a stratified 10-fold cross-validation strategy, which ensures the
same distribution of classes in each fold as in the original dataset. This helps getting
more reliable error estimates at each stage of cross-validation, and overall a better
estimate of the test error, especially when instances are unevenly distributed on the
classes like in our case. For a complete discussion on the cross-validation approach, we
refer the reader to [James et al. 2014].

A.1.3. Dealing with Skewed Classes. A preliminary investigation of our ground truth
immediately reveals that the distribution of cookies on the two classes of interest is
skewed: approximately, there are 7 non-authentication cookies for each authentica-
tion cookie. Unfortunately, it is well-known that a classifier learned from a training
set which shows a strongly skewed class distribution may lead to poor and misleading
performances [Japkowicz and Stephen 2002]. This is caused by the fact that, as stated
above, most supervised learning algorithms operate by minimizing the misclassifica-
tion rate on the training set, hence they typically tend to predict the most frequent
class. In order to deal with this issue, a cost model is usually introduced [Elkan 2001].

Inspired by the well-known confusion matrix introduced in Section 4 to assess the
performance of a binary classifier, cost-sensitive learning approaches introduce a cost
matrix, so that a classifier is penalized when it incorrectly classifies an instance. The
cost matrix provides the costs associated with each of the four possible outcomes shown
in the confusion matrix, which we denote by γtp , γfp , γtn , γfn . In the typical scenario,
no costs are assigned to correct predictions, i.e., γtp = γtn = 0, while γfp , γfn > 0. If
γfp 6= γfn , the model adopts a non-uniform cost model, where γfn > γfp or γfp > γfn
on the basis of the type of error we want to penalize the most. Usually, the cost of
misclassifying an instance of the rarest class is larger than the cost of misclassifying
an instance of the most frequent class (i.e., γfn > γfp). More specifically, assuming
that p and n are the number of positive and negative instances in the training set,
respectively, the cost matrix adopted in the present paper is shown in Table XIV.
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Table XIV: Cost matrix
Predicted

positive negative

Actual
positive γtp : 0 γfn :

min(p, n)

p

negative γfp :
min(p, n)

n
γtn : 0

Since p � n (332 vs. 2,132), it turns out that γfn > γfp , which means that our cost
model penalizes more the errors affecting instances of the positive class.

Given a cost matrix, cost-sensitive learning may be implemented in two ways. The
first strategy, known as sampling, factors out the cost model by altering the original
training set, so that the initial class distribution is altered proportionally to the (asym-
metric) penalties the classifier should pay if a misclassification error occurs. Two ba-
sic sampling methods can be used: oversampling and undersampling. In the former
(resp. latter), instances of the less (resp. more) frequent class are replicated in (resp.
discarded from) the training set to make it more balanced. The second viable cost-
sensitive learning strategy, instead, suggests to plug the cost model directly into the
learning algorithm, thus tweaking the cost function to be optimized upon learning.

Choosing the best cost-sensitive learning strategy is still subject of debate [Chawla
2005; Weiss et al. 2007; Rahman and Davis 2013]. There are known disadvantages as-
sociated with the use of sampling to implement cost-sensitive learning. The drawback
with undersampling is that it discards potentially useful data, whereas with over-
sampling the risk of overfitting increases, since it replicates exact copies of existing
instances. We thus decide to directly include the cost model into the learning process:
this restricts the choice of the possible classifiers, since not every classifier supports
cost-sensitive learning, but still we are able to identify good performing classifiers for
our problem. In Section 5.3 we experimentally confirm that the skewness of class dis-
tribution does negatively impact on the classification process and we prove that our
choice of the cost matrix is appropriate to deal with this issue.
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