
Logical Foundations of Secure Resource
Management in Protocol Implementations

Michele Bugliesi1, Stefano Calzavara1, Fabienne Eigner2, and Matteo Maffei2

1 Università Ca’ Foscari Venezia
2 Saarland University

Abstract. Recent research has shown that it is possible to leverage
general-purpose theorem proving techniques to develop powerful type
systems for the verification of a wide range of security properties on ap-
plication code. Although successful in many respects, these type systems
fall short of capturing resource-conscious properties that are crucial in
large classes of modern distributed applications. In this paper, we pro-
pose the first type system that statically enforces the safety of crypto-
graphic protocol implementations with respect to authorization policies
expressed in affine logic. Our type system draws on a novel notion of
“exponential serialization” of affine formulas, a general technique to pro-
tect affine formulas from the effect of duplication. This technique allows
to formulate an expressive logical encoding of the authentication mech-
anisms underpinning distributed resource-aware authorization policies.
We further devise a sound and complete type checking algorithm. We
discuss the effectiveness of our approach on a case study from the world
of e-commerce protocols.

1 Introduction

Verifying the security of modern distributed applications is an important and
complex challenge, which has attracted the interest of a growing research com-
munity audience over the last decade. Among various static analysis approaches,
security type systems have played a major role, since they are able to statically
provide security proofs for an unbounded number of concurrent executions, even
in presence of an active attacker; they are modular, and scale remarkably well
in practice. Recent research has shown that it is possible to leverage general-
purpose theorem proving techniques to develop powerful type systems for the
verification of a wide range of security properties on application code, thus nar-
rowing the gap between the formal model designed for the analysis and the
actual implementation of the protocols [4,2,26]. The integration between type
systems and theorem proving is achieved by resorting to a form of dependent
types, known as refinement types. A refinement type {x : T | F (x)} qualifies
the structural information of the type T with a property specified by the logical
formula F : a value M of this type is a value of type T such that F (M) holds.

Authorization systems based on refinement types use the refinement formu-
las to express (and gain static control of) the credentials associated with the
data and the cryptographic keys involved in the authorization checks. Clearly,
the expressiveness of the resulting analysis hinges on the choice of the under-
lying logic, and indeed several logics have been proposed for the specification

and verification of security properties [14]. A number of proposals have thus
set logic parametricity as a design goal, to gain modularity and scalability of
the resulting systems. Though parametricity is in principle a sound and wise
choice, current attempts in this direction draw primarily (if not exclusively)
on classical (or intuitionistic) logical frameworks. Classical logic, however, is
unsuitable to express several interesting resource-aware authorization policies,
such as those based on consumable credentials, or predicating over access counts
and/or usage bounds [16,10]. The natural choice for expressing and reasoning
about such classes of policies are instead substructural logics, such as linear and
affine logic [17,29]. On the other hand, integrating substructural logics with ex-
isting refinement type systems for distributed authorization is challenging, as
one must build safeguards against the ability of an attacker to duplicate the
data exchanged over the network, and correspondingly duplicate the associated
credentials, thus undermining their bounded nature [13].

Contributions. In this paper, we present an affine refinement type system for
RCF [4], a concurrent λ-calculus which can be directly mapped to a large subset
of a real functional programming language like F#. The type system guarantees
that well-typed programs comply with any given authorization policy expressed
in affine logic, even in the presence of an active opponent.

This type system draws on the novel concept of exponential serialization, a
general technique to protect affine formulas from the effect of duplication. This
technique makes it possible to factor the authorization-relevant invariants of the
analysis out of the type system, and to characterize them directly as proof obli-
gations for the underlying affine logical system. This leads to a rather general
and modular design of the system, and sheds new light on the logical founda-
tions of standard cryptographic patterns underpinning distributed authorization
frameworks. Furthermore, the concept of serialization enhances the expressive-
ness of the type system, capturing programming patterns out of the scope of
many substructural type systems.

The clean separation between typing and logical entailment has the additional
advantage of enabling the formulation of an algorithmic version of our system,
in which the non-deterministic proof search distinctive of substructural type
systems can be dispensed with and expressed in terms of a single proof obligation
to be discharged to an external theorem prover. This is the key to achieve an
efficient implementation of our analysis technique. We prove the algorithmic
version sound and complete.

We show the effectiveness of the type system on a realistic case study, namely
the EPMO electronic purchase protocol proposed in [20]. The proof obligation
generated by the type derivation for the customer code is validated by the linear
logic theorem prover llprover [27] in less than 20 ms.

Related work. Several papers develop expressive type systems for (variants of)
RCF [6,4,15,2,26] but, with the exception of F∗ [26], they do not support resource-
aware authorization policies: in fact, even for simple linearity properties like in-
jective agreement they rely on hand-written proofs [5]. F∗ [26] is a dependently
typed functional language for secure distributed programming, featuring refine-

ment types to reason about authorization policies and affine types to reason
about stateful computations on affine values. Similarly to companion proposals
for RCF, the type system of F∗ assumes the existence of the contraction rule in
the underlying logic, hence it does not support authorization policies built over
affine formulas. While some simple authentication patterns (e.g., basic nonce
handshakes) may certainly be expressed by encoding affine predicates in terms
of affine values, other more complex authentication mechanisms are much harder
to handle in these terms. The EPMO protocol we analyze in Section 6 provides
one such case, as (i) the nonce it employs may not be construed as an affine
value because it is used twice, and (ii) the logical formulas justified by crypto-
graphic message exchanges are more structured than simple predicates. Though
it might be possible to come up with sophisticated encodings of these authenti-
cation mechanisms in the programming language (by resorting to, e.g., pairs of
affine tokens to encode a double usage of the same nonce and special functions to
eliminate logical implications), such encodings are hard to formulate in a general
manner and, we argue, are much better expressed in terms of policy annotations
than in some ad-hoc programming pattern.

Bhargavan et al. [7] propose a technique for the verification of F# protocol
implementations by automatically extracting ProVerif models [9]. Remarkably,
the framework can deal with injective agreement. On the other hand, the analysis
carried out with ProVerif is not modular and has been shown less robust and
scalable than type-checking [6]. Furthermore, the fragment of F# considered is
rather restrictive: for instance, it does not include higher-order functions and
admits only very limited uses of recursion and state.

A formal account on the integration of refinement types and substructural
logics was first proposed by Mandelbaum et al. [21] with a system for local
reasoning about program state built around a fragment of intuitionistic linear
logic. Later, Bierhoff and Aldrich developed a framework for modular type-state
checking of object-oriented programs [8,25,23]. Contrary to our proposal, none
of these type systems deals with the presence of hostile (or untyped) program
components, or attackers, a feature that would require fundamental changes in
these systems and has deep impact on the type rules and the analysis technique.

Tov and Pucella [28] have recently shown how to use behavioral contracts
to link code written in an affine language to code in a conventionally typed
language. The idea is to coerce affine values to non-affine ones that can be
shared with the context, but can still be reasoned about safely using dynamic
access counts. There are intriguing similarities between this approach and the
usage of nonces and session keys to enforce freshness in a distributed setting,
which are worth investigating in the future. The two type systems are, however,
fundamentally different, since our present work deals with an affine refinement
logic and considers an adversarial setting, which makes a precise comparison
hard to formulate.

There exist a number of types and effects systems targeted at the analysis of
authenticity properties of cryptographic protocols [18,19,11]. These type systems
incorporate ad-hoc mechanisms to deal with nonce handshakes and, thus, to
enforce injective agreement properties. Our exponential serialization technique
can be seen as a logic-based generalization of such mechanisms, independent of

the language and type system. As a consequence, our type system is similarly
able to verify authenticity in terms of injective agreement, while allowing for
expressing also a number of more sophisticated properties involving access counts
and usage bounds. As a downside, the current formulation of our type system
does not allow to validate some specific nonce-handshake idioms, like the SOSH
scheme [19]. Still, this can be recovered by extending our type system with union
and intersection types, as shown in [2].

In a previous work [13], we made initial steps towards the design of a sound
system for resource-sensitive authorization, drawing on techniques from type
systems for authentication and an affine extension of existing refinement type
systems for the applied pi-calculus [1]. That work aims at analyzing crypto-
graphic protocols as opposed to their implementations. Furthermore, the type
system is designed around a specific cryptographic library: the consequence is
that extending the analysis to new primitives requires significant changes in the
soundness proof of the type system. In contrast, the usage of RCF in this work
allows us to encode cryptography in the language using a standard sealing mech-
anism (cf. Section 5.8), which makes the analysis technique easily extensible to
new cryptographic primitives. Finally, the non-standard nature of our previous
type system makes it difficult to devise an efficient algorithmic variant.

Structure of the paper. Section 2 overviews the challenges and the most impor-
tant aspects of our theory on a simple example. Section 3 presents the meta-
theory of exponential serialization. Section 4 reviews RCF. Section 5 outlines
the type system and our treatment of formal cryptography. Section 6 presents
the case study. Section 7 discusses the algorithmic version of our type system.
Section 8 concludes. Due to space constraints, we refer to the long version [12]
for the complete formalization of the type system and its algorithmic variant,
full proofs, and a discussion on a further case study (the Kerberos protocol).

2 Overview of the Framework

We give an intuitive overview of our approach, based on a simple example of
a distributed protocol involving a streaming service S and a client C that sub-
scribes to the service and pays for watching a movie, chosen from a database of
available contents.

Verifying the protocol with a refinement type system requires to first dec-
orate the protocol with security annotations, structured as assumptions and
assertions. The former introduce logical formulas which are assumed to hold
at a given point (and express the credentials available at the client’s side); the
latter specify logical formulas which are expected to be entailed by the previ-
ously introduced assumptions (and are employed as guards for the resources at
the server end). For our example, we start by assuming the authorization policy
encoded by the formula below:

∀x, y.(Paid(x, $1)⇒Watch(x, y))

This is a first-order logic formula stating that each client paying one dollar can
watch any movie from the database. We can then encode C and S in RCF as

follows, using some standard syntactic sugar to enhance readability:

C , λxC . λxaddS . λxm. λxk. assume Paid(xC , $1);

let xmsg = sign (xC , xm) xk in send xaddS xmsg

S , λxS . λxaddS . λxvk . let ymsg = recv xaddS in

let (zC , zm) = verify ymsg xvk in assert Watch(zC , zm)

C and S are structured as functions abstracting over the parameters defined
by the protocol specification. Initially, C makes the assumption Paid(xC , $1),
invokes the function sign to produce a signed request for movie xm under her
private key xk, and sends it to S on channel xaddS . When S receives the message,
she invokes the function verify to check the signature using the public key xvk ,
retrieves the two components of the request zC and zm, and asserts the formula
Watch(zC , zm). Crucially, the assertion by S is done in terms of the variables
zC and zm occurring in her code, not of the variables xC and xm reported in
the code of C. The specification will be judged safe if for all protocol runs the
assertion made at the server side is entailed by the assumption made at the client
and the underlying authorization policy.

Indeed, the specification can be proved safe, but a closer look shows that
the authorization policy is too liberal to enforce the expected access constraints.
In fact, we have ∀x, y.(Paid(x, $1) ⇒ Watch(x, y)),Paid(C, $1) ` Watch(C,m) ∧
Watch(C,m′), i.e., a single payment by C allows her to arbitrarily access the
movie database for unboundedly many movies. In other words, the policy does
not protect against replay attacks (to which the protocol is indeed exposed).

Affine logic for specification. As we noted earlier, the problem may be addressed
by resorting to substructural logics, which capture the intended interpretation
of Paid(x, $1) as a consumable credential (i.e., a resource).

We focus on a simple, yet expressive, fragment of intuitionistic affine logic [29]:

F ::= A | F ⊗ F | F (F | ∀x.F | !F | 0
A ::= p(t1, . . . , tn) | t = t′ p of arity n in Σ
t ::= x | f(t1, . . . , tn) f of arity n in Σ

This is the multiplicative fragment of affine logic with conjunction (⊗) and impli-
cation ((), the universal quantifier (∀), the exponential modality (!) to express
persistent truths, false (0) to express negation, and equality. We presuppose an
underlying signature Σ of predicate symbols, ranged over by p, and function
symbols, ranged over by f . The set of terms, ranged over by t, is defined by
variables and function symbols as expected. We mention here that RCF terms
can be encoded into the logic using the locally nameless representation of syntax
with binders, as shown by Bengtson et al. [4]. The true boolean predicate is writ-
ten 1 and encoded as () = (), where () is the nullary function symbol encoding
the RCF unit value. Atomic formulas, noted A in the above productions, consist
of predicates and equalities.

We show some selected rules of our entailment relation in Table 1. Intuitively,
proofs in affine logic must use each formula in the environment at most once.

(Weak)
∆ ` F ′

∆,F ` F ′

(Contr)
∆, !F, !F ` F ′

∆, !F ` F ′

(⊗-Left)
∆,F1, F2 ` F ′

∆,F1 ⊗ F2 ` F ′

(⊗-Right)
∆1 ` F1 ∆2 ` F2

∆1,∆2 ` F1 ⊗ F2

((-Left)
∆1 ` F1 ∆2, F2 ` F ′

∆1, F1 (F2,∆2 ` F ′

((-Right)
∆,F1 ` F2

∆ ` F1 (F2

(!-Right)
∆ ` F ∆ = !F1, . . . , !Fn

∆ ` !F

Table 1. The entailment relation ∆ ` F (selected rules)

The duplication of resources is prevented by the splitting of environments among
the premises of each rule. The presence of the weakening rule distinguishes our
relation from linear logic, in which all formulas in the environment have to be
used exactly once in the proof.

We can then re-express the authorization policy for our example as the
persistent formula: !∀x, y.(Paid(x, $1) (Watch(x, y)), stating that each pay-
ment grants access to a single movie. In affine logic, given the environment
∀x, y.(Paid(x, $1) (Watch(x, y)),Paid(C, $1), one can derive Watch(C,m) but
not Watch(C,m) ⊗ Watch(C,m′), since the latter derivation would require a
double usage of the affine hypothesis Paid(C, $1).

Affine refinement types for verification. We move on to typing the previous RCF
code, to illustrate how refinement types are employed to provide a static account
of the transfer of credentials required for authorization. In our example, this
amounts to showing how to statically transfer the payment assumption made by
C to S. That assumption is needed by S to justify (i.e., type-check) her assertion
according to the underlying authorization policy; the transfer of the assumption,
in turn, is achieved by giving xk and xvk suitable types.

Namely, assuming xc : T1 and xm : T2, the existing refinement type systems
would give xk type SigKey(x : T1 ∗{y : T2 | Paid(x, $1)}), formalizing that xk is a
private key intended to sign a pair bearing the expected formula as a refinement;
xvk , instead, would be given the corresponding verification key type3. The type
of xk requires C to assume the formula Paid(xC , $1) upon signing, while the type
of xvk allows S to retrieve the formula Paid(zC , $1) upon verification, which is
enough to entail Watch(zC , zm) and make the protocol type-check.

With affine formulas, however, such a solution deserves some special care
[13], since if Paid(zC , $1) is extracted with no additional constraint by the type
of xvk , a replay attack mounted by an opponent could fool S into reusing the
formula multiple times. We discuss next how to deal with such issues.

2.1 Exponential serialization

There are various possibilities to protect the previous protocol against replay
attacks. Here, we decide to run the protocol on top of a nonce-handshake, leading
3 In RCF we do not have any primitive notion of cryptography and, therefore, we do
not have types for cryptography in our type system. We still use this notation to
simplify the presentation and we discuss the encoding of these types in Section 5.8.

to the following updated RCF code:

C , λxC . λxaddC . λxaddS . λxm. λxk.

let yn = recv xaddC in assume Paid(xC , $1);

let xmsg = sign (xC , xm, yn) xk in send xaddS xmsg

S , λxaddS . λxaddC . λxvk . let xn = mkNonce() in send xaddC xn;

let ymsg = recv xaddS in let (zC , zm, zn) = verify ymsg xvk in

if xn = zn then assert Watch(zC , zm)

mkNonce , λ_ : unit. let xf = mkFresh() in assume N(xf);xf

We assume to be given access to a function mkFresh : unit → bytes, which
generates fresh bit-strings. The function mkNonce : unit → {x : bytes | N(x)}
is a wrapper around mkFresh, which additionally assumes the formula N(xf)
over the return value xf of such a function. This new assumption is reflected
by the refined return type of mkNonce. Then, the typing of the key xk may be
structured as follows:

xk : SigKey(x : T1 ∗ y : T2 ∗ {z : bytes | ! (N(z)(Paid(x, $1))})

to protect the affine formula Paid(xC , $1) with the guard N(xn): if N(xn) can
be proved only once, also Paid(xC , $1) can be extracted only once, irrespectively
of the number of signature verifications performed. Remarkably, the guarded
version of Paid(xC , $1) is an exponential formula, i.e., a stable truth: as such, it
can be safely transmitted over the network, unaffected by replay attacks.

There is one problem left: the assumption Paid(xC , $1) available at the client
C does not entail the guarded, exponential formula ! (N(xn) (Paid(xC , $1)),
which C needs to prove in order to use the key xk to transmit her request. This is
indeed the most intriguing bit of our construction: to construct the desired proof,
we may introduce a serializer for Paid(xC , $1) among the assumptions of C, to
automatically provide for the creation of the guarded version of Paid(xC , $1).
The serializer has the form:

!∀x, y.(Paid(x, $1)(!(N(y)(Paid(x, $1)))

that is, an exponential and universally quantified formula, serving for multi-
ple communications of different predicates built over Paid. Serializers may be
generated automatically for any given affine formula, and introducing them as
additional assumptions is sound, in that it does not affect the set of entailed
assertions, as we discuss in the next section. Furthermore, serializers capture
a rather general class of mechanisms for ensuring timely communications, like
session keys or timestamps, which are all based on the consumption of an affine
resource to assess the freshness of an exchange.

3 Metatheory of Exponential Serialization

In principle, the introduction of serializers among the assumed hypotheses could
alter the intended semantics of the authorization policy, due to the subtle in-
terplay of formulas through the entailment relation. Here, we isolate sufficient

conditions under which exponential serialization leads to a sound protection
mechanism for affine formulas.

We presuppose that the signature Σ of predicate symbols is partitioned in
two sets ΣA and ΣC . Atomic formulas A have the form p(t1, . . . , tn) for some
p ∈ ΣA; control formulas C have the same form, though with p ∈ ΣC . We
identify various categories of formulas defined by the following productions.

B ::= A | B ⊗B | B(B | ∀x.B | !B base formulas
P ::= B | C | P ⊗ P payload formulas
G ::= C (P | !G guarded formulas

Base formulas B are formulas of an authorization policy, which are used as se-
curity annotations in the application code. For simplicity, we dispense in this
section with equalities and 0, since they are used in the analysis but they are
never assumed in the code. (Notice that compromised principals can be modelled
also without negation [4].) Payload formulas P are formulas which we want to
serialize for communication over the untrusted network. Importantly, payload
formulas comprise also control formulas, which allows, e.g., for the transmission
of fresh nonces to remote verifiers: this pattern is present in several authentica-
tion protocols [18]. Finally, guarded formulas G are used to model the serialized
version of payload formulas, suitable for transmission. We let S denote an ar-
bitrary serializer of the form !∀x̃.(P (!(C (P)) and we write ∆ ` Fn for
∆ ` F ⊗ . . .⊗ F (n times), with the proviso that ∆ ` F 0 stands for ∆ 0 F .

Given a multiset of assumptions ∆, the extension of ∆ with the serializers
S1, . . . , Sn is sound if ∆ and its extension derive the same payload formulas. As
it turns out, this is only true when ∆ satisfies additional conditions, which we
formalize next.

Definition 1 (Rank). Let rk : ΣC → N be a total, injective function. Given a
formula F , we define the rank of F with respect to rk, noted rk(F), as follows:

rk(p(t1, . . . , tn)) = rk(p) if p ∈ ΣC

rk(F1 ⊗ F2) = min {rk(F1), rk(F2)}
rk(F) = +∞ otherwise

Definition 2 (Stratification). A formula F is stratified with respect to a rank
function rk if and only if: (i) F = C (P implies rk(C) < rk(P); (ii) F = P (
G implies that G is stratified; (iii) F = ∀x.F ′ implies that F ′ is stratified; (iv)
F = !F ′ implies that F ′ is stratified. We assume F to be stratified in all the
other cases. A multiset of formulas ∆ is stratified if and only if there exists a
rank function rk such that each formula in ∆ is stratified with respect to rk.

For instance, the multiset C1 (C2, C2 (C3 is stratified, given an appro-
priate choice of a rank function, while the multiset C1 (C2, C2 (C1 is not
stratified. Stratification is required precisely to disallow such circular dependen-
cies among control formulas in the proof of our soundness result, Theorem 1
below. To prove that result, we need a further definition:
Definition 3 (Guardedness). Let ∆ = P1, . . . , Pm, S1, . . . , Sn be a stratified
multiset of formulas. We say that ∆ is guarded if and only if ∆ ` Ck implies
k ≤ 1 for any control formula C.

M,N ::= x | () | (M,N) | λx.E | h M values (h ∈ {inl, inr, fold})
D,E ::= M | M N | M = N | let x = E in E′ | expressions

let (x, y) =M in E |
matchM with h x then E else E′ |
(νa)E | E � E′ | a!M | a? | assume F | assert F

Table 2. Syntax of RCF

The intuition underlying guardedness may be explained as follows. Consider
a multiset∆, a payload formula P such that∆ ` P and let S = !∀x̃.(P (!(C (
P)) be a serializer for P . Now, the only way that S may affect derivability is by
allowing the duplication of the payload formula P via the exponential implication
!(C (P). However, this effect is prevented if we are guaranteed that the control
formula C guarding P is derived at most once in ∆: that is precisely what the
guardedness condition ensures.

Theorem 1 (Soundness of Exponential Serialization). Let ∆ = P1, . . . , Pm.
If ∆′ = ∆,S1, . . . , Sn is guarded and ∆′ ` P , then ∆ ` P for all P .

While guardedness is convenient to use in the proof of Theorem 1, it is clearly
an undecidable condition. Fortunately, it is not difficult to isolate a sufficient
criterion to decide whether a multiset of formulas is guarded based on a simple
syntactic check.

Proposition 1. If ∆ = P1, . . . , Pm, S1, . . . , Sn is stratified and the control for-
mulas occurring in P1, . . . , Pm are pairwise distinct, then ∆ is guarded.

4 Review of RCF

The syntax of values and expressions of RCF [4] is overviewed in Table 2. We
assume collections of names (a, b, c,m, n) and variables (x, y, z). Values include
variables, unit, pairs, functions and constructions; constructors account for the
creation of standard sum types and iso-recursive types. Expressions of RCF in-
clude standard λ-calculus constructs like values, applications, equality checks,
lets, pair splits, and pattern matching, as well as primitives for concurrent,
message-passing computations. For space reasons, we keep the presentation in-
tuitive and mostly informal (we refer to [4] and the long version for complete
details). The semantics of expressions is standard, so we just discuss the RCF-
specific constructs. Expression (νa)E generates a fresh channel name a and then
behaves as E. Expression E � E′ evaluates E and E′ in parallel, and returns
the result of E′. Expression a!M asynchronously outputs M on channel a and
returns (). Expression a? waits until a term N is available on channel a and
returns N .

Definition 4 (Safety). A closed expression E is safe if and only if, in all
evaluations of E, the conjunction of the asserted formulas is entailed by the
introduced assumptions.

We let an opponent be any closed expression of RCF which does not contain
any assumption or assertion. Our goal is to guarantee that safety holds, despite
the best efforts of an active opponent.

Definition 5 (Robust Safety). A closed expression E is robustly safe if and
only if, for any opponent O, the application O E is safe4.

5 The Type System

Our refinement type system builds on previous work by Bengtson et al. [4],
extending it to guarantee the correct usage of affine formulas and to enforce our
revised notion of (robust) safety.

5.1 Types, typing environments, and base judgements

The syntax of types is defined as follows. The unit value is given type unit. Sum
types have form T +U , iso-recursive types are denoted by µα. T . Type variables
are denoted by α. There exist various forms of dependent types: a function of
type x : T → U takes as an input a value M of type T and returns a value of
type U{M/x}; a pair (M,N) has type x : T ∗ U if M has type T and N has
type U{M/x}; a value M has a refinement type {x : T | F} if M has type T
and the formula F{M/x} holds true. We use type Un , unit to model data that
may come from, or be sent to the opponent, as it is customary for security type
systems. Type bool , unit+ unit is inhabited by true , inl() and false , inr().

Our type system comprises several typing judgements of the form Γ ;∆ ` J ,
where Γ ;∆ is a typing environment collecting all the information which can be
used to derive J . In particular, Γ contains the type bindings, while ∆ comprises
logical formulas that are known to hold at run-time. Formally, we let Γ be an
ordered list of entries µ1, . . . , µn and ∆ be a multiset of affine logic formulas.
Each entry µi in Γ denotes either a type variable (α), a kinding annotation
(α :: k), or a type binding for channels (a l T) or variables (x : T).

We use the judgement Γ ;∆ ` � to denote that the typing environment Γ ;∆
is well-formed, i.e., it satisfies some standard syntactic conditions (for instance,
it does not contain duplicate type bindings for the same variable). The only
remarkable point in the definition of Γ ;∆ ` � is that we forbid variables in Γ to
be mapped to a refinement type: indeed, when extending a typing environment
with a new type binding x : T , we use the function ψ to place the structural
type information in Γ and the function forms to place the associated refinements
in ∆. As an example, we have ψ({y : unit | F (y)}) = unit and forms(x : {y :
unit | F (y)}) = F (x).

Finally, we use the judgement Γ ;∆ ` F to denote that the formulas in ∆
entail F . The formal definition also syntactically checks that Γ ;∆ is well-formed.

5.2 Environment rewriting

All the type information stored in Γ can be used arbitrarily often in the deriva-
tion of any judgement of our type system. The treatment of the formulas in ∆,
instead, is subtler, since affine resources must be used at most once during type-
checking. In particular, we need to split environment ∆ among subderivations
4 Here, the notation O E is standard syntactic sugar for let x = O in let y = E in x y.

to avoid the duplication of resources. The general structure of the rules of our
system will thus be the following:

Γ ;∆1 ` J1 . . . Γ ;∆n ` Jn Γ ;∆ ↪→ Γ ;∆1, . . . ,∆n

Γ ;∆ ` J

where Γ ;∆ ↪→ Γ ;∆′ denotes the environment rewriting of Γ ;∆ to Γ ′;∆′.
The environment rewriting relation is defined as:

(Rewrite)
∆ ` ∆′ Γ ;∆ ` � Γ ;∆′ ` �

Γ ;∆ ↪→ Γ ;∆′

where we write ∆ ` F1, . . . , Fn to denote that ∆ ` F1 ⊗ . . . ⊗ Fn, with the
proviso that ∆ ` ∅ stands for ∆ ` 1. The adoption of the environment rewriting
relation as an house-keeping device for the formulas of ∆ greatly improves the
expressiveness of the type system in a very natural way. Interestingly, all the
non-determinism introduced by the application of the rewriting rules and the
splitting of the logical formulas among the premises can be effectively tamed by
the algorithmic type system presented in Section 7.

5.3 Kinding and subtyping

Security type systems often rely on a kinding relation to discriminate whether
or not messages of a specific type may be known to the attacker or received from
it. The kinding judgement Γ ;∆ ` T :: k denotes that type T is of kind k. Kind
k = pub denotes public messages which may be sent to the attacker, while kind
k = tnt characterizes tainted message which may come from the attacker. The
type Un is both public and tainted.

The subtyping judgment Γ ;∆ ` T <: U expresses the fact that T is a subtype
of U and, thus, values of type T can be used in place of values of type U . The
subtyping judgment makes public types subtype of tainted types and further
describes standard subtyping relations for types sharing the same structure (e.g.,
pair types are covariant and function types contra-variant in their arguments).

Our treatment of kinding and subtyping resembles other security type sys-
tems [4,2] and only differs in the management of affine formulas, which is similar
to the one we employ for typing values and expressions (see below).

5.4 Typing values

The typing judgement Γ ;∆ `M : T denotes that valueM is given type T under
environment Γ ;∆. Some selected rules for assigning types to values are given in
the top part of Table 3.

Rule (Val Refine) is a natural adaptation to an affine setting of the stan-
dard rule for refinement types. Rules (Val Fun) and (Val Pair) are more
interesting: notice that our type system does not incorporate affine types, in
that the type information in Γ is propagated to all the premises of a typing rule.
It is thus crucial for soundness that both pairs and functions are type-checked in

an exponential environment, i.e., an environment of the form !∆ = !F1, . . . , !Fn.
For instance, using an affine formula F from the typing environment to give a
pair (M,N) type x : T ∗ {y : U | F} would lead to an unbounded usage of F
upon replicated pair splitting operations on (M,N), as we discuss in Section 5.7.
Allowing for affine refinements but forbidding affine types confines the problem
of resource management to the formula environment, which simplifies the system
but might seem overly restrictive. In Section 5.7 we explain how the exponential
serialization technique can be leveraged to encode affine types in our framework
and, thereby, enhance its expressiveness.

5.5 Typing expressions

The typing judgement Γ ;∆ ` E : T denotes that expression E is given type T
under environment Γ ;∆. Some selected typing rules for expressions are given in
the bottom part of Table 3.

Rule (Exp Subsum) is a standard subsumption rule for expressions. In rule
(Exp Split) we exploit the logic to keep track of the performed pair splitting
operation and make type-checking more precise. Rule (Exp Assert) is standard
and requires an asserted formula F to be derivable from the formulas collected
by the environment.

The most complex rule is (Exp Fork): intuitively, when type-checking the
parallel expressions E1 � E2, assumptions in E1 can be used to type-check
assertions in E2 and vice-versa. On the other hand, we need to prevent an affine
assumption in E1 from being used twice to justify assertions in both E2 and E1.
This is achieved through the extraction relation, i.e., through the premises of
the form Ei [∆i | Di]: the extraction operation destructively collects all the
assumptions from the expression Ei and returns the expression Di obtained by
purging Ei of its assumptions. The typing environment is then extended with
the collected assumptions and partitioned to type-check the purged expressions
D1 and D2 respectively. The extraction relation is reported in Table 4. Notice
that we prevent formulas containing free names from being extracted outside of
the scope of the respective binders (cf. Extr Assume).

The extraction relation is also used to type-check any expression possibly con-
taining active assumptions, i.e., lets, restrictions, and assumptions themselves.

5.6 Formal results

The main soundness result of our type system is reported below.

Theorem 2 (Robust Safety). If ε; ∅ ` E : Un, then E is robustly safe.

Theorem 2 above and Theorem 1 in Section 3 (establishing the soundness of
exponential serialization) constitute the two building blocks of our static verifi-
cation technique, which we may finally summarize as follows.

Given any expression E, we identify the payload formulas assumed in E, and
construct the corresponding exponential serializers S1, . . . , Sn for those formulas.
Let then E? = assume S1 ⊗ · · · ⊗ Sn � E. By Theorem 2, if ε; ∅ ` E? : Un, then
E? is robustly safe. By Theorem 1, so is the original expression E, provided

(Val Var)
Γ ;∆ ` � (x : T) ∈ Γ

Γ ;∆ ` x : T

(Val Fun)
Γ, x : ψ(T); !∆′, forms(x : T) ` E : U Γ ;∆ ↪→ Γ ; !∆′

Γ ;∆ ` λx.E : x : T → U

(Val Pair)
Γ ; !∆1 `M : T Γ ; !∆2 ` N : U{M/x}

Γ ;∆ ↪→ Γ ; !∆1, !∆2

Γ ;∆ ` (M,N) : x : T ∗ U

(Val Refine)
Γ ;∆1 `M : T Γ ;∆2 ` F{M/x}

Γ ;∆ ↪→ Γ ;∆1,∆2

Γ ;∆ `M : {x : T | F}

(Exp Subsum)
Γ ;∆1 ` E : T
Γ ;∆2 ` T <: T ′

Γ ;∆ ↪→ Γ ;∆1,∆2

Γ ;∆ ` E : T ′

(Exp Let)
E ∅ [∆′ | E′] Γ ;∆1 ` E′ : T

Γ, x : ψ(T);∆2, forms(x : T) ` D : U x /∈ fv(U)
Γ ;∆,∆′ ↪→ Γ ;∆1,∆2

Γ ;∆ ` let x = E in D : U

(Exp Split)
Γ ;∆1 `M : x : T ∗ U

Γ, x : ψ(T), y : ψ(U);∆2, forms(x : T), forms(y : U), !((x, y) =M) ` E : V
{x, y} ∩ fv(V) = ∅ Γ ;∆ ↪→ Γ ;∆1,∆2

Γ ;∆ ` let (x, y) =M in E : V

(Exp Assume)
Γ ;∆,F ` assume 1 : T

F 6= 1

Γ ;∆ ` assume F : T

(Exp True)
Γ ;∆ ` �

Γ ;∆ ` assume 1 : unit

(Exp Assert)
Γ ;∆ ` F

Γ ;∆ ` assert F : unit

(Exp Fork)
E1

∅ [∆1 | D1] E2
∅ [∆2 | D2] Γ ;∆′

1 ` D1 : T1 Γ ;∆′
2 ` D2 : T2

∆,∆1,∆2 ↪→ ∆′
1,∆

′
2

Γ ;∆ ` E1 � E2 : T2

Notation: For ∆ = F1, . . . , Fn we write !∆ to denote !F1, . . . , !Fn.
Table 3. Typing values and expressions (selected rules)

that a further invariant holds for E?, namely that all multisets of formulas
assumed during the evaluation of E? are guarded. While this latter invariant
is not enforced by our type system, the desired guarantees may be achieved by
requiring that the assumption of control formulas be confined within system code
packaged into library functions providing certified access and management of the
capabilities associated with those formulas. The certification of the system code
provided by the library function, in turn, may be achieved with limited effort,
based on the syntactic guardedness condition provided by Proposition 1.

5.7 Encoding affine types

Here we discuss how we can take advantage of exponential serialization to encode
affine types and, thus, enhance the expressiveness of our type system. For the
sake of simplicity, we focus on the encoding of affine pairs.

(Extr Fork)
E1

ã [∆1 | D1] E2
ã [∆2 | D2]

E1 � E2
ã [∆1,∆2 | D1 � D2]

(Extr Let)
E1

ã [∆ | D1]

let x = E1 in E2
ã [∆ | let x = D1 in E2]

(Extr Res)

E a,b̃ [∆ | D]

(νa)E b̃ [∆ | (νa)D]

(Extr Assume)
F 6= 1 fn(F) ∩ {ã} = ∅
assume F ã [F | assume 1]

(Extr Exp)
no other rule applies

E ã [∅ | E]

Table 4. Extraction

Consider the typing environment Γ ;∆ , x : Un, y : Un;A(x), B(y). Standard
refinement type systems as [4] allow for the following type judgement:

Γ ;∆ ` (x, y) : {x : Un | A(x)} ∗ {y : Un | B(y)}

If the formulas A(x) and B(y) are interpreted as affine resources, however, the
previous type assignment is sound only as long as the pair (x, y) can be split only
once, since every application of rule (Exp Split) for pair destruction introduces
the formulas A(x), B(y) into the typing environment. Since our type system does
not feature affine types and has no way to enforce a single deconstruction of a
pair, it conservatively forbids the previous type judgement, in that the premises
of rule (Val Pair) require an exponential typing environment.

Nevertheless, the following type judgement is allowed by our type system:

x : Un, y : Un;A(x), B(y), S1, S2 ` (x, y) : {x : Un | A′(x)} ∗ {y : Un | B′(y)}

where A′(x) , !(P1(x)(A(x)) and B′(y) , !(P2(y)(B(y)) are the serialized
variants of A(x) and B(y) respectively, while S1 , !∀x.(A(x) (A′(x)) and
S2 , !∀y.(B(y)(B′(y)) are the corresponding serializers. Here, the main idea
for type-checking is to appeal to environment rewriting to consume the affine
formulas A(x) and B(y), and introduce their exponential counterparts A′(x) and
B′(y) into the environment before assigning a type to the pair components.

The interesting point now is that the pair (x, y) can be split arbitrarily often,
but the affine formulas A(x) and B(y) can be retrieved at most once, as long as
the control formulas P1(x) and P2(y) are assumed at most once in the application
code. In this way, we recover the expressiveness provided by affine types. We
actually even go beyond that, allowing for a liberal usage of the value itself, as
opposed to enforcing the affine usage of any data structure which contains an
affine component, as dictated by many earlier substructural frameworks.

5.8 Encoding cryptography

Formal cryptography can be encoded inside RCF in terms of sealing [22,24]. A
seal k for a type T is a pair of functions: a sealing function T → Un and an
unsealing function Un→ T . For symmetric cryptography, these functions model
encryption and decryption operations, respectively. A payload of type T can be

B C M
enc((C,nC ,g,p),ek(kM)) //

assume ∀y.(Pay(y, p,M, nM)(Ship(M, g,C))

enc(sign((nC ,nM ,M,g,C,p),k′
M),ek(kC))oo

enc((C,nC ,nM ,p),ek(kB))oo

assume ∀y.Pay(B, p, y, nM)

enc(sign((B,C,nC ,nB ,nM ,p),k′
B),ek(kC)) //

assert Ship(M, g,C)

enc(sign((B,C,nC ,nB ,nM ,p),k′
B),ek(kM)) //

enc(sign((B,M,nB ,nM),k′
M),ek(kB))oo

Table 5. A variant of the EPMO protocol

sealed to type Un and sent over the untrusted network; conversely, a message
retrieved from the network with type Un can be unsealed to its correct type T .

The sealing/unsealing mechanism is implemented in terms of a list of pairs,
which is stored in a global reference that can only be accessed using the sealing
and unsealing functions. Upon sealing, the payload is paired with a fresh, public
value (the handle) representing its sealed version, and the pair is stored in the
list; conversely, the unsealing function looks for the handle in the list and re-
turns the associated payload. Different cryptographic primitives, like public key
encryptions and signature schemes, can be encoded following such a recipe.

One interesting benefit of our exponential serialization technique is that we
can directly leverage the sealing-based cryptographic library proposed by Bengt-
son et al. [4]. The reason is that we never apply cryptography directly on mes-
sages with affine refinements, but we rely on their exponentially serialized vari-
ants. Without the serialization, we would need to define a different implementa-
tion of the sealing/unsealing mechanism: namely, we would have to enforce that
an affine payload is never extracted more than once from the list stored in the
global reference, i.e., the unsealing function would have to remove the payload
from the list upon invocation. This would complicate the sealing-based abstrac-
tion of cryptography and require additional reasoning to justify its soundness.

6 Example: Electronic Purchase

We consider a variant of EPMO, a nonce-based e-payment protocol proposed by
Guttman et al. [20]. The protocol narration is reported in Table 5.

Initially, a customer C contacts a merchantM to buy some goods g for a given
price p; the request is encrypted under the public key of the merchant, ek(kM),
and includes a fresh nonce, nC . If M agrees to proceed in the transaction by
providing a signed response, C informs her bank B to authorize the payment.
The bank replies by providing C a receipt of authorization, called the money
order, which is then forwarded to M . Now M can verify that C is entitled to
pay for the goods and complete the transaction by sending a signed request to
B to cash the money order. At the end of the run, the bank transfers the funds
and the merchant ships the goods.

A peculiarity of the protocol is that the identifier nC is employed by C
to authenticate two different messages, namely the replies by M and B. This
pattern cannot be validated by most existing type systems, since the mechanisms
hardcoded therein to deal with nonce-handshakes enforce the freshness of each
nonce to be checked only once. Our framework, instead, allows for a very natural
treatment of such authentication pattern, whose implementation can be written
mostly oblivious of the security verification process based on lightweight logical
annotations. For space reasons, we focus only on the aspects of the verification
connected to the guarantees provided to C.

We define two predicates used in the analysis: Pay(B, p,M, nM) states that
B authorizes the payment p to M in reference to the order identified by nM ,
while Ship(M, g,C) formalizes that M can ship the goods g to C. The protocol
code for the customer, enriched with the most interesting type annotations, is
reported below5.
type MsgMC = MsgMC of (xnC: Un * xnM: Un * xM: Un * xg: Un * xC: Un * xp: Un)

{!(N1(xnC) --o forall y.(Pay(y,xp,xM,xnM) --o Ship(xM,xg,xC))}

type MsgBC = MsgBC of (yB: Un * yC: Un * ynC: Un * ynB: Un * ynM: Un * yp: Un)
{!(N2(ynC) --o forall y.(Pay(yB, yp, y, ynM))}

let (mkTid : unit -> {x: bytes | N1(x) times N2(x)}) () =
let xf = mkFresh () in assume (N1(xf) times N2(xf)); xf

let cust C addC M addM B addB g p kC ekM ekB
(vkM: (MsgMC, MsgMB) either VerKey) (vkB: MsgBC VerKey) =

let nC = mkTid () in
let msgCM1 = encrypt (C, nC, g, p) ekM in send addM msgCM1;
let signMC = decrypt (receive addC) kC in
let plainMC = verify signMC vkM in
match plainMC with MsgMC (=nC, xnM, =M, =g, =C, =p) ->

let msgCB = encrypt (C, nC, xnM, p) ekB in send addB msgCB;
let signBC = decrypt (receive addC) kC in
let plainBC = verify signBC vkB in

match plainBC with MsgBC (=B, =C, =nC, xnB, =xnM, =p) ->
assert Ship(M, g, C);
let msgCM2 = encrypt signBC ekM in send addM msgCM2

Initially, we let the customer call the library function mkTid, which generates
a fresh transaction identifier, corresponding to nC in the protocol specification,
and provides via its return type two distinct capabilities N1(nC) and N2(nC),
later employed to authenticate two different messages received by C. Since the
signing key ofM is used to certify messages of two different types, at steps 2 and
6 of the protocol, the corresponding verification key available to the customer
through the variable vkM refers to a sum type. We present only the MsgMC
component of such type, since it is the one needed to type-check the code of C:
the corresponding refined formula in the type definition describes the promise by
M to ship the goods as soon as the requested payment has been authorized by
any bank. We then use vkB to convey the other formula which is needed to type-
check C, namely a statement that B authorizes the payment to any merchant to
whom C wishes to transfer the money order. The hypotheses collected by C are
enough to prove her assertion, i.e., to be sure that the request by M has been
fulfilled and the goods will be shipped, hence the implementation is well-typed.
5 For the sake of readability, we use F#- like syntax and some syntactic sugar like
tuples and pattern matching to present code snippets from our example: these can
be encoded in RCF using standard techniques [4].

7 Algorithmic Typing

The type system presented in Section 5 includes several non-deterministic rules,
which make it hard to implement an efficient decision procedure. In this section,
we present an algorithmic version, which we prove sound and complete.

7.1 Algorithmic type system

While standard sources of non-determinism like subtyping or refining value types
can be eliminated using type annotations, the rewriting of logical environments,
the distinctive source of non-determinism of our system, is harder to deal with.
The core idea underlying the algorithmic version of the type system is to dispense
with logical environments and to construct bottom-up a single logical formula
that characterizes all the proof obligations that would normally be introduced
along the type derivation. More in detail, every typing judgment of the form
Γ ;∆ ` J is matched by an algorithmic counterpart of the form Γ `alg J ;F .
Intuitively, typing an expression algorithmically constitutes of two steps:

1. The expression (decorated with type annotations whenever needed) is type-
checked using the algorithmic type system. This process is fully deterministic
and in case of success yields one proof obligation F .

2. The proof obligation is verified, e.g., using an external theorem prover.

If both steps succeed, then the expression is well-typed.
In the remainder of this section we focus on selected rules for typing values

and expressions: the remaining rules follow along the same lines.

7.2 Typing values and expressions

We present some selected algorithmic typing rules in Table 6.
Following standard practice, we rely on typing annotations to deal with non-

structural rules. For instance, we explicitly annotate values that are expected to
be given a refinement type (cf. Val Ref (Alg)) and expressions whose type
should be derived using subtyping (cf. Exp Subsum (Alg)). In this way, every
possible syntactic form is matched exactly by a single type rule.

We now exemplify the general concepts underlying our technique by contrast-
ing the standard typing rule (Val Fun) with its algorithmic counterpart (Val
Fun (Alg)). The main source of non-determinism in (Val Fun) is the rewriting
of∆ to !∆′. As previously mentioned, our goal is to dispense with logical environ-
ments and their rewriting, by collecting a single proof obligation that accounts
for the proof obligations generated in the original type system. In the algorithmic
version, the proof obligation obtained by giving λx : T.E type V := x : T → U
in Γ is !∀x.(forms(x : T) (F ′), where F ′ is the proof obligation collected by
giving E type U in Γ, x : ψ(T). In the following, we briefly justify why this ap-
proach is sound, i.e., we argue why Γ ;∆ ` λx.E : V for any ∆ such that Γ ;∆ `
!∀x.(forms(x : T)(F ′) (i.e., ∆ entails !∀x.(forms(x : T)(F ′) and both are
well-formed with respect to Γ). From Γ ;∆ ` !∀x.(forms(x : T)(F ′), using the

(Val Var (Alg))
Γ `alg � (x : T) ∈ Γ

Γ `alg x : T ;1

(Val Fun (Alg))
Γ, x : ψ(T) `alg E : U ;F ′ fnfv(T) ⊆ dom(Γ) ∪ {x}
Γ `alg λx : T.E : (x : T → U); !∀x.(forms(x : T)(F ′)

(Val Pair (Alg))
Γ `alg M : T ;F1

Γ `alg N : U{M/x};F2

Γ `alg (M,N) : x : T ∗ U ; !F1 ⊗ !F2

(Val Ref (Alg))
Γ `alg M : T ;F ′

fnfv(F) ⊆ dom(Γ) ∪ {x}
Γ `alg M{x:_ | F} : {x : T | F};F ′ ⊗ F{M/x}

(Exp Subsum (Alg))
Γ `alg E : T ;F1 Γ `alg T <: T ′;F2

Γ `alg E_<:T ′ : T ′;F1 ⊗ F2

(Exp Let (Alg))
E ∅ [∆′ | E′]

Γ `alg E′ : T ;F1 Γ, x : ψ(T) `alg D : U ;F2 x /∈ fv(U) fnfv(∆′) ⊆ dom(Γ)

Γ `alg let x = E in D : U ;∆′ ((F1 ⊗ ∀x.(forms(x : T)(F2))

Notation: In logical formulas, we write F1, . . . , Fn to denote F1 ⊗ . . .⊗ Fn.
Table 6. Selected algorithmic rules for typing values and expressions

rules of the logic, we can show that there exists ∆′ such that Γ ;∆ ↪→ Γ ; !∆′ and
Γ ; !∆′ ` ∀x.forms(x : T)(F ′. Intuitively, this means that we can eliminate the
exponential modality by rewriting the logical environment in exponential form.
Furthermore, the well-formedness of Γ ; !∆′ ensures that x /∈ fv(!∆′): in this case,
we can further eliminate the universal quantification, adding a type binding for
x in order to keep the logical environment well-formed (the actual type is not
relevant from the logic point of view), i.e., Γ, x : ψ(T); !∆′ ` forms(x : T)(F ′.
Using rule ((-Left), we can finally prove Γ, x : ψ(T); !∆′, forms(x : T) ` F ′.
By inductive reasoning, Γ, x : ψ(T); !∆′, forms(x : T) ` E : U . Finally, (Val
Fun) allows us to derive Γ ;∆ ` λx.E : V . The algorithmic variant is similarly
proved complete.

If a typing rule contains multiple premises, then we combine the proof obliga-
tions obtained from the premises conjunctively (cf. Val Pair (Alg)). Whenever
a typing rule relies on extraction (e.g., Exp Let) and adds the extracted envi-
ronment ∆′ to the environment before rewriting, the algorithmic variant of the
rule (e.g., Exp Let (Alg)) creates a proof obligation of the form ∆′ (F ,
where F is the proof obligation obtained by combining the proof obligations of
the premises using the techniques described above.

7.3 Main results

Let 〈E〉 denote the expression obtained from E by erasing all typing annotations.

Theorem 3 (Soundness and Completeness of Algorithmic Typing).

1. If Γ `alg E : T ;F and Γ ;∆ ` F , then Γ ;∆ ` 〈E〉 : T .

2. If Γ ;∆ ` E : T , then there exists E′, F such that 〈E′〉 = E, Γ `alg E′ : T ;F ,
and Γ ;∆ ` F .

7.4 Typing the example

The proof obligation assigned to the cust function in Section 6 is shown below.

∀C.∀M.∀B.∀G.∀p.
∀nC.((N1(nC)⊗ N2(nC))(
∀xnM.(!(N1(nC)((∀y.Pay(y,p,M,xnM)(Ship(M,g,C)))(

!(N2(nC)((∀z.Pay(B,p,z,xnM)))(
Ship(M,g,C)))

For the sake of readability we removed all unnecessary occurrences of 1 and
unused quantified variables.

In this example, as well as in all other protocols we considered, the problem
of solving equalities is reduced to the unification of variables6. This allows us to
use the llprover [27] theorem prover, which at the moment does not support
equality theories. The above formula is discharged in less than 20 ms.

8 Conclusion

We presented the first type system for statically enforcing the (robust) safety of
cryptographic protocol implementations with respect to authorization policies
expressed in affine logic. Our type system benefits from the novel concept of
exponential serialization to achieve a general and flexible treatment of affine re-
sources. We further proposed an efficient algorithmic variant of the type system.

We are currently working on the mechanization of our theory by implement-
ing a type-checker based on the algorithmic typing rules. We plan to facilitate
type-checking and reduce the need for manual type annotations by taking ad-
vantage of recent research on type inference in intuitionistic linear logic [3].

References

1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication.
In: Proc. 28th Symposium on Principles of Programming Languages (POPL). pp.
104–115. ACM (2001)

2. Backes, M., Hriţcu, C., Maffei, M.: Union and Intersection Types for Secure Pro-
tocol Implementations. In: TOSCA’11. pp. 1–28. LNCS, Springer (2011)

3. Baillot, P., Hofmann, M.: Type Inference in Intuitionistic Linear Logic. In:
PPDP’10. pp. 219–230. ACM (2010)

4. Bengtson, J., Bhargavan, K., Fournet, C., Gordon, A.D., Maffeis, S.: Refinement
Types for Secure Implementations. TOPLAS 33(2), 8 (2011)

5. Bhargavan, K., Corin, R., Deniélou, P.M., Fournet, C., Leifer, J.J.: Cryptographic
Protocol Synthesis and Verification for Multiparty Sessions. In: CSF’09. pp. 124–
140. IEEE (2009)

6 Equalities are introduced by pattern-matching, a syntactic sugar which we encode
in our system using standard techniques [4].

6. Bhargavan, K., Fournet, C., Gordon, A.D.: Modular Verification of Security Pro-
tocol Code by Typing. In: POPL’10. pp. 445–456. ACM (2010)

7. Bhargavan, K., Fournet, C., Gordon, A.D., Tse, S.: Verified Interoperable Imple-
mentations of Security Protocols. TOPLAS 31(1) (2008)

8. Bierhoff, K., Aldrich, J.: Modular typestate checking of aliased objects. In: OOP-
SLA’07. pp. 301–320. ACM (2007)

9. Blanchet, B.: An Efficient Cryptographic Protocol Verifier Based on Prolog Rules.
In: CSFW’01. pp. 82–96. IEEE (2001)

10. Bowers, K.D., Bauer, L., Garg, D., Pfenning, F., Reiter, M.K.: Consumable Creden-
tials in Linear-Logic-Based Access-Control Systems. In: NDSS’07. Internet Society
(2007)

11. Bugliesi, M., Focardi, R., Maffei, M.: Dynamic Types for Authentication. JCS
15(6), 563–617 (2007)

12. Bugliesi, M., Calzavara, S., Eigner, F., Maffei, M.: Logical Foundations of Secure
Resource Management in Protocol Implementations (Long Version), http://www.
lbs.cs.uni-saarland.de/affine-rcf/

13. Bugliesi, M., Calzavara, S., Eigner, F., Maffei, M.: Resource-Aware Authorization
Policies for Statically Typed Cryptographic Protocols. In: CSF’11. pp. 83–98. IEEE
(2011)

14. Chapin, P.C., Skalka, C., Wang, X.S.: Authorization in Trust Management: Fea-
tures and Foundations. ACM Computing Surveys 40(3) (2008)

15. Fournet, C., Kohlweiss, M., Strub, P.Y.: Modular Code-Based Cryptographic Ver-
ification. In: CCS’11. pp. 341–350. ACM (2011)

16. Garg, D., Bauer, L., Bowers, K.D., Pfenning, F., Reiter, M.K.: A Linear Logic
of Authorization and Knowledge. In: ESORICS’06. pp. 297–312. LNCS, Springer
(2006)

17. Girard, J.Y.: Linear Logic: Its Syntax and Semantics. In: Advances in Linear Logic.
London Mathematical Society LNS, vol. 22, pp. 1–42. Cambridge University Press
(1995)

18. Gordon, A.D., Jeffrey, A.: Authenticity by Typing for Security Protocols. JCS
11(4), 451–519 (2003)

19. Gordon, A.D., Jeffrey, A.: Types and Effects for Asymmetric Cryptographic Pro-
tocols. JCS 12(3), 435–484 (2004)

20. Guttman, J.D., Thayer, F.J., Carlson, J.A., Herzog, J.C., Ramsdell, J.D., Snif-
fen, B.T.: Trust Management in Strand Spaces: A Rely-Guarantee Method. In:
ESOP’04. pp. 325–339. LNCS, Springer (2004)

21. Mandelbaum, Y., Walker, D., Harper, R.: An effective theory of type refinements.
In: ICFP’03. pp. 213–225. ACM (2003)

22. Morris, J.: Protection in Programming Languages. CACM 16(1), 15–21 (1973)
23. Naden, K., Bocchino, R., Aldrich, J., Bierhoff, K.: A Type System for Borrowing

Permissions. In: POPL’12. pp. 557–570. ACM (2012)
24. Sumii, E., Pierce, B.: A Bisimulation for Dynamic Sealing. TCS 375(1-3), 169–192

(2007)
25. Sunshine, J., Naden, K., Stork, S., Aldrich, J., Tanter, E.: First-Class State Change

in Plaid. In: OOPSLA’11. pp. 713–732. ACM (2011)
26. Swamy, N., Chen, J., Fournet, C., Strub, P.Y., Bhargavan, K., Yang, J.: Secure

Distributed Programming with Value-Dependent Types. In: ICFP’11. pp. 266–278.
ACM (2011)

27. Tomura, N.: llprover - A Linear Logic Prover, http://bach.istc.kobe-u.ac.jp/
llprover/

28. Tov, J., Pucella, R.: Stateful Contracts for Affine Types. In: ESOP’10, pp. 550–569.
LNCS, Springer (2010)

29. Troelstra, A.S.: Lectures on Linear Logic. CSLI Stanford, LNS, vol. 29 (1992)

http://www.lbs.cs.uni-saarland.de/affine-rcf/
http://www.lbs.cs.uni-saarland.de/affine-rcf/
http://bach.istc.kobe-u.ac.jp/llprover/
http://bach.istc.kobe-u.ac.jp/llprover/

	Logical Foundations of Secure Resource Management in Protocol Implementations

