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Abstract. Even though their architecture relies on robust security prin-
ciples, it is well-known that poor programming practices may expose
browser extensions to serious security flaws, leading to privilege escala-
tions by untrusted web pages or compromised extension components. We
propose a formal security analysis of browser extensions in terms of a fine-
grained characterization of the privileges that an active opponent may
escalate through the message passing interface and we discuss to which
extent current programming practices take this threat into account. Our
theory builds on a formal language that embodies the essential features
of JavaScript, together with few additional constructs dealing with the
security aspects specific to the browser extension architecture. We then
present a flow logic specification estimating the safety of browser exten-
sions modelled in our language against the threats of privilege escalation
and we prove its soundness. Finally, we show the feasibility of our ap-
proach by means of Chen, a prototype static analyser for Google Chrome
extensions based on our flow logic specification.

1 Introduction

Browser extensions customize and enhance the functionalities of standard web
browsers by intercepting and reacting to a number of events triggered by naviga-
tion, page rendering or updates to specific browser data structures. While many
extensions are simple and just installed to customize the navigation experience,
other extensions serve security-critical tasks and have access to powerful APIs,
providing access to the download manager, the cookie jar, or the navigation his-
tory of the user. Hence, the security of the web browser (and the assets stored
therein) ultimately hinges on the security of the installed browser extensions.
Just like browsers, extensions typically interact with untrusted and potentially
malicious web pages: thus, all modern browser extension architectures rely on
robust security principles, such as privilege separation [31].

Browser Extension Architecture. Privilege separated software architectures re-
quire programmers to structure their code in separated modules, running with
different privileges. In the realm of browser extensions, privilege separation is
implemented by structuring the extension in two different types of components:
a privileged background page, which has access to the browser APIs and runs



isolated from web pages; and a set of unprivileged content scripts, which are
injected into specific web pages, interact with them and are at a higher risk of
attacks [4, 10]. The permissions available to the background page are defined at
installation time in a manifest file, to limit the dangers connected to the com-
promise of the background page. Content scripts interacting with different web
pages are isolated one from each other by the same-origin policy of the browser,
while process isolation protects the background page. The message passing inter-
face available to extensions only allows the exchange of serialized JSON objects3

between different components, hence pointers cannot cross trust boundaries.

Language Support for Privilege Separation. We are interested here in under-
standing to which extent current browser extension development frameworks,
such as the Google Chrome extension APIs, naturally support privilege sep-
aration and comply with the underlying security architecture. Worryingly, we
notice that in these frameworks a single privileged module typically offers a uni-
fied entry point to security-sensitive functionalities to all the other extension
components, even though not all the components need to access the same func-
tionalities and different trust relationships exist between different components.

To make matters worse, current programming patterns adopted in browser
extensions do not safeguard the programmer against compromised components,
even though the underlying privilege separated architecture was designed with
compromise in mind. Compromise adds another layer of complexity to security-
aware extension development, since corrupted extension components may get
access to surprisingly powerful privileges.

1.1 Motivating Example

We illustrate our argument with a simple, but realistic example, inspired by
one of the many cookie managers available in the Chrome Web Store (e.g.,
EditThisCookie). Consider an extension which allows users to add, delete or
modify any cookie stored in the browser through an intuitive user interface. Ad-
ditionally, it allows web pages to specify a set of security policies for the cookies
they register: these client-side security policies are enforced by the extension and
can be used to significantly strengthen web authentication [6, 7].

The extension is composed of three components: two content scripts C and O,
and a background pageB. The background page is given the cookies permission,
which grants it access to the browser cookie jar. The content script O is injected
in the options.html page packaged with the extension and it provides facilities
for cookie editing; when the user is done with his changes, O sends B a message
and instructs it to update the cookie jar. The content script C, instead, is injected
in the DOM of any HTTPS web page P opened by the browser: it is essentially a
proxy, which forwards to B the security policies specified by P using the message
passing interface. The messages sent by P are extended by C with an additional
information: the website which specified the security policy.

3 http://json.org



A possible run involving the described components is the following, where
the last message is triggered by a user click:

P → C : {tag: "policy", spec: "read-only"}
C → B : {tag: "policy", site: "paypal.com", spec: "read-only"}
O → B : {tag: "upd", ck: {dom: "a.com", name: "res", value: "1440x900"}}

Using the Google Chrome extension API, the components are programmed in
JavaScript, typically by registering appropriate listeners for incoming messages.
For instance, the content script C can be programmed as follows:

1 window.addEventListener("message", function(event) {

2 /* Accept only internal messages */

3 if (event.source != window) { return; }

4 /* Get the payload of the message */

5 var obj = event.data;

6 /* Extend the message with the site and forward it */

7 obj.site = window.location.hostname;

8 chrome.runtime.sendMessage (obj);

9 }, false);

Web pages can communicate with C by using the window.postMessage

method available in JavaScript, thus opting-in to custom client-side protection.
The background page B, instead, is typically programmed as follows:

1 chrome.runtime.onMessage.addListener(

2 function (msg , sender , sendResp) {

3 /* Handle the reception of new policies */

4 if (msg.tag == "policy") {

5 /* Store a new (valid) policy for the site */

6 if (is_valid (msg.spec))

7 localStorage.setItem (msg.site , msg.spec);

8 else console.log ("Invalid policy");

9 }

10 /* Handle requests for cookie updates */

11 else if (msg.tag == "upd") {

12 chrome.cookies.set (msg.ck);

13 }

14 else console.log ("Invalid message");

15 });

This tag-based coding style featuring a single entry point to the background
page is very popular, since it is easy to grasp and allows for fast prototyping,
but it also fools programmers into underestimating the attack surface against the
extensions they write. In this example, a malicious web page can compromise the
integrity of the cookie jar by exploiting the poorly programmed content script
C through the following method invocation:

window.postMessage ({tag: "upd", ck: {dom: "google.com",

name: "SID", value: "aQe73ajs..."}});



This allows the web page to carry out dangerous attacks, like session fixation
or login CSRF on arbitrary websites [7]. The issue can be rectified by including
a sanitization in the code of C and by ensuring that only messages with the
"policy" tag are delivered to the background page.

The revised code is more robust than the original one and it safeguards the
extension against the threats posed by malicious (or compromised) web pages.
Unfortunately, it does not yet protect the background page against a compro-
mised content script: if an attacker is able to exploit a code injection vulnerability
in C, he may force the content script into deviating from the intended commu-
nication protocol. Specifically, an attacker with scripting capabilities in C may
forge arbitrary messages to the background page and taint the cookie jar.

A much more robust solution then consists in introducing two distinct com-
munication ports for C and O, and dedicating these ports to the reception of
the two different message types (see Section 5). This is relatively easy to do in
this simple example, but, in general, decoupling the functionalities available to
the background page to shield it against privilege escalation is complex, since n
different content scripts or extensions may require access to m different, possibly
overlapping sets of privileged functionalities.

1.2 Contributions

Our contributions can be summarized as follows:

1. we model browser extensions in a formal language that embodies the essential
features of JavaScript, together with a few additional constructs dealing with
the security aspects specific to the browser extension architecture;

2. we formalize a fine-grained characterization of the privileges which can be
escalated by an active opponent through the message passing interface, as-
suming the compromise of some untrusted extension components;

3. we propose a flow logic specification estimating the safety of browser exten-
sions against the threats of privilege escalation and we prove its soundness,
despite the best efforts of an active opponent. We show how the static anal-
ysis works on the example above and supports its secure refactoring;

4. we present Chen (CHrome Extension aNalyser), a prototype tool that imple-
ments our flow logic specification, providing an automated security analysis
of existing Google Chrome extensions. The tool opens the way to an au-
tomatic security-oriented refactoring of existing extensions. We show Chen
at work on ShareMeNot [30], a real extension for Google Chrome, and we
discuss how the tool spots potentially dangerous programming practices.

2 Related Work

Browser Extension Security. Carlini et al. performed a security evaluation of the
Google Chrome extension architecture by means of a manual review of 100 pop-
ular extensions [10]. Liu et al. further analysed the Google Chrome extension



architecture, highlighting that it is inadequate to provide protection against
malicious extensions [21]. Guha et al. [15] proposed a methodology to write
provably secure browser extensions, based on refinement typing; the approach
requires extensions to be coded in Fine, a dependently-typed ML dialect. Karim
et al. developed Beacon, a static detector of capability leaks for Firefox exten-
sions [20]. A capability leak happens when a component exports a pointer to a
privileged piece of code. These leaks violate the desired modularity of Firefox
extensions, but they cannot be directly exploited by content scripts, since the
message passing interface prevents the exchange of pointers. Finally, information
flow control frameworks have been proposed for browser extensions [13, 3].

Privilege Escalation Attacks. Privilege escalation attacks have been extensively
studied in the context of Android applications, starting with [12, 29]. Fragkaki
et al. formalized protection against privilege escalation in Android applications
as a noninterference property, which is then enforced by a dynamic reference
monitor [14]. Bugliesi et al. presented a stronger security notion and discussed a
static type system for Android applications, which provably enforces protection
against privilege escalation [8]. The present paper generalizes both these pro-
posals, by providing a fine-grained view of the privileges leaked to an arbitrarily
powerful opponent. Akhawe et al. [2] pointed out severe limitations in how priv-
ilege separation is implemented in browser extension architectures. Their work
has been very inspiring for the present paper, which provides a formal counter-
part to many interesting observations contained therein. For instance, [2] defines
bundling as the collection of disjoint functionalities inside a single module run-
ning with the union of the privileges required by each functionality. Our formal
notion of privilege leak captures the real dangers of permission bundling.

Formal Analysis of JavaScript. Maffeis et al. formalized the first detailed op-
erational semantics for JavaScript [22] and used it to verify the (in)security of
restricted JavaScript subsets [23]. Jensen et al. proposed an abstract interpre-
tation framework for JavaScript in the realm of type analysis [18]. Guha et al.
defined λJS as a relatively small core calculus based on a few well-understood
constructs, where the numerous quirks of JavaScript can be encoded with a rea-
sonable effort [16]. The adequacy of the semantics has been assessed by extensive
automatic testing. The calculus has been used to support static analyses to de-
tect type errors in JavaScript [17] and to verify the correctness of JavaScript
sandboxing [28]. We also develop our flow analysis on top of λJS , extending it
to reason about browser extension security. An alternate solution would have
been to base our work on S5 [27]. This approach would have allowed to analyse
browser extensions using ECMA5-specific features, but at the cost of significantly
complicating the formal development.

3 Modelling Browser Extensions

Our language embodies the essential features of JavaScript, formalized as in
λJS [16], up to a number of changes needed to deal with the security aspects



specific to the browser extension architecture. In our model, several expressions
run in parallel with different permissions and are isolated from each other: com-
munication is based on asynchronous message exchanges.

3.1 Syntax

We assume disjoint sets of channel names N (a, b,m, n) and variables V (x, y, z).
We let r range over a set of references R, and we assume a lattice of permissions
(P,v), letting ρ range over P. The syntax of the language is given below:

Constants c ::= num | str | bool | unit | undefined,

Values v ::= n | x | c | r` | λx.e | {
−−−−−→
stri : vi}

Expressions e ::= v | let x = e in e | e e | op(−→ei ) | while (e) { e }
| if (e) { e } else { e } | e; e | e[e] | e[e] = e
| delete e[e] | ref ` e | deref e | e := e
| e〈e . ρ〉 | exercise(ρ)

Systems s ::= µ;h; i Memories µ ::= ∅ | µ, r`
ρ7→ v

Handlers h ::= ∅ | h, a(x / ρ : ρ′).e Instances i ::= ∅ | i, a{|e|}ρ

All the value forms are standard, we just note that references r` bear a
label `, taken from a set of labels L. Labels identify the program point where
references are created: this is needed for the static analysis and plays no role in
the semantics. As usual, the lambda abstraction λx.e binds x in e.

As to expressions, the first three lines correspond to standard constructs
inherited from λJS , including function applications, basic control-flow operators,
and the usual operations on records (field selection, field update/creation, field
deletion) and references (allocation, dereference and update). As anticipated,
reference allocation comes with an annotation `. We leave unspecified the precise
set of primitive operations op. The expression let x = e in e′ binds x in e′.

The last line of the productions includes the new constructs added to λJS .
The expression a〈v . ρ〉 sends the value v on channel a. In order for the sender
to protect the message, the expression specifies that the value can be received
by any handler with at least permission ρ that is listening on a. The expression
exercise(ρ) exercises the privilege ρ. This construct uniformly abstracts any
security-sensitive operation, such as the call to a privileged API, which requires
the permission ρ to successfully complete the task.

We let h range over multisets of handlers of the form a(x / ρ : ρ′).e. The
handler a(x / ρ : ρ′).e listens for messages on the channel a. When a value v
is sent over a, a new instance of the handler is spawned to run the expression
e with permission ρ′, with the bound variable x replaced by v. The handler
protects its body against untrusted senders by specifying that only instances
with permission ρ can be granted access. Intuitively, the body of a handler
corresponds to the function passed as a parameter to the addListener method of
chrome.runtime.onMessage. Different handlers can listen on the same channel:
in this case, only one handler is non-deterministically dispatched. We often refer
to a handler with the name of the channel where it is registered.



(R-Sync)

h = h′, b(x / ρs : ρb).e ρs v ρa ρr v ρb v serializable

µ;h; a{|E〈b〈v . ρr〉〉|}ρa
〈a:ρa,b:ρb〉−−−−−−−→ µ;h; a{|E〈unit〉|}ρa , b{|e[v/x]|}ρb

(R-Set)

µ;h; i
α−→ µ′;h′; i′

µ;h; i, i′′
α−→ µ′;h′; i′, i′′

(R-Exercise)

ρ v ρa
µ;h; a{|E〈exercise(ρ)〉|}ρa

a:ρa�ρ−−−−−→ µ;h; a{|E〈unit〉|}ρa

(R-Internal)

µ; e ↪→ρ µ
′; e′

µ;h; a{|e|}ρ
·−→ µ′;h; a{|e′|}ρ

E ::= • | let x = E in e | E e | v E | op(−→vi , E,−→ej ) | if (E) { e } else { e }
| E[e] | v[E] | E[e] = e | v[E] = e | v[v] = E | E; e | E〈e . ρ〉 | v〈E . ρ〉
| delete E[e] | delete v[E] | ref ` E | deref E | E := e | v := E.

Table 1. Small-step operational semantics of systems (s
α−→ s′)

We let i range over multisets of running instances of the form a{|e|}ρ. The
instance a{|e|}ρ is a running expression e, which is granted permission ρ. The
instance is annotated with the channel name a corresponding to the handler
which spawned it.

We let µ range on memories, i.e., sets of bindings of the form r`
ρ7→ v. A

memory is a partial map from (labelled) references to values. The annotation ρ
on the arrow records the permission of the instance that created the reference,
and at the same time tracks the permissions required to have read/write access

on the reference. Given a memory µ, we let dom(µ) = {r | r`
ρ7→ v ∈ µ}.

Finally, a system is defined as a triple s = µ;h; i. Intuitively, a system evolves
by letting running instances (i) communicate through the memory µ when they
are granted exactly the same permissions, (ii) spawn new instances by sending
messages to handlers in h, and (iii) perform internal computations.

3.2 Semantics

The small-step operational semantics of the calculus is defined in terms of a
labelled reduction relation between systems s

α−→ s′. Labels play no role in the
semantics of systems: they are just used to track useful information that is needed
in the proofs. The syntax of labels α is defined as follows:

α ::= · | a:ρa � ρ | 〈a:ρa, b:ρb〉.

The label a:ρa � ρ records the exercise of the privilege ρ by an instance a
running with permissions ρa. The send label 〈a:ρa, b:ρb〉 records that an instance
a with permissions ρa is sending a message to a handler b with permissions ρb.
Finally, the empty label · tracks no information. We denote traces by −→α and we

write
−→α
=⇒ for the reflexive-transitive closure of

α−→. Table 1 collects the reduction
rules for systems and the definition of evaluation contexts. We write E〈e〉 when
the hole • in E is filled with the expression e.



(JS-Expr)

e1 ↪→ e2

µ; e1 ↪→ρ µ; e2

(JS-Ref)

r /∈ dom(µ) µ′ = µ, r`
ρ7→ v

µ; ref ` v ↪→ρ µ
′; r`

(JS-Deref)

µ = µ′, r`
ρ7→ v

µ; deref r` ↪→ρ µ; v

(JS-SetRef)

µ = µ′, r`
ρ7→ v′

µ; r` := v ↪→ρ µ
′, r`

ρ7→ v; v

(JS-Context)

µ; e1 ↪→ρ µ
′; e2

µ;E〈e1〉 ↪→ρ µ
′;E〈e2〉

Table 2. Small-step operational semantics of expressions (µ; e ↪→ρ µ
′; e′)

Rule (R-Sync) implements a security cross-check between the sender a and
the receiver b: by specifying a permission ρr on the send expression, the instance
a requires the handler b to have at least ρr, while by specifying a permission ρs
in its definition, the handler b requires the instance a to have at least ρs. If the
security check succeeds, a new instance of b is created and the sent value v is
substituted to the bound variable x in the body of the handler. Communication
is restricted to serializable values, according to the following definition.

Definition 1 (Serializable Value). A value v is serializable iff either (1) v

is a name n or a constant c; or (2) v = {−−−−−→stri : vi} and each vi is serializable.

This restriction is consistent with the browser extension security architecture,
which prevents the exchange of pointers between different components [10].

Rule (R-Exercise) reduces the expression exercise(ρ). Reduction takes
place only when the expression runs in an instance a which is granted per-
mission ρa w ρ. Rule (R-Set) allows for reducing any of the parallel instances
running in a system, while rule (R-Internal) performs an internal reduction
step based on the auxiliary transition relation µ; e ↪→ρ µ

′; e′, annotated with the
permission ρ granted to the instance. The internal reduction relation is defined
in Table 2; it relies on a basic reduction e ↪→ e′, which is directly inherited from
λJS and lifted to the internal reduction by rule (JS-Expr). The definition of
the basic reduction is standard and given in Appendix A.

A reference is allocated by means of rule (JS-Ref). According to this rule,
two references may have the same label (e.g., when reference allocation oc-
curs inside a program loop) but each reference is guaranteed to have a distinct
name. Since read/write operations on memory ultimately depend on the refer-
ence name, this ensures that labels on references do not play any role at runtime.

Finally, rules (JS-SetRef) and (JS-Deref) deal with reference update and
dereference. Observe that, according to these rules, both read and write access
to memory requires exactly the permission ρ annotated on the reference. In
other words, instances with different privileges cannot communicate through
the memory. This corresponds to the heap separation policy implemented in
modern browser extension architectures.



3.3 Privilege Leak

We now define the notion of privilege leak, which dictates an upper bound to
the privileges which can be escalated by an opponent when interacting with the
system. We start by defining when a system exercises a given permission.

Definition 2 (Exercise). Given a system s, we say that s exercises ρ iff there

exist s′ and −→α such that s
−→α
=⇒ s′ and a:ρa � ρ ∈ {−→α }.

In our threat model, an opponent can mount an attack against the system
by registering new handlers, which may intercept messages sent to trusted com-
ponents, and/or by spawning new instances, which may tamper with the system
by writing in shared memory cells and by using the message passing interface.

Formally, an opponent is defined as a pair (h, i), with an upper bound ρ for
the permissions granted to h and i. For technical reasons, we assume that the
set of variables V is partitioned into the sets Vt and Vu (trusted and untrusted
variables). We stipulate that all the variables occurring in the system are drawn
from Vt, while all the variables occurring in the opponent code belong to Vu.

Definition 3 (Opponent). A ρ-opponent is a closed pair (h, i) where

– for any handler a(x / ρ : ρ′).e ∈ h, we have ρ′ v ρ;
– for any instance a{|e|}ρ′ ∈ i, we have ρ′ v ρ;
– for any x ∈ vars(h) ∪ vars(i), we have x ∈ Vu.

Definition 4 (Privilege Leak). A (initial) system s = µ;h; ∅ leaks ρ against
ρ′ (with ρ 6v ρ′) iff, for any ρ′-opponent (ho, io), the system s′ = µ;h, ho; io
exercises at most ρ.

Our security property is given over initial systems, that is systems with
no running instances, since we are interested in understanding the interplay
between the exercised permissions and the communication interface exposed by
the handlers in the system. Intuitively, a system s is “more secure” than another
system s′ if it leaks fewer privileges than s′ against any possible ρ.

3.4 Encoding the Example

To illustrate, we encode in our formal language the example in Section 1.1.
Consider the system s = µ;hc, ho, hb; ∅, where the handlers hc, ho and hb encode
the two content scripts and the background page. The memory µ encodes the
private memory of the background page, and it is used to store library functions.
We grant the background page two different permissions: MemB to access the
references under its control and Cookies to access the cookie jar.

Let B = MemB t Cookies, we let µ = lib`
B7→ obj, where:

obj = {“set” : λx.exercise(Cookies); set/update the cookie x,

“is valid” : λx.check validity of policy x,

“store” : λx.λy.exercise(MemB); bind policy y to site x,

“log” : λx.print message x}



We omit the internal logic of the functions, we just observe that we put in place
the exercise expressions corresponding to the usage of the required privileges.
The definition of the handler hb modelling the background page is given below,
where C and O are the permissions granted to the two content scripts in order
to let them contact B through the message passing interface.

hb , b(x / C u O : B).
let mylib = deref lib` in
if (x[“tag”] == “policy”) {

if (mylib[“is valid”] (x[“spec”])) {
(mylib[“store”] (x[“site”])) (x[“spec”])

}
else { mylib[“log”] “invalid policy” }
}
else {

if (x[“tag”] == “upd”) { (mylib[“set”]) (x[“ck”]) }
else { mylib[“log”] “invalid message” }
}

The handler can be accessed by both C and O, as modelled by the guard CuO.

A simplified encoding of the content scripts, corresponding to the handlers
hc and ho respectively, is given below. This simple encoding will be enough to
explain the most important aspects of the flow analysis in Section 4.3.

hc , c(y / P : C).let y′ = (y[“site”] = . . .) in b〈y′ . B〉
ho , o(z /> : O).let z′ = {“tag” : “upd”, “ck” : . . .} in b〈z′ . B〉

The only notable point here is that ho is protected with permission >, since it
is injected in the trusted options page of the extension, while hc is protected
with permission P, modelling access to the window.postMessage method used
to communicate with C from a web page. As a consequence, any P-opponent
has the ability to activate hc through the message passing interface.

Based on the encoding, we estimate the robustness against privilege escala-
tion attacks. It turns out that the system s leaks B against P, since a P-opponent
can force hc into forwarding an arbitrary (up to the choice of the “site” field)
message to hb, hence all the privileges available to hb may be escalated.

Assume then that hc is replaced by a new handler h′c, defined as follows:

h′c , c(y / P : C). let ynew = {“tag” : “policy”, “site” : . . .} in

let y′ = (ynew[“spec”] = y[“spec”]) in b〈y′ . B〉

The new system stag = µ;h′c, ho, hb; ∅ leaks MemB against P, since a P-opponent
can only communicate with hb through the proxy h′c, which ensures that only
messages tagged with “policy” are delivered to the background page and the
integrity of the cookie jar is preserved. However, stag leaks B against C, since a
C-opponent can send arbitrary messages to hb and thus escalate all the available
privileges.



3.5 Fixing the Example

The key observation here is that there is no good reason to let C and O share
the same entry point to B, since they request distinct functionalities. We can
then split the logic of hb into two different handlers: hb1 protected by permission
C, and hb2 protected by permission O.

b1(x / C : B). b2(x / O : B).

let mylib = deref lib` in let mylib = deref lib` in

if (x[“tag”] == “policy”) { ... } if (x[“tag”] == “upd”) { ... }
else {mylib[“log”] “invalid policy”} else {mylib[“log”] “invalid message”}

Clearly, the code of hc and ho must also be changed to communicate on the
new channels b1 and b2 respectively: call these new handlers ĥc and ĥo. Now the
handler hb1 is only accessible by ĥc, while the handler hb2 can only be accessed

by ĥo, hence, if O is not compromised, the integrity of the cookie jar is preserved.
Unfortunately, the current extension architecture does not support a fine-

grained assignment of permissions to different portions of the background page [2],
hence we are forced to violate the principle of least privilege and assign to both
hb1 and hb2 the full set of permissions B = MemB t Cookies available to the
original hb, even though hb1 and hb2 only require a subset of these permissions.

Still, the system schan = µ; ĥc, ĥo, hb1 , hb2 ; ∅ only leaks MemB against C.
Notice that this refactoring can be performed on existing Google Chrome

extensions by using the chrome.runtime.connect API for the dynamic creation
of communication ports towards the background page.

4 Security Analysis: Flow Logic

To precisely reason about privilege escalation, it is crucial to statically capture
the interplay between the format of the exchanged messages and the exercised
privileges: we then resort to the flow logic framework [24]. The main judgement of
our flow analysis is E  s despite ρ, meaning that the environment E represents
an acceptable analysis estimate for s, even when s interacts with a ρ-opponent.
This implies that any ρ-opponent will at most escalate privileges up to an upper
bound which can be immediately computed from E (see Theorem 1).

4.1 Analysis Specification

Abstract Values. We let V̂ stand for the set of abstract values v̂, defined as sets
of abstract pre-values (we often omit brackets around singletons):

Abstract pre-values û ::= n | ĉ | ` | λxρ | 〈|−−−−−→stri : vi|〉E,ρ
Abstract values v̂ ::= {û1, . . . , ûn}.

Channel names n are abstracted into themselves. The abstract pre-value ĉ stands
for the abstraction of the constant c. We dispense from listing all the abstract



pre-values corresponding to the constants of our calculus, but we assume that
they include at least true, false, unit and undefined.

A reference r` is abstracted into the label `. A function λx.e is abstracted
into the simpler representation λxρ, keeping track of the privileges ρ exercised
by the expression e. The abstract pre-value 〈|−−−−−→stri : vi|〉E,ρ is the abstract repre-

sentation of the concrete record {−−−−−→stri : vi} in the environment E , assuming that
the record is created in a context with permission ρ. We do not fix any apriori
abstract representation for records, e.g., both field-sensitive and field-insensitive
representations are admissible.

We associate to each concrete operation op an abstract counterpart ôp on

abstract values. We also assume three abstract operations ĝet, ŝet and d̂el, mir-
roring the standard get field, set field and delete field operations on records.
Finally, we assume that abstract values are ordered by a pre-order v contain-
ing set inclusion, with the intuition that smaller abstract values are more precise
(we overload the symbol used to order permissions, to keep the notation lighter).
All the abstract operations and the abstract value pre-order can be chosen ar-
bitrarily, as long as they satisfy some relatively mild and well-established con-
ditions needed in the proofs. For instance, we require abstract operations to
be monotonic and to soundly over-approximate their concrete counterparts (see
Appendix B for details).

Abstract Environments. The judgements of the analysis are specified relative to
an abstract environment E = Υ̂ ; Φ̂; Γ̂ ; µ̂, consisting of the following four compo-
nents, where Λ = {λx | x ∈ V} is used to store the abstract return value for
lambdas:

Abstract variable environment Γ̂ : V ∪ Λ→ V̂

Abstract memory µ̂ : L × P → V̂

Abstract stack Υ̂ : N ×P → P × P
Abstract network Φ̂ : N ×P → V̂ .

Abstract variable environments are standard: they associate abstract values to
variables and to functions, corresponding to the abstraction of their return value.
Abstract memories are also standard: they associate abstract values to labels
denoting references. Specifically, if µ̂(`, ρ) = v̂, then v̂ is a sound abstraction of
any value stored in a reference labelled with ` and protected with permission ρ.

Abstract stacks are novel and are central to the privilege escalation analysis.
This part of the environment is used to keep track of the permissions required
to get access to each handler and the privileges which are exercised (also tran-
sitively, i.e., by communicating with other components) by the handlers them-
selves. Specifically, if Υ̂ (a, ρa) = (ρs, ρe), then the handler a with permission ρa
can be accessed by any component with permission ρs and it will be able to
exercise privileges up to ρe, possibly by calling other handlers in the system.

Finally, abstract networks are adapted from flow logic specifications for pro-
cess calculi [26] and they are used to keep track of the messages sent to the
handlers in the system. For instance, if we have Φ̂(a, ρa) = v̂, then v̂ is a sound



(PV-Name)

n ∈ v̂
E ρ n v̂

(PV-Var)

EΓ̂ (x) v v̂
E ρ x v̂

(PV-Cons)

{ĉ} v v̂
E ρ c v̂

(PV-Ref)

` ∈ v̂
E ρ r`  v̂

(PV-Fun)

λxρe ∈ v̂ E ρ e : v̂′ � ρ′ v̂′ v EΓ̂ (λx) ρ′ v ρe
E ρ λx.e v̂

(PV-Rec)

{〈|−−−−−→stri : vi|〉E,ρ} v v̂
E ρ {

−−−−−→
stri : vi} v̂

Table 3. Flow analysis for values

abstraction of any message received by the handler a with permission ρa. Given
an abstract environment E , we denote by EΓ̂ , Eµ̂, EΥ̂ , EΦ̂ its four components.

Flow Analysis for Values and Expressions. The flow analysis for values and
expressions consists of two mutually inductive judgements: E ρ v  v̂ and
E ρ e : v̂ � ρ′. The first judgement means that, assuming permission ρ, the
concrete value v is mapped to the abstract value v̂ in the abstract environment
E . The judgement E ρ e : v̂ � ρ′ means that in the context of a handler
(or an instance) with permission ρ, and under the abstract environment E , the
expression e may evaluate to a value abstracted by v̂ and exercise at most ρ′.

The rules to derive E ρ v  v̂ are collected in Table 3. Most of these rules
are straightforward. The only rule worth commenting on here is (PV-Fun),
which can be explained as follows: to abstract λx.e into v̂, we first analyse the
function body e to compute an approximation v̂′ of the value it may evaluate
to and an upper bound ρ′ for the exercised privileges. Then, we check that
λxρe ∈ v̂ for some ρe w ρ′, i.e., we ensure that the exercised privileges are over-
approximated in v̂. Finally, we check that v̂′ v EΓ̂ (λx), i.e., we guarantee that
the abstract variable environment correctly over-approximates the return value
of the function.

The analysis rules for expressions are collected in Table 4. We comment on
some representative rules below. Rule (PE-Let) can be explained as follows: to
analyse let x = e1 in e2, we first analyse e1 to compute an approximation v̂1 of
the value it may evaluate to and an upper bound ρ1 for the exercised privileges.
We then ensure that the abstract variable environment EΓ̂ (x) contains an over-
approximation of v̂1 for the bound variable x, and we analyse e2 to approximate
its value as v̂2 and the exercised privileges as ρ2. The analysis is acceptable if
the abstract value v̂ given to the let expression is an over-approximation of v̂2
and the estimated exercised privileges ρ are an upper bound for ρ1 t ρ2.

Rule (PE-App) deals with function applications: it states that, to analyse
e1 e2, we first analyse the ei’s to compute the approximations v̂i of the value they
may evaluate to and the upper bounds ρi for the exercised privileges. We then
focus on each λxρe contained in v̂1 and we check that: (1) the abstract variable
environment binds x to an over-approximation of the abstraction of the actual
argument of the function, (2) the abstract value v̂ given to the application is



(PE-Val)

E ρs v  v̂

E ρs v : v̂ � ρ

(PE-Let)

E ρs e1 : v̂1 v EΓ̂ (x) � ρ1 v ρ
E ρs e2 : v̂2 v v̂ � ρ2 v ρ
E ρs let x = e1 in e2 : v̂ � ρ

(PE-App)

E ρs e1 : v̂1 � ρ1 v ρ
E ρs e2 : v̂2 � ρ2 v ρ

∀λxρe ∈ v̂1. v̂2 v EΓ̂ (x) ∧ EΓ̂ (λx) v v̂ ∧ ρe v ρ
E ρs e1 e2 : v̂ � ρ

(PE-Seq)

E ρs e1 : v̂1 � ρ1 v ρ
E ρs e2 : v̂2 v v̂ � ρ2 v ρ
E ρs e1; e2 : v̂ � ρ

(PE-Op)

∀i. E ρs ei : v̂i � ρi v ρ ôp(
−→
v̂i ) v v̂

E ρs op(−→ei ) : v̂ � ρ

(PE-Cond)

E ρs e0 : v̂0 � ρ0 v ρ
true ∈ v̂0 ⇒ E ρs e1 : v̂1 v v̂ � ρ1 v ρ
false ∈ v̂0 ⇒ E ρs e2 : v̂2 v v̂ � ρ2 v ρ
E ρs if (e0) { e1 } else { e2 } : v̂ � ρ

(PE-While)

E ρs e1 : v̂1 � ρ1 v ρ
true ∈ v̂1 ⇒ E ρs e2 : v̂2 � ρ2 v ρ

false ∈ v̂1 ⇒ undefined ∈ v̂
E ρs while (e1) { e2 } : v̂ � ρ

(PE-GetField)

E ρs e1 : v̂1 � ρ1 v ρ
E ρs e2 : v̂2 � ρ2 v ρ

ĝet(v̂1, v̂2) v v̂
E ρs e1[e2] : v̂ � ρ

(PE-SetField)

E ρs e0 : v̂0 � ρ0 v ρ
E ρs e1 : v̂1 � ρ1 v ρ
E ρs e2 : v̂2 � ρ2 v ρ
ŝet(v̂0, v̂1, v̂2) v v̂

E ρs e0[e1] = e2 : v̂ � ρ

(PE-DelField)

E ρs e1 : v̂1 � ρ1 v ρ
E ρs e2 : v̂2 � ρ2 v ρ

d̂el(v̂1, v̂2) v v̂
E ρs delete e1[e2] : v̂ � ρ

(PE-Ref)

E ρs e : v̂′ � ρ′ v ρ
v̂′ v Eµ̂(`, ρs) ` ∈ v̂
E ρs ref ` e : v̂ � ρ

(PE-Deref)

E ρs e : v̂′ � ρ′ v ρ
∀` ∈ v̂′. Eµ̂(`, ρs) v v̂
E ρs deref e : v̂ � ρ

(PE-SetRef)

E ρs e1 : v̂1 � ρ1 v ρ
E ρs e2 : v̂2 v v̂ � ρ2 v ρ
∀` ∈ v̂1. v̂2 v Eµ̂(`, ρs)

E ρs e1 := e2 : v̂ � ρ

(PE-Send)

E ρs e1 : v̂1 � ρ1 v ρ′
E ρs e2 : v̂2 � ρ2 v ρ′

∀m ∈ v̂1.∀ρm w ρ. EΥ̂ (m, ρm) = (ρr, ρe) ∧ ρr v ρs ⇒ ρe v ρ′ ∧ v̂2 v EΦ̂(m, ρm) ∧ unit ∈ v̂
E ρs e1〈e2 . ρ〉 : v̂ � ρ′

(PE-Exercise)

ρ v ρs ⇒ ρ v ρ′ ∧ unit ∈ v̂
E ρs exercise(ρ) : v̂ � ρ′

Table 4. Flow analysis for expressions



an over-approximation of the abstract return value of the function EΓ̂ (λx), and
(3) the exercised privileges ρ1 t ρ2 t ρe are bounded above by the privileges ρ
assigned to the application.

The rules in the central portion of the table should be relatively easy to
understand. Notice that the rules for control flow operators, i.e., (PE-Cond)
and (PE-While), allow for excluding from the static analysis some program
branches which are never reached at runtime. The rules for references use the in-
formation ρs annotated on the turnstile, corresponding to the privileges granted
to the handler/instance that is accessing the reference. These rules ensure that
any value stored in a reference is correctly over-approximated by the abstract
memory; and dually, that any value retrieved from a reference is abstracted
with an over-approximation of the content of the abstract memory. This ensures
that any value which is first stored in a reference and then retrieved from it is
over-approximated correctly by the flow logic.

Rule (PE-Send) first analyses e1 and e2 to compute the approximations of
the recipient (v̂1) and the sent message (v̂2). Then, the last premise enforces two
invariants: (1) the privileges ρe escalated by communicating with other handlers
in the system are bounded above by the privileges ρ′ assigned to the send expres-
sion, and (2) the abstraction of the sent message v̂2 is over-approximated by the
information in the abstract network for each possible recipient. We also check
that unit is included in the abstract value assigned to the expression, accordingly
to the operational semantics of the send construct. Finally, rule (PE-Exercise)
ensures that, whenever an instance with permission ρs exercises ρ v ρs, then ρ
is bounded above by the privileges ρ′ assigned to the expression.

Flow Analysis for Systems. Finally, we extend the flow analysis to systems by
defining the main judgement E  s despite ρ, which follows from similar judge-
ments for memories, handlers and instances. The definition is given in Table 5.

In the rules for memories we just need to ensure (cf. rule (PM-Single))
that, whenever a value v is stored in a reference r` protected with permission ρr,
then v can be abstracted to some v̂ over-approximated by the abstract memory
entry Eµ̂(`, ρr). As for instances, rule (PI-Single) computes an approximation
of the privileges ρe exercised by the running expression. Then, if the instance
is granted permission ρa 6v ρ, i.e., if it is not compromised, we check that the
abstract stack correctly approximates with ρe the privileges exercised by the
instance body. This check is not enforced for instances that might be under
the control of the opponent, according to the idea that any opponent must be
accepted by a sufficiently weak abstract environment. This is needed to prove an
opponent acceptability result (Lemma 2), which allows for a convenient soundness
proof technique for the analysis [1, 5].

Handlers are accepted by rule (PH-Single), which states that, to analyse
a(x / ρs : ρa).e despite ρ-opponents, we first lookup the abstract stack Υ̂ : let
Υ̂ (a, ρa) = (ρ′s, ρ

′
e). If we are not analysing a (possibly) compromised handler,

i.e., if ρa 6v ρ, we ensure that the permission ρ′s in the abstract stack matches
the permission ρs guarding access to the handler. We then lookup the abstract
network Φ̂: if Φ̂(a, ρa) = ∅, no instance of the system will ever communicate



(PM-Empty)

E  ∅ despite ρ

(PM-Single)

E ρr v  v̂
v̂ v Eµ̂(`, ρr)

E  r`
ρr7→ v despite ρ

(PM-Many)

E  µ1 despite ρ
E  µ2 despite ρ

E  µ1, µ2 despite ρ

(PH-Empty)

E  ∅ despite ρ

(PH-Many)

E  h despite ρ
E  h′ despite ρ

E  h, h′ despite ρ

(PH-Single)

EΥ̂ (a, ρa) = (ρ′s, ρ
′
e) ρa 6v ρ⇒ ρ′s = ρs

EΦ̂(a, ρa) 6= ∅ ⇒ EΓ̂ (x) w EΦ̂(a, ρa) ∧ E ρa e : v̂ � ρe ∧ (ρa 6v ρ⇒ ρ′e = ρe)

E  a(x / ρs : ρa).e despite ρ

(PI-Empty)

E  ∅ despite ρ

(PI-Single)

E ρa e : v̂ � ρe
ρa 6v ρ⇒ ∃ρs. EΥ̂ (a, ρa) = (ρs, ρe)

E  a{|e|}ρa despite ρ

(PI-Many)

E  i despite ρ
E  i′ despite ρ

E  i, i′ despite ρ

(PS-Sys)

E  µ despite ρ E  h despite ρ
E  i despite ρ E is ρ-conservative

E  µ;h; i despite ρ

Table 5. Flow analysis for systems

with the handler and we can skip the analysis of its body. Otherwise, we en-
sure that the abstract variable environment maps the bound variable x to an
over-approximation of the incoming message, abstracted by Φ̂(a, ρa), and we
analyse the body of the handler, to detect the exercised privileges ρe. If we are
not analysing the opponent, we further ensure that ρe matches the permissions
ρ′e annotated in the abstract stack, i.e., we guarantee that the abstract stack
contains reliable information.

Finally, rule (PS-Sys) states that a system s = µ;h; i is acceptable for E only
whenever µ, h and i are all acceptable for E , and E is a ρ-conservative abstract
environment. This notion corresponds to the informal idea of “sufficiently weak
abstract environment” needed to prove the opponent acceptability result. In
order to define ρ-conservativeness, we first define the notion of static leak for an
abstract environment.

Definition 5 (Static Leak). We define the static leak of E against ρ as:
SLeakρ(E) =

⊔
ρe∈L ρe, where L = {ρe | ∃a, ρa, ρs. EΥ̂ (a, ρa) = (ρs, ρe)∧ρs v ρ}.

Intuitively, SLeakρ(E) is the upper bound of all the permissions ρe that can be
(transitively) exercised by any handler that can be called by a ρ-opponent. We



then define the set Vρ(E) of the opponent-controlled variables as:

Vρ(E) = Vu ∪ {x | ∃ρe, `, ρr v ρ. λxρe ∈ Eµ̂(`, ρr)}.

The set contains all the variables Vu occurring in the opponent code, together
with all the variables bound in lambda abstractions stored in references under
the control of the opponent. All these variables can be instantiated at runtime
with values chosen by the opponent. We use this set of variables also to define a
sound abstraction of any value which can be generated by/flow to the opponent.

Definition 6 (Canonical Disclosed Abstract Value). Given an abstract
environment E and a permission ρ, the canonical disclosed abstract value is
defined as: v̂ρ(E) = {û | vars(û) ⊆ Vρ(E)}.

The canonical disclosed abstract value is a canonical representation of any ab-
stract value under the control of a ρ-opponent in a system accepted by E . It is
the set of all the pre-values which contain only opponent-controlled variables.

Based on the notions above, we define ρ-conservativeness.

Definition 7 (ρ-Conservative Abstract Environment). An abstract envi-
ronment E is ρ-conservative if and only if all the following conditions hold true:

1. ∀n ∈ N ,∀ρ′ v ρ. EΥ̂ (n, ρ′) = (⊥,SLeakρ(E));
2. ∀n ∈ N ,∀ρ′ v ρ. EΦ̂(n, ρ′) = v̂ρ(E);
3. ∀n ∈ N ,∀ρn, ρs, ρe. EΥ̂ (n, ρn) = (ρs, ρe) ∧ ρs v ρ⇒ EΦ̂(n, ρn) = v̂ρ(E);
4. ∀` ∈ L,∀ρ′ v ρ. Eµ̂(`, ρ′) = v̂ρ(E);
5. ∀x ∈ Vρ(E). EΓ̂ (x) = EΓ̂ (λx) = v̂ρ(E).

In words, an abstract environment is ρ-conservative whenever: (1) any handler
that can be under the control of the opponent is in fact assumed to be accessible
by the opponent and to escalate up to the static leak; (2) any handler that
can be under the control of the opponent, or (3) that can be contacted by the
opponent, is assumed to receive the canonical disclosed abstract value v̂ρ(E); (4)
any reference possibly under the control of the opponent is assumed to contain
v̂ρ(E); and (5) the argument of any function which can be called by the opponent
is assumed to contain the canonical disclosed abstract value v̂ρ(E) and similarly
these functions are assumed to return v̂ρ(E).

4.2 Formal Results

Our main formal result defines an upper bound for the privileges which can be
escalated by the opponent in a system accepted by the flow analysis. Complete
proofs are in Appendix C; here, we start proving the soundness of the flow logic
specification by means of a subject reduction result, which ensures that the
acceptability of the analysis is preserved upon reduction.

Lemma 1 (Subject Reduction). If E  s despite ρ and s
α−→ s′, then E 

s′ despite ρ.



The next lemma states that any ρ-opponent is accepted by a ρ-conservative
abstract environment. Intuitively, the combination of this result with subject
reduction ensures that the acceptability of the analysis is preserved at runtime,
even when the analysed system interacts with the opponent.

Lemma 2 (Opponent Acceptability). If (h, i) is a ρ-opponent and E is ρ-
conservative, then E  h despite ρ and E  i despite ρ.

Moreover, proving the safety theorem requires to explicitly track the call
chains carried out by the system reduction, to collect the privileges transitively
exercised by system components. The next lemma then relies on the following
definition of call chain to prove that the abstract stack contains a static approx-
imation of the privileges which are exercised by each system component either
directly or by communicating with other components.

Definition 8 (Call Chain). A call chain (−→α , a:ρa � ρ′) is a trace of length
(n+ 1) such that:

1. the trace −→α = 〈a1:ρa1 , b1:ρb1〉, . . . , 〈an:ρan , bn:ρbn〉 is a sequence of send la-
bels where the sender occurring in each label is the receiver occurring in the
previous label, i.e., ∀i ∈ [1, n−1]. ai+1 = bi ∧ ρai+1 = ρbi , and

2. the component exercising the privilege ρ′ at the end of the call chain corre-
sponds to the last receiver, i.e., bn = a ∧ ρbn = ρa.

A trace
−→
β includes a call chain −→α iff −→α is a sub-trace of

−→
β .

According to the intuition given above, proving the soundness of the abstract
stack amounts to showing that, given a call chain leading to the exercise of some
privilege ρ′ not available to the opponent, the abstract stack EΥ̂ approximates the
privileges exercised by any component involved in the chain with a permission
greater than or equal to ρ′. The proof uses the subject reduction result.

Lemma 3 (Soundness of the Abstract Stack). If E  s despite ρ and

s
−→
β

=⇒ s′ for a trace
−→
β including the call chain (−→α , a:ρa � ρ′) for some ρ′ 6v ρ,

then for each label αj = 〈aj :ρaj , bj :ρbj 〉 ∈ {−→α } we have EΥ̂ (bj , ρbj ) = (ρsbj , ρebj )

with ρ′ v ρebj and EΥ̂ (aj , ρaj ) = (ρsaj
, ρeaj

) with ρ′ v ρeaj
.

Theorem 1 (Flow Safety). Let s = µ;h; ∅. If E  s despite ρ, then s leaks
SLeakρ(E) against ρ.

Proof. By contradiction. Let ŝ be the system obtained by composing s with a
ρ-opponent and assume that ŝ eventually reaches a state s′ such that s′ exercises
privileges ρbad, with ρbad 6v ρ and ρbad 6v SLeakρ(E).

By inverting rule (PS-Sys) on the hypothesis E  s despite ρ, we have that
E is ρ-conservative. Using Lemma 2 (Opponent Acceptability), we show that
E  ŝ despite ρ. Given that ρbad 6v ρ, the privileges ρbad cannot be directly
exercised by the opponent, hence there must exist a call chain leading to ρbad
from ŝ. Let ai range over the components in the call chain and ρi range over



their corresponding permissions. Consider now the first sender a1 in the call
chain: given that the original system s does not have running instances, it turns
out that a1 must be the opponent, hence ρ1 v ρ. Since E is ρ-conservative and
ρ1 v ρ, we have EΥ̂ (a1, ρ1) = (⊥,SLeakρ(E)). By Lemma 3 (Soundness of the
Abstract Stack), for each component ai with permissions ρi occurring in the call
chain we must have EΥ̂ (ai, ρi) = (ρsi , ρei) for some ρsi and some ρei w ρbad. But
then we get ρbad v SLeakρ(E), which is contradictory.

4.3 Analysing the Example

We now show the analysis at work on our running example in its three variants,
namely the systems s, stag and schan introduced in Section 3. We assume that the
abstract domain for strings includes all the string literals syntactically occurring
in the program code, plus the distinguished symbol * to represent all the other
strings (or any string which we cannot statically reconstruct). We let ŝtr range
over elements of this abstract domain and we assume that ŝtr v ∗ for any ŝtr.

As to records, we choose the field-sensitive representation 〈|
−−−−−→
ŝtri : v̂i|〉 where both

the field names and contents are inductively abstracted. In the following we
mostly focus on the intuitions behind the analysis: additional details, including
the formal definitions of the expected abstract record operations and the abstract
value pre-order, are given in Appendix B.1.

The Original System. We start by studying the robustness of the original system
s against a P-opponent, i.e., an opponent with the only ability to dispatch the
content script C attached to untrusted web pages. We have that E  s despite P,
where E = Γ̂ ; µ̂; Υ̂ ; Φ̂ satisfies the following assumptions:

Φ̂(c,C) = v̂P(E) Φ̂(o,O) = ∅ Φ̂(b,B) = {〈|“site” : v̂P(E), ∗ : v̂P(E)|〉}
Υ̂ (c,C) = (P,B) Υ̂ (o,O) = (>,⊥) Υ̂ (b,B) = (C u O,B)

Since C can be accessed by the opponent, the value of Φ̂(c,C) must be equal to
v̂P(E) to ensure the P-conservativeness of E . Conversely, O can never be accessed
by the opponent or by any other component in the system, hence Φ̂(o,O) = ∅. By
rule (PH-Single), this implies that there is no need to analyse the body of O,
which allows for ignoring the format of the messages sent by O: this explains why
the value of Φ̂(b,B) includes just one element, corresponding to the message sent
by C. Indeed, observe that ŝet(v̂P(E), “site”, str) v {〈|“site” : v̂P(E), ∗ : v̂P(E)|〉}
for any str to accept the send expression in the body of C.

Now observe that {“policy”, “upd”} v ĝet(〈|“site” : v̂P(E), ∗ : v̂P(E)|〉, “tag”),
hence both branches of the conditional in the body of B are reachable and the
conditional expression may exercise B; we then let Υ̂ (b,B) = (C u O,B) by rule
(PH-Single). Given that C communicates with B, the privileges exercised by
C must be greater or equal than B by rule (PE-Send), and propagated into
Υ̂ (c,C) by rule (PH-Single). Since SLeakP(E) = B, we know that the system s
leaks B against P by Theorem 1.



The System with Tags. Let us focus now on the system stag and a P-opponent.

We have that E  stag despite P, where E = Γ̂ ; µ̂; Υ̂ ; Φ̂ is such that:

Φ̂(c,C) = v̂P(E) Φ̂(o,O) = ∅
Φ̂(b,B) = {〈|“tag” : “policy”, “site” : ∗, “spec” : v̂P(E)|〉}
Υ̂ (c,C) = (P,MemB) Υ̂ (o,O) = (>,⊥) Υ̂ (b,B) = (C u O,MemB)

Based on this information, rule (PE-Cond) allows for analysing only the pro-
gram branch of B corresponding to the processing of a message with tag “policy”,
which only exercises the privilege MemB: this motivates the precise choice of
Υ̂ (b,B). Since SLeakP(E) = MemB, the system leaks MemB against P.

Assume now an opponent with permission C, then we have E ′  stag despite C,

where E ′ = Γ̂ ′; µ̂′; Υ̂ ′; Φ̂′ is such that:

Φ̂′(c,C) = v̂C(E ′) Φ̂′(o,O) = ∅ Φ̂′(b,B) = v̂C(E ′)
Υ̂ ′(c,C) = (⊥,B) Υ̂ ′(o,O) = (>,⊥) Υ̂ ′(b,B) = (C u O,B)

With respect to the previous scenario, the abstract network entry for B contains
v̂C(E ′), abstracting all the values which may be generated by a C-opponent:
this is needed for C-conservativeness. The consequence is that all the program
branches of B are reachable, hence B may exercise its full set of privileges B.
Since SLeakC(E ′) = B, the system leaks B against C by Theorem 1.

The System with Channels. We are able to prove E  schan despite C for an
abstract environment E = Γ̂ ; µ̂; Υ̂ ; Φ̂ such that:

Φ̂(c,C) = v̂C(E) Φ̂(o,O) = ∅ Φ̂(b1,B) = v̂C(E) Φ̂(b2,B) = ∅
Υ̂ (c,C)=(⊥,MemB) Υ̂ (o,O)=(>,⊥) Υ̂ (b1,B)=(C,MemB) Υ̂ (b2,B)=(O,⊥)

For the new abstract environment E we have SLeakC(E) = MemB, which ensures
that the new system only leaks MemB against C. Since the privilege Cookies
cannot be escalated by a compromised C anymore, there is no way to corrupt
the cookie jar without compromising the background page B itself (or the options
page O). Interestingly, this is a formal characterization of the dangers connected
to the development of bundled browser extensions in a realistic setting [2].

5 Implementation: Chen

Chen is a prototype Google Chrome extension analyser written in F#. Given
a Chrome extension, Chen translates it into a corresponding system in our for-
malism and computes an acceptable flow analysis estimate by constraint solving.
Chen can be used by programmers to evaluate the robustness of their extensions
against privilege escalation attacks and to support their security refactoring.



5.1 Flow Logic Implementation

Implementing the flow logic specification amounts to defining an algorithm that,
given a system s and a permission ρ characterizing the power of the opponent,
computes an abstract environment E such that E  s despite ρ. Following a
standard approach [25], we first define a verbose variant of the flow logic, which
associates an analysis estimate to each sub-expression of s, and then we devise
a constraint-based formulation of the analysis. Any solution of the constraints
is an abstract environment E which accepts s.

We initially implemented in Chen a simple worklist algorithm for constraint
solving. However, consistently with what has been reported by Jensen et al. in
the context of JavaScript analysis [19], we observed that this solution does not
scale, taking hours to perform the analysis even on small examples. Therefore,
in our implementation we use a variant of the worklist algorithm where most of
the constraint generation is performed on demand during the solving process.
Even though this approach does not allow us to reuse existing solvers, it leads
to a dramatic improvement in the performances of the analysis.

The current prototype implements a context-insensitive analysis, which is
enough to capture the privileges escalated by the content scripts, provided
that some specific library functions introduced by the desugaring process from
JavaScript to λJS (see below) are inlined. The choice of the abstract pre-values
for constants is standard: in the current implementation, we represent numbers
with their sign and we approximate strings with finite prefixes [11]. The rep-
resentation of records is field-sensitive, but we collapse into a single label * all
the entries bound to approximate labels (string prefixes). As to the ordering,
we consider a standard pre-order vp on abstract pre-values, and we lift it to
abstract values using a lower powerset construction, i.e., we let v̂ v v̂′ if and
only if ∀û ∈ v̂.∃û′ ∈ v̂′. û vp û′.

5.2 Using Chen to assess Google Chrome Extensions

Given an extension, Chen takes as an input a sequence of component names,
along with the JavaScript files corresponding to their implementation. Compo-
nents represent isolation domains, in that different components must be able to
communicate only using the message passing interface. Different content scripts
which may injected in the same web page should be put inside the same compo-
nent, since Google Chrome does not separate their heaps. The background page
should be put in a separate component, since it runs in an isolated process4.

From JavaScript to the Model. Let c be a component name and f1, . . . , fn the
corresponding JavaScript files: our tool concatenates f1, . . . , fn into a single file
f , which is desugared into a closed λJS expression using an existing tool [16].
The adequacy of the translation from JavaScript to λJS has been assessed by

4 An appropriate mapping of JavaScript files to components can be derived from the
manifest file of the extension, but the current prototype does not support this feature.



extensive automatic testing, hence safety guarantees for JavaScript programs can
be provided just by analysing their λJS translation; see [16] for further details.

The obtained λJS expression is then transformed into a set of handlers: more
precisely, for any function λx.e′ passed as an argument to the addListener

method of chrome.runtime.onMessage, we introduce a new handler on a chan-
nel with the same name of the component, whose body is obtained by closing
e′ with the introduction of all the bindings defined before the registration of
the listener. For each component we introduce a unique permission for memory
access, granted to each handler in the component; handlers corresponding to the
background page are also given the permissions specified in the manifest of the
extension. Any invocation of chrome.runtime.sendMessage in the definition of
a content script is translated to a send expression over a channel with the name
of the component corresponding to the background page.

Notice that Chen exploits an existing tool to translate JavaScript to λJS ,
but our target language has two new constructs: message sending and privi-
lege exercise. In JavaScript, both operations correspond to function calls to the
Chrome extension API, hence, to introduce the syntactic forms corresponding
to them in the translation to our formalism, we extend the JavaScript code
to redefine the functions of interest in the Chrome API with stubs. For in-
stance, chrome.cookies.set is redefined to a function including the special tag
"#Cookies#", which is preserved when desugaring JavaScript to λJS : we then
post-process the λJS expression to replace this tag with exercise(Cookies).

Running the Analysis. The tool supports two analyses. The option -compromise

instructs Chen to analyse the privileges which may be escalated by an opponent
assuming the full compromise of an arbitrary content script, i.e., it estimates the
safety of the system despite the permission that protects the background page.
If the background page requests some permission ρ intended for internal use,
but ρ is available to some content script according to the results of the analysis,
then the developer is recommended to review the communication interface.

Alternatively, the option -target n allows to get an approximation of the
privileges available to the content scripts in the component n in absence of
compromise. We model absence of compromise by considering a ⊥-opponent as
the threat model, since this opponent cannot directly communicate with the
background page: if the option -target n is specified, Chen transforms the
system by protecting with permission ⊥ all the handlers included in n, and
computes a permission ρ such that the system is ρ-safe despite ⊥. This allows to
estimate which privileges are enabled by messages sent from n, so as to identify
potential room for a security refactoring, as we discuss below.

Both the analyses additionally support the option -flag p, which allows to
define a dummy permission p assigned to the background page. The programmer
may then annotate specific program points with the tag "#p#, corresponding to
the exercise of this dummy permission; by checking the presence of the flag
among the escalated privileges, Chen can be used to implement an opponent-
aware reachability analysis on the extension code.



Supporting a Security Refactoring. To exemplify, we analyse with Chen our mo-
tivating example. By first specifying the option -target O, the tool detects that
the options page O is only accessing the privilege Cookies as part of its standard
functionalities, even though the background page B is given the permissions
MemB t Cookies. To support least privilege, the developer is thus recommended
to introduce a distinct communication port for B. Notably, the permission gap
arises from the presence in the code of B of program branches which are never
triggered by messages sent by O in absence of compromise: in principle, Chen
could then automatically introduce the new port, replicate the code from the
handler of the background page, and improve its security against compromise
by eliminating the dead branches, even though the current prototype does not
implement this feature.

Then, by using the option -target C, the tool outputs that the privilege
MemB t Cookies can be escalated by the content script C. Hence, no automated
refactoring is possible, but the output of the analysis is still helpful for a careful
developer, who realizes that C should not be able to access the Cookies privi-
lege. Based on the output of the analysis, the developer may opt for a manual
reviewing and refactoring of the extension.

Current Limitations. Being a proof-of-concept implementation, the current ver-
sion of Chen lacks a full coverage of the Chrome extension APIs. Moreover,
Chen cannot analyse extensions which use ports to communicate: in our model,
ports are just channels and do not pose any significant problem to the analysis.
Unfortunately, the current Chrome API makes it difficult to support the analy-
sis of extensions using ports, since the underlying programming patterns make
massive usage of callbacks. Based on our experience and a preliminary investi-
gation, however, ports are not widely used in practice, hence many extensions
can still be analysed by Chen.

5.3 Case Study: ShareMeNot

ShareMeNot [30] is a popular privacy-enhancing extension developed at the Uni-
versity of Washington. The extension looks for social sharing buttons in the web
pages and replaces them with dummy buttons: only when the user clicks one
of these buttons, its original version is loaded and the cookies registered by the
corresponding social networks are sent. This means that the social network can
track the user only when the user is willing to share something.

ShareMeNot consists of four components: a content script, a background
page, an option page and a popup, for a total of approximately 1,500 lines of
JavaScript code. The background page offers a unique entry point to all the other
extension components and handles seven different message types. Interestingly,
one of these messages allows to unblock all the trackers in an arbitrary tab, by
invoking the unblockAllTrackersOnTab function: this message should only be
sent by the popup page. We then put a flag in the body of the function and we
performed the analysis of ShareMeNot with the -compromise option, observing
that the flag is reachable: hence, a compromised content script could entirely



deactivate the extension. The analysis took around 150 seconds on a standard
commercial machine.

We then ran the analysis with the -target C option, where C is the name
of the component including only the content script, and we observed that the
flag was not reachable. This means that C does not need to access the function
unblockAllTrackersOnTab as part of its standard functionalities, hence the
code should be refactored to comply with the principle of the least privilege and
prevent a potential security risk. The analysis took around 210 seconds on the
same machine.

6 Conclusions

We presented a core calculus to reason about browser extensions security and we
proposed a flow analysis aimed at detecting which privileges may be leaked to
an opponent which compromises some (arbitrarily chosen) untrusted extension
components. The analysis has been proved sound and it has been implemented in
Chen, a prototype static analyser for Google Chrome extensions. We discussed
how Chen can assist developers in writing more robust extensions.

As future work, we plan to further engineer Chen, to make it support more
sophisticated communication patterns used in Google Chrome extensions. We
ultimately plan to evolve Chen into a compiler, which automatically refactors
the extension code to make it more secure, by unbundling functionalities based
on their exercised permissions. Based on a preliminary investigation, this will
require a non-trivial programming effort.
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A Basic Reduction Relation

The basic reduction relation e ↪→ e′ is given in Table 6. We assume the existence
of an unspecified δ function to define the behaviour of primitive operations [17].

(JS-PrimOp)

op(−→ci ) ↪→ δ(op,−→ci )
(JS-Let)

let x = v in e ↪→ e[v/x]

(JS-GetField)

{−−−−−→stri : vi, str : v,
−−−−−→
str′j : v′j}[str] ↪→ v

(JS-GetNotFound)

str /∈ {str1, . . . , strn}
{−−−−→stri :vi}[str] ↪→ undefined

(JS-App)

(λx.e) v ↪→ e[v/x]

(JS-UpdateField)

{−−−−→stri :vi, str :v,
−−−−→
str′j :v′j}[str] = v′ ↪→ {−−−−→stri :vi, str :v′,

−−−−→
str′j :v′j}

(JS-CreateField)

str /∈ {str1, . . . , strn}
{−−−−→stri :vi}[str] = v ↪→ {str :v,

−−−−→
stri :vi}

(JS-Discard)

v; e ↪→ e

(JS-DeleteField)

delete {−−−−→stri :vi, str :v,
−−−−→
str′j :v′j}[str] ↪→ {

−−−−→
stri :vi,

−−−−→
str′j :v′j}

(JS-DeleteNotFound)

str /∈ {str1, . . . , strn}
delete {−−−−→stri :vi}[str] ↪→ {

−−−−→
stri :vi}

(JS-CondTrue)

if (true) { e1 } else { e2 } ↪→ e1

(JS-CondFalse)

if (false) { e1 } else { e2 } ↪→ e2

(JS-While)

while (e1) { e2 } ↪→ if (e1) { e2; while (e1) { e2 } } else { undefined }

Table 6. Basic reduction relation e ↪→ e′



B Assumptions for the Safety Proof

Assumption 1 (Abstracting Finite Domains). We assume that:

∀c ∈ {true, false,unit,undefined}. ĉ = c.

Assumption 2 (Soundness of Abstract Operations). We assume that.

∀op,∀−→ci ,∀c. δ(op,−→ci ) = c⇒ {ĉ} v ôp(
−→
ĉi ).

Similarly to primitive operations, we also assume that the abstract operations
on records correctly over-approximate the corresponding concrete operations.

Assumption 3 (Soundness of Abstract Record Operations). All the fol-
lowing properties hold true:

1. {−−−−−→stri : vi}[str] ↪→ v ∧ ĝet(〈|−−−−−→stri : vi|〉E,ρ, ŝtr) = v̂′ ⇒ ∃v̂ v v̂′. E ρ v  v̂;

2. {−−−−−→stri : vi}[str] = v′ ↪→ v ∧ E ρ v′  v̂′ ∧ ŝet(〈|−−−−−→stri : vi|〉E,ρ, ŝtr, v̂′) = v̂′′ ⇒
∃v̂ v v̂′′. E ρ v  v̂;

3. delete {−−−−−→stri : vi}[str] ↪→ v ∧ d̂el(〈|−−−−−→stri : vi|〉E,ρ, ŝtr) = v̂′ ⇒ ∃v̂ v v̂′. E ρ
v  v̂.

Assumption 4 (Monotonicity of Abstract Operations). The following

property holds true for every ôp
∗ ∈ {ôp, ĝet, ŝet, d̂el}:

∀
−→
v̂i , ∀

−→
v̂′i . (∀i. v̂i v v̂′i ⇒ ôp

∗
(
−→
v̂i ) v ôp

∗
(
−→
v̂′i )).

We also assume that all the abstract operations are total, i.e., they are defined
for any possible choice of the abstract values. It is admissible to return the empty
set as the result of an abstract operation.

Assumption 5 (Totality of Abstract Operations). We assume that:

∀ôp
∗ ∈ {ôp, ĝet, ŝet, d̂el},∀

−→
v̂i .∃v̂. ôp

∗
(
−→
v̂i ) = v̂.

The pre-order on abstract values must satisfy a number of conditions. It
must contain the set inclusion relation and have ∅ as a bottom element. We also
dictate some constraints on the ordering of names, labels, functions and a few
basic constants.

Assumption 6 (Ordering Abstract Values). The relation v over V̂ × V̂ is
a pre-order such that:

1. ∀v̂, v̂′. v̂ ⊆ v̂′ ⇒ v̂ v v̂′;
2. ∀v̂. v̂ v ∅ ⇒ v̂ = ∅;
3. ∀n, ∀v̂. {n} v v̂ ⇒ n ∈ v̂;
4. ∀`,∀v̂. {`} v v̂ ⇒ ` ∈ v̂;
5. ∀λxρ,∀v̂. {λxρ} v v̂ ⇒ ∃ρ′ w ρ. λxρ′ ∈ v̂;
6. ∀c ∈ {true, false,unit,undefined},∀v̂. {ĉ} v v̂ ⇒ ĉ ∈ v̂.



The next assumption states that permissions play no role in the abstraction
of serializable records. This is expected, since permissions are important only to
abstract functions, but serializable records do not contain functions.

Assumption 7 (Abstracting Serializable Records). If {−−−−−→stri : vi} is serial-

izable, then for any E, ρa and ρb we have 〈|−−−−−→stri : vi|〉E,ρa = 〈|−−−−−→stri : vi|〉E,ρb .

The last assumption is a simple requirement on the (free and bound) vari-
ables occurring in the results of some abstract operation. It ensures that no new
variable is introduced in the abstraction process or by abstract operations.

Assumption 8 (Variables). All the following properties hold true:

1. ∀ĉ. vars(ĉ) = ∅;
2. ∀ôp,∀

−→
v̂i . vars(ôp(

−→
v̂i )) = ∅;

3. ∀v̂1, v̂2. vars(ĝet(v̂1, v̂2)) ⊆ vars(v̂1);
4. ∀v̂0, v̂1, v̂2. vars(ŝet(v̂0, v̂1, v̂2)) ⊆ vars(v̂0) ∪ vars(v̂2);

5. ∀v̂1, v̂2. vars(d̂el(v̂1, v̂2)) ⊆ vars(v̂1).

B.1 Example: A Simple Abstract Domain

We further specify the abstract domains employed in the example of Section 4.3.
Let vs be the least reflexive relation over abstract strings such that ŝtr vs ∗ for
any ŝtr. We define the following abstract operations on records:

ŝet(〈|
−−−−−→
ŝtri : v̂i|〉, ŝtr, v̂) = {〈|

−−−−−→
ŝtri : v̂i, ŝtr : v̂|〉} if 6 ∃i. ŝtr vs ŝtri

ŝet(〈|
−−−−−→
ŝtri : v̂i|〉, ŝtr, v̂) = {〈|

−−−−−→
ŝtri : v̂′i|〉 | v̂′i = v̂i ∪ v̂ if ŝtr vs ŝtri,

v̂′i = v̂i otherwise} if ∃i. ŝtr vs ŝtri
ĝet(〈|

−−−−−→
ŝtri : v̂i|〉, ŝtr) = {undefined} ∪ {û | ∃i. ŝtr vs ŝtri ∧ û ∈ v̂i}

d̂el(〈|
−−−−−→
ŝtri : v̂i|〉, ŝtr) = {〈|

−−−−−→
ŝtri : v̂i|〉}

We then lift each ôp to arbitrary abstract values by taking the union of the
results computed on each possible combination of the contained abstract pre-
values, e.g., we let ĝet(v̂1, v̂2) = {û | û1 ∈ v̂1, û2 ∈ v̂2, û ∈ ĝet(û1, û2)}.

Finally, we define by mutual induction a pre-order vp on abstract pre-values
and a pre-order v on abstract values, based on the inference rules in Table 7.

ŝtr vs ŝtr
′

ŝtr vp ŝtr
′

∀i.∃j. ŝtri vs ŝtrj ∧ v̂i v v̂′j

〈|
−−−−−→
ŝtri : v̂i|〉 vp 〈|

−−−−−→
ŝtr
′
j : v̂′j |〉

v̂ ⊆ v̂′

v̂ v v̂′
∀û ∈ v̂.∃û′ ∈ v̂′. û vp û′

v̂ v v̂′

Table 7. Example: Abstract value pre-order

It is relatively easy to check that both the abstract record operations and
the abstract pre-order satisfy the assumptions above.



C Proofs

We first show the detailed proofs of the main results in the paper, while a second
subsection collects a number of auxiliary lemmas used in the main proofs.

C.1 Proofs of the Main Results

Lemma 1 (Subject Reduction). If E  s despite ρ and s
α−→ s′, then E 

s′ despite ρ.

Proof. By induction on the derivation of s
α−→ s′:

Case (R-Sync): assume the following reduction step:

µ;h, b(x/ρs : ρb).e; a{|E〈b〈v.ρr〉〉|}ρa
〈a:ρa,b:ρb〉−−−−−−−→ µ;h, b(x/ρs : ρb).e; a{|E〈unit〉|}ρa , b{|e[v/x]|}ρb ,

where ρs v ρa and ρr v ρb and v is serializable.
Let E  µ;h, b(x/ρs : ρb).e; a{|E〈b〈v.ρr〉〉|}ρa despite ρ. By inverting (PS-Sys)
we get:

1. E  µ despite ρ;
2. E  h, b(x / ρs : ρb).e despite ρ;
3. E  a{|E〈b〈v . ρr〉〉|}ρa despite ρ;
4. E is ρ-conservative.

We observe that to conclude we need to show E  b{|e[v/x]|}ρb despite ρ and
E  a{|E〈unit〉|}ρa despite ρ.
By inverting (PI-Single) on point 3 we have:

5. E ρa E〈b〈v . ρr〉〉 : v̂′ � ρ′;
6. ρa 6v ρ⇒ ∃ρ′′s : EΥ̂ (a, ρa) = (ρ′′s , ρ

′).

By inverting (PH-Many) on point 2 we get E  b(x / ρs : ρb).e despite ρ. By
inverting (PH-Single) on the latter judgement we get:

7. EΦ̂(b, ρb) 6= ∅ ⇒ EΓ̂ (x) w EΦ̂(b, ρb) ∧ E ρb e : v̂e � ρe ∧ (ρb 6v ρ ⇒
EΥ̂ (b, ρb) = (ρs, ρe)).

Let ξ be the derivation proving point 5. By Lemma 6 (Inverting Contexts)
there exist v̂′′ and ρ′′ v ρ′ such that ξ has a sub-derivation ξ′ concluding
E ρa b〈v . ρr〉 : v̂′′ � ρ′′, and the position of ξ′ in ξ corresponds to the
position of the hole in E. By inverting (PE-Send) on the judgement proved
by ξ′ we have:

8. E ρa b : v̂1 � ρ1 v ρ′′;
9. E ρa v : v̂2 � ρ2 v ρ′′;

10. ∀m ∈ v̂1,∀ρm w ρr, EΥ̂ (m, ρm) = (ρ′r, ρ
′
e) ∧ ρ′r v ρa ⇒ ρ′e v ρ′′ ∧ v̂2 v

EΦ̂(m, ρm) ∧ unit ∈ v̂′′.
Before targeting the desired conclusions, we prove the following two facts:

11. v̂2 v EΦ̂(b, ρb);
12. unit ∈ v̂′′.



Both facts can be proved from point 10 as follows. By inverting (PE-Val) on
point 8 we get E ρa b  v̂1. By inverting (PV-Name) on the latter we get
b ∈ v̂1. By Lemma 11 (Soundness of the Entry Points) we know that there exist
ρ′s and ρ′′e such that EΥ̂ (b, ρb) = (ρ′s, ρ

′′
e ), and either ρ′s = ⊥ or ρ′s = ρs. We now

distinguish two cases, based on this disjunction:
– if EΥ̂ (b, ρb) = (ρs, ρ

′′
e ), we observe that by the premises of the reduction rule

we know that ρs v ρa and ρr v ρb. Since we showed that b ∈ v̂1, point 10
above allows us to prove 11 and 12;

– if EΥ̂ (b, ρb) = (⊥, ρ′′e ), we observe that ⊥ v ρa by definition. By the premises
of the reduction rule we know that ρr v ρb. Since b ∈ v̂1, point 10 above
allows us to prove 11 and 12.

To prove E  b{|e[v/x]|}ρb despite ρ, we invert (PE-Val) on point 9 and we
get E ρa v  v̂2. By Lemma 10 (Discarding Bottom) we know that v̂2 6= ∅.
By point 11 we know that v̂2 v EΦ̂(b, ρb), hence EΦ̂(b, ρb) 6= ∅ by Assumption 6
(Ordering Abstract Values). This allows us to get from point 7 all the following
facts:
13. EΓ̂ (x) w EΦ̂(b, ρb);
14. E ρb e : v̂e � ρe;
15. ρb 6v ρ⇒ EΥ̂ (b, ρb) = (ρs, ρe).
Recall now that E ρa v  v̂2. By Lemma 9 (Abstracting Serializable Vales)
this allows us to prove E ρb v  v̂2. Given that EΓ̂ (x) w EΦ̂(b, ρb) and v̂2 v
EΦ̂(b, ρb) as shown above, we have v̂2 v EΓ̂ (x) by transitivity. We then get E ρb
v  EΓ̂ (x) by Lemma 4 (Subsumption). Hence, by Lemma 5 (Substitution)
on point 14 we get E ρb e[v/x] : v̂e � ρe, which allows us to prove E 
b{|e[v/x]|}ρb despite ρ by rule (PI-Single). Notice that, if ρb 6v ρ, we must
use point 15 to apply the acceptability rule.
We now prove E  a{|E〈unit〉|}ρa despite ρ. We first recall that unit ∈ v̂′′ by
point 12. We then observe that E ρa unit  v̂′′ by rule (PV-Cons), since

unit ∈ v̂′′ implies {ûnit} v v̂′′ by Assumption 6 (Ordering Abstract Values).
Hence, we have E ρa unit : v̂′′ � ρ′′ by rule (PE-Val). By applying Lemma 7
(Replacement) on the derivations ξ and ξ′ above we then get E ρa E〈unit〉 :
v̂′ � ρ′, whence E  a{|E〈unit〉|}ρa despite ρ by (PI-Single). Notice that, if
ρa 6v ρ, we must use point 6 to apply the acceptability rule;

Case (R-Exercise): assume the following reduction step:

µ;h; a{|E〈exercise(ρ′)〉|}ρa
a:ρa�ρ′−−−−−→ µ;h; a{|E〈unit〉|}ρa

with ρ′ v ρa. Assume further that E  µ;h; a{|E〈exercise(ρ′)〉|}ρa despite ρ.
By inverting (PS-Sys) and then (PI-Single) on the latter judgement we get:
1. E ρa E〈exercise(ρ′)〉 : v̂′ � ρe;
2. ρa 6v ρ⇒ ∃ρs : EΥ̂ (a, ρa) = (ρs, ρe).

Let ξ be the derivation proving point 1. By Lemma 6 (Inverting Contexts)
there exist v̂′′ and ρ′e v ρe such that ξ has a sub-derivation ξ′ concluding E ρa
exercise(ρ′) : v̂′′ � ρ′e, and the position of ξ′ in ξ corresponds to the position of
the hole in E. By inverting (PE-Exercise) on E ρa exercise(ρ′) : v̂′′ � ρ′e,
observing that ρ′ v ρa is a premise of the reduction rule, we get unit ∈ v̂′′.



We now observe that E ρa unit v̂′′ by (PV-Cons), since unit ∈ v̂′′ implies

{ûnit} v v̂ by Assumption 6 (Ordering Abstract Values). Hence, we have E ρa
unit : v̂′′ � ρ′e by rule (PE-Val). By applying Lemma 7 (Replacement) on
the derivations ξ and ξ′ considered above we then get E ρa E〈unit〉 : v̂′ � ρe,
whence E  a{|E〈unit〉|}ρa despite ρ by rule (PI-Single);

Case (R-Set): assume µ;h; i, i′′
α−→ µ′;h′; i′, i′′ with µ;h; i

α−→ µ′;h′; i′ and let
E ` µ;h; i, i′′ despite ρ. By inverting the acceptability rules on the latter we
can construct a proof of E  µ;h; i despite ρ, hence by induction hypothesis
we have E  µ′;h′; i′ despite ρ. Again by inverting the acceptability rules on
the hypothesis E  µ;h; i, i′′ despite ρ we can get a proof of E  i′′ despite ρ.
We can then construct a proof of E  µ′;h′; i′, i′′ despite ρ from the proofs of
E  µ′;h′; i′ despite ρ and E  i′′ despite ρ;

Case (R-Internal): assume µ;h; a{|e|}ρa
·−→ µ′;h; a{|e′|}ρa with µ; e ↪→ρa µ

′; e′

and let E  µ;h; a{|e|}ρa despite ρ. By inverting (PS-Sys) we get:

1. E  µ despite ρ;
2. E  h despite ρ;
3. E  a{|e|}ρa despite ρ;
4. E is ρ-conservative.

By inverting rule (PI-Single) on point 3 we get:

5. E ρa e : v̂ � ρe;
6. ρa 6v ρ⇒ ∃ρs : EΥ̂ (a, ρa) = (ρs, ρe).

Since E ρa e : v̂ � ρe and E  µ despite ρ and µ; e ↪→ρa µ′; e′, by
Lemma 8 (Subject Reduction for Expressions) we get E ρa e′ : v̂ � ρe and
E  µ′ despite ρ. We can then prove E  a{|e′|}ρa despite ρ by (PI-Single)
and conclude E  µ′;h; a{|e′|}ρa despite ρ by rule (PS-Sys).

Lemma 2 (Opponent Acceptability). If (h, i) is a ρ-opponent and E is ρ-
conservative, then E  h despite ρ and E  i despite ρ.

Proof. We first prove the following statement:

∀e. E is ρ-conservative ∧ ρs v ρ ∧ vars(e) ⊆ Vu ⇒ E ρs e : v̂ρ(E) � >. (1)

The proof is by induction on the structure of e. If e is a value v, we prove that
E ρs v  v̂ρ(E): this is enough to conclude E ρs v : v̂ρ(E) � > by rule (PE-
Val). To show that E ρs v  v̂ρ(E) holds true, we perform a case distinction
on v:

Case v = n: since n ∈ v̂ρ(E), we have E ρs n v̂ρ(E) by rule (PV-Name);
Case v = x: we know that x ∈ Vu by hypothesis, hence x ∈ Vρ(E). By definition
of ρ-conservativeness we thus know that EΓ̂ (x) = v̂ρ(E). We conclude E ρs
x v̂ρ(E) by rule (PV-Var);

Case v = c: by Assumption 8 (Variables) we know that vars(ĉ) = ∅, hence
ĉ ∈ v̂ρ(E), which implies {ĉ} v v̂ρ(E) by Assumption 6 (Ordering Abstract
Values). We get E ρs c v̂ρ(E) by rule (PV-Cons);

Case v = r`: since ` ∈ v̂ρ(E), we have E ρs ` v̂ρ(E) by rule (PV-Ref);



Case v = λx.e′: given that vars(e′) ⊆ vars(λx.e′) ⊆ Vu, we can apply the
induction hypothesis and get E ρs e′ : v̂ρ(E) � >. We prove E ρs λx.e′  
v̂ρ(E) by rule (PV-Fun) as follows:

(PV-Fun)

λx> ∈ v̂ρ(E) E ρs e′ : v̂ρ(E) � > v̂ρ(E) v EΓ̂ (λx) > v >
E ρs λx.e′  v̂ρ(E)

We just need to show how the first and the third premise are proved. To show
λx> ∈ v̂ρ(E), we observe that vars(λx>) ⊆ vars(λx.e′) ⊆ Vu ⊆ Vρ(E), hence we
know that λx> ∈ v̂ρ(E). To show v̂ρ(E) v EΓ̂ (λx), we notice that x ∈ vars(λx>)
and vars(λx>) ⊆ Vρ(E) as shown above, hence we know that EΓ̂ (λx) = v̂ρ(E)
by the ρ-conservativeness of E ;

Case v = {−−−−−→stri : vi}: since vars({−−−−−→stri : vi}) = vars(〈|−−−−−→stri : vi|〉E,ρs) and we know

that vars({−−−−−→stri : vi}) ⊆ Vu ⊆ Vρ(E) by hypothesis, we have 〈|−−−−−→stri : vi|〉E,ρs ∈
v̂ρ(E). Hence, we have {〈|−−−−−→stri : vi|〉E,ρs} v v̂ρ(E) by Assumption 6 (Ordering

Abstract Values) and we get E ρs {
−−−−−→
stri : vi} v̂ρ(E) by rule (PV-Rec).

Assume now that e is not a value:

Case e = (let x = e1 in e2): by induction hypothesis E `ρs e1 : v̂ρ(E) � >
and E `ρs e2 : v̂ρ(E) � >. Since x ∈ vars(e) ⊆ Vu ⊆ Vρ(E), we know that
EΓ̂ (λx) = v̂ρ(E) by the ρ-conservativeness of E , hence v̂ρ(E) v EΓ̂ (λx) and we
can apply rule (PE-Let) to conclude E ρs let x = e1 in e2 : v̂ρ(E) � >;

Case e = e1 e2: by induction hypothesis E ρs e1 : v̂ρ(E) � > and E ρs e2 :
v̂ρ(E) � >. Pick now any λxρe ∈ v̂ρ(E), by definition of v̂ρ(E) we know that
x ∈ Vρ(E). Since E is ρ-conservative, x ∈ Vρ(E) implies that EΓ̂ (x) = EΓ̂ (λx) =
v̂ρ(E). Hence, the side-conditions of rule (PE-App) are satisfied and we can
prove the desired conclusion E ρs e1 e2 : v̂ρ(E) � > as follows:

(PE-App)

E ρs e1 : v̂ρ(E) � >
E ρs e2 : v̂ρ(E) � >

∀λxρe ∈ v̂ρ(E) v̂ρ(E) v EΓ̂ (x) ∧ EΓ̂ (λx) v v̂ρ(E) ∧ ρe v >
E `ρs e1 e2 : v̂ρ(E) � >

Case e = e1; e2: by induction hypothesis E ρs e1 : v̂ρ(E) � > and E ρs e2 :
v̂ρ(E) � >. By applying rule (PE-Seq) we get E ρs e1; e2 : v̂ρ(E) � >;

Case e = op(−→ei ): by induction hypothesis ∀i E ρs ei : v̂ρ(E) � >. By As-

sumption 5 (Totality of Abstract Operations) we know that ôp(
−−−→
v̂ρ(E)) = v̂ for

some abstract value v̂. By Assumption 8 (Variables) we know that vars(v̂) = ∅,
hence v̂ ⊆ v̂ρ(E) by definition of v̂ρ(E), which implies v̂ v v̂ρ(E) by Assump-
tion 6 (Ordering Abstract Values). We thus conclude E ρs op(−→ei ) : v̂ρ(E) � >
by rule (PE-Op);

Case e = if (e0) { e1 } else { e2 }: by induction hypothesis ∀i ∈ {0, 1, 2} E ρs
ei : v̂ρ(E) � >. This is enough to conclude E ρs if (e0) { e1 } else { e2 } :
v̂ρ(E) � > by rule (PE-Cond);



Case e = while (e1) { e2 }: by induction hypothesis E ρs e1 : v̂ρ(E) � >
and E ρs e2 : v̂ρ(E) � >. Since undefined ∈ v̂ρ(E), we can conclude E ρs
while (e1) { e2 } : v̂ρ(E) � > by rule (PE-While);

Case e = e1[e2]: by induction hypothesis E ρs e1 : v̂ρ(E) � > and E ρs e2 :

v̂ρ(E) � >. By Assumption 8 (Variables) we have vars(ĝet(v̂ρ(E), v̂ρ(E))) ⊆
vars(v̂ρ(E)) ⊆ Vρ(E). By definition of v̂ρ(E), this implies that ĝet(v̂ρ(E), v̂ρ(E)) ⊆
v̂ρ(E), hence ĝet(v̂ρ(E), v̂ρ(E)) v v̂ρ(E) by Assumption 6 (Ordering Abstract
Values). We can then conclude E ρs e1[e2] : v̂ρ(E) � > by rule (PE-
GetField);

Case e = (e0[e1] = e2): analogous to the previous case;
Case e = delete e1[e2]: analogous to the previous case;
Case e = ref ` e0: by induction hypothesis E ρs e0 : v̂ρ(E) � >. Since ρs v ρ,
we know that Eµ̂(`, ρs) = v̂ρ(E) by the ρ-conservativeness of E . Moreover, we
know that ` ∈ v̂ρ(E), hence we conclude E ρs ref ` e0 : v̂ρ(E) � > by (PE-
Ref);

Case e = deref e0: by induction hypothesis E ρs e0 : v̂ρ(E) � >. Since ρs v ρ,
we know that ∀` ∈ v̂ρ(E) : Eµ̂(`, ρs) = v̂ρ(E) by the ρ-conservativeness of E ,
hence we get E ρs deref e0 : v̂ρ(E) � > by (PE-Deref);

Case e = (e1 := e2): by induction hypothesis E ρs e1 : v̂ρ(E) � > and
E ρs e2 : v̂ρ(E) � >. Since ρs v ρ, we know that ∀` ∈ v̂ρ(E) Eµ̂(`, ρs) = v̂ρ(E)
by the ρ-conservativeness of E , then we conclude E ρs e1 := e2 : v̂ρ(E) � >
by (PE-SetRef);

Case e = e1〈e2 . ρr〉: by induction hypothesis E ρs e1 : v̂ρ(E) � > and
E ρs e2 : v̂ρ(E) � >. Pick now any m ∈ v̂ρ(E) and any ρm w ρr such that
EΥ̂ (m, ρm) = (ρ′r, ρe) and ρ′r v ρs, to conclude E ρs e1〈e2 . ρr〉 : v̂ρ(E) � >
by rule (PE-Send) we need to show:
a. ρe v >, which holds true by definition of >;
b. v̂ρ(E) v EΦ̂(m, ρm), which is the most interesting point. In particular, we

observe that ρ′r v ρs implies ρ′r v ρ by transitivity. Since EΥ̂ (m, ρm) =
(ρ′r, ρe) and ρ′r v ρ, the ρ-conservativeness of E ensures that EΦ̂(m, ρm) =
v̂ρ(E), hence the desired conclusion;

c. unit ∈ v̂ρ(E), which holds true by definition of v̂ρ(E).
To sum up, we have:

(PE-Send)

E ρs e1 : v̂ρ(E) � > E ρs e2 : v̂ρ(E) � >
∀m ∈ v̂ρ(E),∀ρm w ρr. EΥ̂ (m, ρm) = (ρ′r, ρe) ∧ ρ′r v ρs ⇒ ρe v > ∧ v̂ρ(E) v EΦ̂(m, ρm) ∧ unit ∈ v̂ρ(E)

E ρs e1〈e2 . ρr〉 : v̂ρ(E) � >

Case e = exercise(ρ′): since unit ∈ v̂ρ(E), we have E ρs exercise(ρ′) :
v̂ρ(E) � > by (PE-Exercise).

Having proved the auxiliary result (1),we now prove E  h despite ρ and E 
i despite ρ. The proof of E  h despite ρ is then by induction on the structure
of h:

Case h = ∅: we have E  ∅ despite ρ by rule (PH-Empty);



Case h = a(x / ρs : ρ′).e′: recall that ρ′ v ρ and vars(h) ⊆ Vu by defini-
tion of ρ-opponent, hence the statement (1) proved above ensures that E ρ′
e′ : v̂ρ(E) � >. Since x ∈ Vu ⊆ Vρ(E), the ρ-conservativeness of E en-
sures that EΓ̂ (x) = v̂ρ(E). Moreover, the ρ-conservativeness of E guarantees
that EΦ̂(a, ρ′) = v̂ρ(E) and EΥ̂ (a, ρ′) = (⊥,SLeakρ(E)). Hence, we can prove
E  a(x / ρs : ρ).e′ despite ρ by rule (PH-Single) as follows:

(PH-Single)

EΥ̂ (a, ρ′) = (⊥,SLeakρ(E)) ρ′ 6v ρ⇒ ⊥ = ρs
EΦ̂(a, ρ′) 6= ∅ ⇒ EΓ̂ (x)=v̂ρ(E) w v̂ρ(E)=EΦ̂(a, ρ′) ∧ E ρ′ e′ : v̂ρ(E) � >∧ (ρ′ 6v ρ⇒ SLeakρ(E) = >)

E  a(x / ρs : ρ′).e′ despite ρ

Notice that the implications with premise ρ′ 6v ρ are vacuously true, since
ρ′ v ρ;

Case h = h′, h′′: by induction hypothesis E  h′ despite ρ and E  h′′ despite ρ.
The conclusion then follows by rule (PH-Many).

Finally, the proof of E  i despite ρ similarly follows by induction on the
structure of i.

Lemma 3 (Soundness of the Abstract Stack). If E  s despite ρ and

s
−→
β

=⇒ s′ for a trace
−→
β including the call chain (−→α , a:ρa � ρ′) for some ρ′ 6v ρ,

then for each label αj = 〈aj :ρaj , bj :ρbj 〉 ∈ {−→α } we have EΥ̂ (bj , ρbj ) = (ρsbj , ρebj )

with ρ′ v ρebj and EΥ̂ (aj , ρaj ) = (ρsaj
, ρeaj

) with ρ′ v ρeaj
.

Proof. By induction on the length of −→α . If −→α is empty, then the result is trivial
and we are done. Let instead −→α = α1, . . . , αn for some n > 0, we distinguish
two cases:

(i) let n = 1, that is −→α = α1 = 〈a1:ρa1 , b1:ρb1〉. Let ssend, s1, s2, sex be the

intermediate states and −→γ ,−→γ 1,
−→γ 2 the intermediate traces such that s

−→γ
=⇒

ssend
α1−→ s1

−→γ 1
==⇒ sex

a:ρa�ρ′−−−−−→ s2
−→γ 2
==⇒ s′. We first observe that by Lemma 1

(Subject Reduction) we know that E  si despite ρ for si ∈ {ssend, sex}.
We then distinguish two sub-cases:
– let ρb1 v ρ, by Lemma 12 (Inverting Permission Exercise) we know

that:
sex = µex;hex; iex, a{|E〈exercise(ρ′)〉|}ρa ,

with ρ′ v ρa. By Definition 8 (Call Chain) we know that ρa = ρb1 ,
hence ρ′ v ρa = ρb1 v ρ by transitivity. But this is contradictory with
respect to the hypothesis ρ′ 6v ρ, hence we conclude;

– let ρb1 6v ρ, by Lemma 12 (Inverting Permission Exercise) we know
that:

sex = µex;hex; iex, a{|E〈exercise(ρ′)〉|}ρa ,

with ρ′ v ρa. By Definition 8 (Call Chain) we know that ρa = ρb1 ,
hence ρa 6v ρ. Now, from E  sex despite ρ, by Lemma 14 (Sound



Permission Upper Bound) we have EΥ̂ (a, ρa) = (ρsa , ρea) with ρ′ v ρea .
Consider now the state ssend which fires the label α1 = 〈a1:ρa1 , b1:ρb1〉.
By Definition 8 (Call Chain) we know that b1 = a and ρb1 = ρa, hence
ρ′ v ρea proves the first part of the statement.
To show the second part, we appeal to Lemma 13 (Inverting Commu-
nication) to observe that:

ssend = µsend;hsend, b1(x / ρs : ρb1).e; isend, a1{|E〈b1〈v . ρr〉〉|}ρa1
,

with ρs v ρa1 and ρr v ρb1 . We then perform a case analysis on ρa1 ,
keeping in mind that b1 = a and ρb1 = ρa by definition of call chain,
hence EΥ̂ (b1, ρb1) = (ρsa , ρea):
• if ρa1 v ρ, from E  ssend despite ρ, by inverting (PS-Sys) we

know that E is ρ-conservative, hence EΥ̂ (a1, ρa1) = (⊥,SLeakρ(E)).
By Lemma 11 (Soundness of Entry Points), either ρsa = ρs or ρsa =
⊥. Since ρs v ρa1 v ρ by transitivity and ⊥ v ρ by definition, in
both cases we have ρea v SLeakρ(E) by Definition 5 (Permission
Leak). Hence, we get ρ′ v ρea v SLeakρ(E) by transitivity;

• if ρa1 6v ρ, from E  ssend despite ρ, by Lemma 15 (Sound Call
Upper Bound) we have EΥ̂ (a1, ρa1) = (ρsa1

, ρea1
) for some ρea1

w
ρea . Hence, we get ρea1

w ρea w ρ′ by transitivity;
(ii) let n > 1. Let sinit, s1, . . . , sn+1, sex be the intermediate states and let
−→γ ,−→γ 1, . . . ,

−→γ n,−→γ n+1 be the intermediate traces such that s
−→γ
=⇒ sinit

α1−→
s1
−→γ 1
==⇒ · · · αn−−→ sn

−→γ n
==⇒ sex

a:ρa�ρ′−−−−−→ sn+1

−→γ n+1
===⇒ s′. We first observe that

by Lemma 1 (Subject Reduction) we know that E  si despite ρ for
si ∈ {sinit, s1, . . . , sn+1}. We can then apply the induction hypothesis and
get:

∀j ∈ [2, n]. αj = 〈aj :ρaj , bj :ρbj 〉 ⇒ EΥ̂ (bj , ρbj ) = (ρsbj , ρebj w ρ
′)

∧ EΥ̂ (aj , ρaj ) = (ρsaj
, ρeaj

w ρ′).

We then have to prove the thesis for the first send label α1 in the call
chain. Consider the state sinit which fires the label α1 = 〈a1:ρa1 , b1:ρb1〉.
By Lemma 13 (Inverting Communication) we know that:

sinit = µinit;hinit, b1(x / ρs : ρb1).e; iinit, a1{|E〈b1〈v . ρr〉〉|}ρa1
,

with ρs v ρa1 and ρr v ρb1 . By Definition 8 (Call Chain) we know that
α2 = 〈a2:ρa2 , b2:ρb2〉 with a2 = b1 and ρa2 = ρb1 , hence we prove the first
part of the statement by induction hypothesis.
To show the second part, we perform a case analysis on ρa1 as we did
before, keeping in mind that b1 = a2 and ρb1 = ρa2 by definition of call
chain, hence EΥ̂ (b1, ρb1) = (ρsa2

, ρea2
):

– if ρa1 v ρ, from E  sinit despite ρ, by inverting (PS-Sys) we
know that E is ρ-conservative, hence EΥ̂ (a1, ρa1) = (⊥,SLeakρ(E)). By
Lemma 11 (Soundness of Entry Points), either ρsa2

= ρs or ρsa2
= ⊥.



Since ρs v ρa1 v ρ by transitivity and ⊥ v ρ by definition, in both
cases we have ρea2

v SLeakρ(E) by Definition 5 (Permission Leakage).
Hence, ρ′ v ρea2

v SLeakρ(E) by transitivity;
– if ρa1 6v ρ, from E  sinit despite ρ, by Lemma 15 (Sound Call Upper

Bound) we have EΥ̂ (a1, ρa1) = (ρsa1
, ρea1

) for some ρea1
w ρea2

. Hence,
ρea1

w ρea2
w ρ′ by transitivity.

Theorem 1 (Flow Safety). Let s = µ;h; ∅. If E  s despite ρ, then s is
SLeakρ(E)-safe despite ρ.

Proof. Let s = µ;h; ∅ be a system such that E  s despite ρ and let (ho, io) be
a ρ-opponent. Assume by contradiction that:

µ;h, ho; io

−→
β

=⇒ sbad
βbad−−−→ s′,

where βbad = a:ρa � ρbad and ρbad 6v SLeakρ(E) is the label which breaks
our statement. Recall that by definition of privilege leak we are also assuming
ρbad 6v ρ.

By inverting the assumption E  s despite ρ, we know that E is ρ-conservative,
hence by Lemma 2 (Opponent Acceptability) we have E  ho despite ρ and
E  io despite ρ. We can then construct a proof of:

E  µ;h, ho; io despite ρ.

Now we notice that, given that ρbad 6v ρ, the action βbad cannot be fired di-
rectly by the opponent. Moreover, since the system s does not contain running

instances, the trace (
−→
β , βbad) must include a call chain (−→α , βbad) for some non-

empty −→α . Let α1 = 〈a1:ρa1 , b1:ρb1〉 be the first label in −→α and let sinit be the
state which fires α1. By Lemma 13 (Inverting Communication), we have:

sinit = µinit;hinit, b1(x / ρs : ρb1).e; iinit, a1{|E〈b1〈v . ρr〉〉|}ρa1
,

with ρs v ρa1 and ρr v ρb1 . We then observe that ρa1 v ρ by the hypothesis
that s does not contain running instances and a1 is the first communication in
the call chain. Since E is ρ-conservative and ρa1 v ρ, we must have EΥ̂ (a1, ρa1) =
(⊥,SLeakρ(E)). By Lemma 3 (Soundness of the Abstract Stack) this implies that
ρbad v SLeakρ(E), which is contradictory with respect to our initial hypothesis.

C.2 Auxiliary Lemmas

Lemma 4 (Subsumption). The following statements hold true:

1. if E ρ v  v̂ and v̂ v v̂′, then E ρ v  v̂′;
2. if E ρs e : v̂e � ρe and v̂e v v̂′e and ρe v ρ′e, then E ρs e : v̂′e � ρ′e.

Proof. Both items come by a case analysis on the rule applied to prove the
antecedent judgement, making extensive use of Assumption 6 (Ordering Abstract
Values). Consider the first statement:



Case (PV-Name): let E ρ n  v̂ with n ∈ v̂. Since n ∈ v̂, we have {n} v v̂.
By transitivity we get {n} v v̂′, which implies n ∈ v̂′. By applying (PV-Name)
we get E ρ n v̂′;

Case (PV-Var): let E ρ x v̂ with EΓ̂ (x) v v̂. By transitivity we get EΓ̂ (x) v
v̂′. By applying (PV-Var) we get E ρ x v̂′;

Case (PV-Cons): analogous to case (PV-Var);
Case (PV-Ref): analogous to case (PV-Name);
Case (PV-Fun): let E ρ λx.e v̂, where λxρe ∈ v̂ and E ρ e : v̂1 � ρ1 with
v̂1 v EΓ̂ (λx) and ρ1 v ρe. Since λxρe ∈ v̂, we have {λxρe} v v̂. By transitivity

we get {λxρe} v v̂′, which implies that there exists ρ′e w ρe such that λxρ
′
e ∈ v̂′.

Given that ρ1 v ρ′e by transitivity, we conclude E `ρ λx.e  v̂′ by (PV-Fun)
as follows:

(PV-Fun)

λxρ
′
e ∈ v̂′ E ρ e : v̂1 � ρ1 v̂1 v EΓ̂ (λx) ρ1 v ρe v ρ′e

E `ρ λx.e v̂′

Case (PV-Rec): analogous to case (PV-Var).

The proof of (2.) is simpler: case (PE-Val) follows by the first statement, while
all the other cases follow by the transitivity of the ordering relations. We just note
that Assumption 6 (Ordering Abstract Values) is needed for cases (PE-While),
(PE-Ref), (PE-Send) and (PE-Exercise), i.e., all the rules which may involve
a set membership check on the abstract value assigned to the expression.

Lemma 5 (Substitution). Let fv(v) = ∅. The following statements hold true:

1. if E ρ v  EΓ̂ (x) and E ρ v′  v̂′, then E ρ v′[v/x] v̂′;
2. if E ρs v  EΓ̂ (x) and E ρs e : v̂e � ρe, then E ρs e[v/x] : v̂e � ρe.

Proof. By simultaneous induction on the derivation of the antecedent judge-
ments. Consider first the cases for values: if E ρ v′  v̂′ is proved by rule
(PV-Name), (PV-Cons), (PV-Ref) or (PV-Rec), the conclusion is trivial,
since v′ is closed and the substitution has no effect. We focus then on the other
two cases:

Case (PV-Var): let E ρ v  EΓ̂ (x) and E ρ y  v̂′ with EΓ̂ (y) v v̂′, we want
to prove E ρ y[v/x] v̂′. We distinguish two cases:
– if x 6= y, then y[v/x] = y and the hypothesis E ρ y  v̂′ is the desired

conclusion;
– if x = y, the hypothesis EΓ̂ (y) v v̂′ is equivalent to EΓ̂ (x) v v̂′. We invoke

Lemma 4 (Subsumption) on the hypothesis E ρ v  EΓ̂ (x) to prove
E ρ v  v̂′. Since y[v/x] = v, this is the desired conclusion.

Case (PV-Fun): let E ρ v  EΓ̂ (x) and E ρ λy.e  v̂′, where λyρe ∈ v̂′

and E ρ e : v̂1 � ρ1 with v̂1 v EΓ̂ (λy) and ρ1 v ρe. We want to prove
E ρ (λy.e)[v/x] v̂′. We distinguish two cases:
– if x = y, then (λy.e)[v/x] = λy.e and the hypothesis E ρ λy.e v̂′ is the

desired conclusion;



– if x 6= y, we apply the inductive hypothesis on E ρ e : v̂1 � ρ1 and we
get E ρ e[v/x] : v̂1 � ρ1. Since fv(v) = ∅, no variable capture can happen
upon substitution and we have (λy.e)[v/x] = λy.(e[v/x]). Since we know
that λyρe ∈ v̂′, v̂1 v EΓ̂ (λy) and ρ1 v ρe, we get E ρ (λy.e)[v/x] v̂′ by
(PV-Fun).

The cases for expressions are simpler: all of them follow by induction hypothesis,
but (PE-Exercise), which is trivial, since the substitution has no effect on the
expression.

Lemma 6 (Inverting Contexts). If ξ is a derivation of E ρs E〈e〉 : v̂ � ρ,
then there exist v̂′ and ρ′ v ρ such that ξ has a sub-derivation ξ′ concluding
E ρs e : v̂′ � ρ′. Moreover, the position of ξ′ in ξ corresponds to the position
of the hole in E.

Proof. By induction on the structure of E.

Lemma 7 (Replacement). If:

1. ξ is a derivation of E ρs E〈e〉 : v̂ � ρ,
2. ξ′ is a sub-derivation of ξ concluding E ρs e : v̂′ � ρ′,
3. the position of ξ′ in ξ corresponds to the position of the hole in E,
4. E ρs e′ : v̂′ � ρ′,

then E ρs E〈e′〉 : v̂ � ρ.

Proof. By induction on the structure of E.

Lemma 8 (Subject Reduction for Expressions). If E ρs e : v̂ � ρ
and E  µ despite ρ′ and µ; e ↪→ρs µ′; e′, then E ρs e′ : v̂ � ρ and
E  µ′ despite ρ′.

Proof. We first prove the following statement:

E ρs e : v̂ � ρ ∧ e ↪→ e′ ⇒ E ρs e′ : v̂ � ρ. (2)

The proof is by a case analysis on the rule applied to prove e ↪→ e′:

Case (JS-PrimOp): assume op(−→ci ) ↪→ δ(op,−→ci ) = c and E ρs op(−→ci ) : v̂ � ρ,
we want to prove E ρs c : v̂ � ρ. By inverting rule (PE-Op) we have:
1. ∀i E ρs ci : v̂i � ρi v ρ;

2. ôp(
−→
v̂i ) v v̂.

By inverting rule (PE-Val) on the first point we have ∀i E ρs ci  v̂i.
By inverting rule (PV-Cons) on the latter we get ∀i {ĉi} v v̂i. By Assump-

tion 2 (Soundness of Abstract Operations) we know that {ĉ} v ôp(
−→
ĉi ). Since

∀i {ĉi} v v̂i, by Assumption 4 (Monotonicity of Abstract Operations) we have

ôp(
−→
ĉi ) v ôp(

−→
v̂i ), hence {ĉ} v ôp(

−→
v̂i ) by transitivity. By using (PV-Cons) we

can prove E ρs c  {ĉ}, hence E ρs c : {ĉ} � ρ by (PE-Val). Given that

{ĉ} v ôp(
−→
v̂i ) and ôp(

−→
v̂i ) v v̂ by point 2 above, we have {ĉ} v v̂ by tran-

sitivity, hence the desired conclusion E ρs c : v̂ � ρ follows by Lemma 4
(Subsumption);



Case (JS-Let): assume let x = v in e ↪→ e[v/x] and E ρs let x = v in e :
v̂ � ρ, we want to prove E ρs e[v/x] : v̂ � ρ. By inverting rule (PE-Let) we
have:
1. E ρs v : v̂1 v EΓ̂ (x) � ρ1 v ρ;
2. E ρs e : v̂2 v v̂ � ρ2 v ρ.

By inverting rule (PE-Val) on the first judgement we have E ρs v  v̂1.
Since v̂1 v EΓ̂ (x), we get E  v  EΓ̂ (x) by Lemma 4 (Subsumption). By
Lemma 5 (Substitution) we then get E ρs e[v/x] : v̂2 � ρ2. The conclusion
E ρs e[v/x] : v̂ � ρ follows by Lemma 4 (Subsumption);

Case (JS-App): assume (λx.e) v ↪→ e[v/x] and E ρs (λx.e) v : v̂ � ρ, we want
to prove E ρs e[v/x] : v̂ � ρ. By inverting rule (PE-App) we have:
1. E ρs λx.e : v̂1 � ρ1 v ρ;
2. E ρs v : v̂2 � ρ2 v ρ;
3. ∀λxρe ∈ v̂1 v̂2 v EΓ̂ (x) ∧ EΓ̂ (λx) v v̂ ∧ ρe v ρ.

By inverting rule (PE-Val) on the first judgement we have E ρs λx.e v̂1. By
inverting rule (PV-Fun) on the latter we get λxρe ∈ v̂1 and E ρs e : v̂′ � ρ′

with v̂′ v EΓ̂ (λx) and ρ′ v ρe. By point 3, observing that λxρe ∈ v̂1, we get
v̂2 v EΓ̂ (x) and EΓ̂ (λx) v v̂ and ρe v ρ. Notice that, combining the information
above, by transitivity we also get v̂′ v v̂ and ρ′ v ρ.
By inverting rule (PE-Val) on point 2 above we have E ρs v  v̂2. Since
v̂2 v EΓ̂ (x), we get E ρs v  EΓ̂ (x) by Lemma 4 (Subsumption). By Lemma 5
(Substitution) we get E ρs e[v/x] : v̂′ � ρ′. By Lemma 4 (Subsumption) we
get E ρs e[v/x] : v̂ � ρ;

Case (JS-GetField): assume {−−−−−→stri : vi, str : v,
−−−−−→
str′j : v′j}[str] ↪→ v and E ρs

{−−−−−→stri : vi, str : v,
−−−−−→
str′j : v′j}[str] : v̂ � ρ, we want to prove that E ρs v : v̂ � ρ.

By inverting rule (PE-GetField) we have:

1. E ρs {
−−−−−→
stri : vi, str : v,

−−−−−→
str′j : v′j} : v̂1 � ρ1 v ρ;

2. E ρs str : v̂2 � ρ2 v ρ;

3. ĝet(v̂1, v̂2) v v̂.

By inverting rule (PE-Val) on the first judgement we have E ρs {
−−−−−→
stri : vi, str :

v,
−−−−−→
str′j : v′j} v̂1. By inverting (PV-Rec) on the latter we get {〈|−−−−−→stri : vi, str :

v,
−−−−−→
str′j : v′j |〉E,ρs} v v̂1. By inverting rule (PE-Val) on point 2 above we have

E ρs str  v̂2. By inverting (PV-Cons) on the latter we get {ŝtr} v v̂2.

By Assumption 5 (Totality of Abstract Operations) we know that ĝet(〈|−−−−−→stri : vi, str :

v,
−−−−−→
str′j : v′j |〉E,ρs , ŝtr) is defined. By Assumption 3 (Soundness of Abstract Record

Operations) we know that there exists v̂′ such that E ρs v  v̂′ and v̂′ v
ĝet(〈|−−−−−→stri : vi, str : v,

−−−−−→
str′j : v′j |〉E,ρs , ŝtr).

Since {〈|−−−−−→stri : vi, str : v,
−−−−−→
str′j : v′j |〉E,ρs} v v̂1 and {ŝtr} v v̂2, by Assumption 4

(Monotonicity of Abstract Operations) we have ĝet(〈|−−−−−→stri : vi, str : v,
−−−−−→
str′j : v′j |〉E,ρs , ŝtr) v

ĝet(v̂1, v̂2). Moreover, we know that ĝet(v̂1, v̂2) v v̂ by point 3 above, thus we
have v̂′ v v̂ by transitivity. From E ρs v  v̂′ we then get E ρs v  v̂ by
Lemma 4 (Subsumption). We finally prove E ρs v : v̂ � ρ by rule (PE-Val);

Case (JS-GetNotFound): similar to case (JS-GetField);



Case (JS-UpdateField): similar to case (JS-GetField);
Case (JS-CreateField): similar to case (JS-GetField);
Case (JS-DeleteField): similar to case (JS-GetField);
Case (JS-DeleteNotFound): similar to case (JS-GetField);
Case (JS-CondTrue): assume if (true) { e1 } else { e2 } ↪→ e1 and E ρs
if (true) { e1 } else { e2 } : v̂ � ρ, we want to prove E ρs e1 : v̂ � ρ. By
inverting rule (PE-Cond) we have:
1. E ρs true : v̂0 � ρ0 v ρ;
2. true ∈ v̂0 ⇒ E ρs e1 : v̂1 v v̂ � ρ1 v ρ;
3. false ∈ v̂0 ⇒ E ρs e2 : v̂2 v v̂ � ρ2 v ρ.

By inverting rule (PE-Val) on the first judgement we have E ρs true v̂0.

By inverting rule (PV-Cons) on the latter we have {t̂rue} v v̂0, hence true ∈
v̂0 by Assumption 6 (Ordering Abstract Values). By the second point above we
then get E ρs e1 : v̂1 v v̂ � ρ1 v ρ. The conclusion E ρs e1 : v̂ � ρ follows
by Lemma 4 (Subsumption);

Case (JS-CondFalse): analogous to the previous case;
Case (JS-Discard): assume v; e ↪→ e and E ρs v; e : v̂ � ρ, we want to prove
E ρs e : v̂ � ρ. By inverting rule (PE-Seq) we have:
1. E ρs v : v̂1 � ρ1 v ρ;
2. E ρs e : v̂2 v v̂ � ρ2 v ρ.

The conclusion E ρs e : v̂ � ρ follows by applying Lemma 4 (Subsumption)
on point 2;

Case (JS-While): assume the following reduction step:

while (e1) { e2 } ↪→ if (e1) { e2; while (e1) { e2 } } else { undefined }

and assume E ρs while (e1) { e2 } : v̂ � ρ, we want to prove:

E ρs if (e1) { e2; while (e1) { e2 } } else { undefined } : v̂ � ρ.

By inverting rule (PE-While) we have:
1. E ρs e1 : v̂1 � ρ1 v ρ;
2. true ∈ v̂1 ⇒ E ρs e2 : v̂2 � ρ2 v ρ;
3. false ∈ v̂1 ⇒ undefined ∈ v̂.

To prove the desired conclusion by rule (PE-Cond), we show all the following
points, which correspond to the premises of the acceptability rule:
a. E ρs e1 : v̂1 � ρ1 v ρ;
b. true ∈ v̂1 ⇒ E ρs e2; while (e1) { e2 } : v̂ � ρ;
c. false ∈ v̂1 ⇒ E ρs undefined : v̂ � ρ.

Graphically, we have:

(PE-Cond)

E ρs e1 : v̂1 � ρ1 v ρ
true ∈ v̂1 ⇒ E ρs e2; while (e1) { e2 } : v̂ � ρ

false ∈ v̂1 ⇒ E ρs undefined : v̂ � ρ

E ρs if (e1) { e2; while (e1) { e2 } } else { undefined } : v̂ � ρ



Point a is just point 1 above.
To prove point b, assume that true ∈ v̂1, then by point 2 above we have
E ρs e2 : v̂2 � ρ2 v ρ. Since E ρs while (e1) { e2 } : v̂ � ρ by hypothesis,
we get E ρs e2; while (e1) { e2 } : v̂ � ρ by (PE-Seq).
To prove point c, assume that false ∈ v̂1, then undefined ∈ v̂ by point 3 above.

We then have { ̂undefined} v v̂ by Assumption 6 (Ordering Abstract Values),
hence we have E ρs undefined  v̂ by (PV-Cons). By rule (PE-Val) we
conclude E ρs undefined : v̂ � ρ.

Having proved the auxiliary result (2), we now prove the original statement
by induction on the derivation of µ; e ↪→ρs µ

′; e′:

Case (JS-Expr): assume µ; e ↪→ρs µ; e′ from the premise e ↪→ e′ and let E ρs
e : v̂ � ρ. Since the memory does not change, we just need to prove that e′

is acceptable, i.e., E ρs e′ : v̂ � ρ. Since we know that E ρs e : v̂ � ρ and
e ↪→ e′, the desired conclusion follows by the statement (2) proved above;

Case (JS-Ref): assume µ; ref ` v ↪→ρs µ
′; r` with r /∈ dom(µ) and µ′ = µ, r`

ρs7→
v. Let further E ρs ref ` v : v̂ � ρe and E  µ despite ρ, we want to show
that:
a. E ρs r` : v̂ � ρe;
b. E  µ′ despite ρ.

We start from the hypothesis E ρs ref ` v : v̂ � ρe. By inverting (PE-Ref)
we get:
1. E ρs v : v̂′ � ρ′ v ρe;
2. v̂′ v Eµ̂(`, ρs);
3. ` ∈ v̂.

To prove point a, we observe that ` ∈ v̂ by point 3. This allows to prove
E ρs r`  v̂ by rule (PV-Ref), hence E ρs r` : v̂ � ρe by (PE-Val).

To prove point b, since we know that E  µ despite ρ and µ′ = µ, r`
ρs7→ v, we

just need to show that E  r`
ρs7→ v despite ρ. The latter judgement can be

proved by rule (PM-Single) if we show that E ρs v  v̂′ and v̂′ v Eµ̂(`, ρs).
To prove this, we invert point 1 above and we get E ρs v  v̂′ by (PE-Val),
then we observe that v̂′ v Eµ̂(`, ρs) by point 2;

Case (JS-Deref): assume µ; deref r` ↪→ρs µ; v with µ = µ′, r`
ρs7→ v. Let further

E ρs deref r` : v̂e � ρe and E  µ despite ρ, we just need to prove
E ρs v : v̂e � ρe, since the memory does not change.
We start from the hypothesis E ρs deref r` : v̂e � ρe. By inverting (PE-
Deref) we get:
1. E ρs r` : v̂′ � ρ′ v ρe;
2. ∀`′ ∈ v̂′ Eµ̂(`′, ρs) v v̂e.

Consider point 1, by inverting (PE-Val) we get E ρs r`  v̂′, then by invert-
ing (PV-Ref) on the latter judgement we get ` ∈ v̂′. By point 2 we then know
that Eµ̂(`, ρs) v v̂e. Consider now the initial hypothesis E  µ despite ρ, by in-

verting (PM-Many) we know that E  µ′ despite ρ and E  r`
ρs7→ v despite ρ.

Let us focus on the latter judgement: by inverting (PM-Single) we have E ρs
v  v̂ for some abstract value v̂ such that v̂ v Eµ̂(`, ρs). We then have v̂ v



Eµ̂(`, ρs) v v̂e by transitivity, so we can prove E ρs v  v̂e by Lemma 4
(Subsumption). To conclude then, we just observe that E ρs v : v̂e � ρe by
rule (PE-Val);

Case (JS-SetRef): assume µ; r` := v ↪→ρs µ
′, r`

ρs7→ v; v with µ = µ′, r`
ρs7→ v′

for some v′. Let further E ρs r` := v : v̂ � ρe and E  µ despite ρ, we want
to show that:
a. E ρs v : v̂ � ρe;

b. E  µ′, r`
ρs7→ v despite ρ

We start from the hypothesis E ρs r` := v : v̂ � ρe. By inverting (PE-
SetRef) we get:
1. E ρs r` : v̂1 � ρ1 v ρe;
2. E ρs v : v̂2 v v̂ � ρ2 v ρe;
3. ∀`′ ∈ v̂1 v̂2 v Eµ̂(`′, ρs).

To prove point a, we just apply Lemma 4 (Subsumption) to point 2.
To prove point b, we first observe that E  µ′ despite ρ by inverting the
hypothesis E  µ despite ρ. Hence, to conclude we just need to show that

E  r`
ρs7→ v despite ρ. Consider point 1, by inverting (PE-Val) we get E ρs

r`  v̂1. By inverting (PV-Ref) on the latter we get ` ∈ v̂1. By point 3
we then know that v̂2 v Eµ̂(`, ρs). By inverting (PE-Val) on point 2 we get

E ρs v  v̂2. Since we showed that v̂2 v Eµ̂(`, ρs), we get E  r`
ρs7→ v despite ρ

by rule (PM-Single);
Case (JS-Context): assume µ;E〈e1〉 ↪→ρs µ

′;E〈e2〉 from the premise µ; e1 ↪→ρs

µ′; e2. Let further E ρs E〈e1〉 : v̂ � ρe and E  µ despite ρ, we want to show
E ρs E〈e2〉 : v̂ � ρe and E  µ′ despite ρ.
We start from the hypothesis E ρs E〈e1〉 : v̂ � ρe. Let ξ stand for the
derivation of the latter judgement. By Lemma 6 (Inverting Contexts) we know
that ξ has sub-derivation ξ′ concluding E ρs e1 : v̂′ � ρ′e for some v̂′ and
some ρ′e v ρe. Moreover, the position of ξ′ in ξ corresponds to the position of
the hole in E.
Since E  µ despite ρ and E ρs e1 : v̂′ � ρ′e and µ; e1 ↪→ρs µ

′; e2, we get
E  µ′ despite ρ and E ρs e2 : v̂′ � ρ′e by inductive hypothesis. By Lemma 7
(Replacement) we conclude E ρs E〈e2〉 : v̂ � ρe.

Lemma 9 (Abstracting Serializable Values). If v is serializable and E ρa
v  v̂, then for any ρb we have E ρb v  v̂.

Proof. By a case analysis on E ρa v  v̂. Observe in particular that rules
(PV-Name) and (PV-Cons) just ignore the permission on the subscript. The
case for (PV-Rec) follows by Assumption 7 (Abstracting Serializable Records),
which similarly ensures that the permission on the subscript is immaterial.

Lemma 10 (Discarding Bottom). Let fv(v) = ∅. If E ρ v  v̂, then v̂ 6= ∅.

Proof. By a case analysis on E ρ v  v̂. Observe in particular that rules (PV-
Name), (PV-Ref) and (PV-Fun) all require to include at least an element in
v̂. The cases for (PV-Cons) and (PV-Rec) follow by Assumption 6 (Ordering
Abstract Values), using the fact that ∀v̂′ v̂′ v ∅ ⇒ v̂′ = ∅.



Lemma 11 (Soundness of Entry Points). If E  s despite ρ and s =
µ;h, b(x / ρs : ρb).e; i, then there exist ρ′s and ρe such that EΥ̂ (b, ρb) = (ρ′s, ρe),
and either ρ′s = ⊥ or ρ′s = ρs.

Proof. By inverting the hypothesis E  s despite ρ we get E  h, b(x / ρs :
ρb).e despite ρ with E being ρ-conservative. By inverting E  h, b(x / ρs :
ρb).e despite ρ we get E  b(x / ρs : ρb).e despite ρ. We then distinguish two
cases:

– if ρb v ρ, the ρ-conservativeness of E ensures that EΥ̂ (b, ρb) = (⊥,SLeakρ(E));
– otherwise, let ρb 6v ρ. By inverting rule (PH-Single) on E  b(x / ρs :
ρb).e despite ρ, we know that there exist ρ′s and ρe such that EΥ̂ (b, ρb) =
(ρ′s, ρe). Since ρb 6v ρ, the rule requires ρ′s = ρs.

Lemma 12 (Inverting Permission Exercise). If s
a:ρa�ρ−−−−−→ s′, then s =

µ;h; i, a{|E〈exercise(ρ)〉|}ρa with ρ v ρa.

Proof. By induction on the derivation of the antecedent transition.

Lemma 13 (Inverting Communication). If s
〈a:ρa,b:ρb〉−−−−−−−→ s′, then s = µ;h, b(x/

ρs : ρb).e; i, a{|E〈b〈v . ρr〉〉|}ρa with ρs v ρa and ρr v ρb.

Proof. By induction on the derivation of the antecedent transition.

Lemma 14 (Sound Permission Upper Bound). If E  s despite ρ and
s = µ;h; i, a{|E〈exercise(ρ′)〉|}ρa with ρa 6v ρ and ρ′ v ρa, then there exist ρs
and ρe such that EΥ̂ (a, ρa) = (ρs, ρe) and ρ′ v ρe.

Proof. By inverting the hypothesis E  s despite ρ we have:

E  i, a{|E〈exercise(ρ′)〉|}ρa despite ρ.

By inverting the latter we get E  a{|E〈exercise(ρ′)〉|}ρa despite ρ. By hy-
pothesis we know that ρa 6v ρ, hence by inverting rule (PI-Single) on the latter
judgement we have:

1. E ρa E〈exercise(ρ′)〉 : v̂ � ρe;
2. ∃ρs EΥ̂ (a, ρa) = (ρs, ρe).

We invoke Lemma 6 (Inverting Contexts) on the first point and we get a sub-
proof of E ρa exercise(ρ′) : v̂′ � ρ′′ for some v̂′ and some ρ′′ v ρe. By
inverting rule (PE-Exercise), observing that ρ′ v ρa by hypothesis, we have
ρ′ v ρ′′. By transitivity ρ′ v ρ′′ v ρe, hence the desired conclusion.

Lemma 15 (Sound Call Upper Bound). If E  s despite ρ and s =
µ;h, b(x / ρs : ρb).e; i, a{|E〈b〈v . ρr〉〉|}ρa with ρa 6v ρ and ρs v ρa and ρr v ρb,
then there exist ρsa , ρea , ρsb and ρeb such that EΥ̂ (a, ρa) = (ρsa , ρea) and
EΥ̂ (b, ρb) = (ρsb , ρeb) and ρeb v ρea .



Proof. By inverting the hypothesis E  s despite ρ we have E  i, a{|E〈b〈v .
ρr〉〉|}ρa despite ρ. By inverting the latter we get E  a{|E〈b〈v.ρr〉〉|}ρa despite ρ.
By hypothesis we know that ρa 6v ρ, hence by inverting rule (PI-Single) on the
latter judgement we have:

1. E ρa E〈b〈v . ρr〉〉 : v̂ � ρea ;
2. ∃ρsa EΥ̂ (a, ρa) = (ρsa , ρea).

Let ξ be the derivation proving point 1. By Lemma 6 (Inverting Contexts) there
exist v̂′ and ρ′ v ρea such that ξ has a sub-derivation ξ′ concluding E ρa
b〈v . ρr〉 : v̂′ � ρ′, and the position of ξ′ in ξ corresponds to the position of the
hole in E. By inverting (PE-Send) on the judgement proved by ξ′ we have:

3. E ρa b : v̂1 � ρ1 v ρ′;
4. E ρa v : v̂2 � ρ2 v ρ′;
5. ∀m ∈ v̂1,∀ρm w ρr EΥ̂ (m, ρm) = (ρ′r, ρem) ∧ ρ′r v ρa ⇒ ρem v ρ′ ∧ v̂2 v
EΦ̂(m, ρm) ∧ unit ∈ v̂′.

By inverting (PE-Val) on point 3 we get E ρa b  v̂1. By inverting (PV-
Name) on the latter we get b ∈ v̂1. By Lemma 11 (Soundness of the Entry
Points) we know that there exist ρsb and ρeb such that EΥ̂ (b, ρb) = (ρsb , ρeb),
and either ρsb = ⊥ or ρsb = ρs. Our goal now is proving that ρeb v ρ′. For this
purpose, we distinguish two cases:

– if EΥ̂ (b, ρb) = (ρs, ρeb), we observe that by hypothesis we know that ρs v ρa
and ρr v ρb. Since we showed that b ∈ v̂1, point 5 allows us to prove ρeb v ρ′;

– if EΥ̂ (b, ρb) = (⊥, ρeb), we observe that ⊥ v ρa by definition. By hypothesis
we know that ρr v ρb. Since b ∈ v̂1, point 5 allows us to prove ρeb v ρ′.

Hence, we proved that ρeb v ρ′. Since ρ′ v ρea , we conclude ρeb v ρea by
transitivity.


