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Abstract—Micro-policies, originally proposed to implement
hardware-level security monitors, constitute a flexible and general
enforcement technique, based on assigning security tags to system
components and taking security actions based on dynamic checks
over these tags. In this paper, we present the first application
of micro-policies to web security, by proposing a core browser
model supporting them and studying its effectiveness at securing
web sessions. In our view, web session security requirements
are expressed in terms of a simple, declarative information flow
policy, which is then automatically translated into a micro-
policy enforcing it. This leads to a browser-side enforcement
mechanism which is elegant, sound and flexible, while being
accessible to web developers. We show how a large class of attacks
against web sessions can be uniformly and effectively prevented
by the adoption of this approach. We also develop a proof-of-
concept implementation of a significant core of our proposal as
a Google Chrome extension, Michrome: our experiments show
that Michrome can be easily configured to enforce strong security
policies without breaking the functionality of websites.

I. INTRODUCTION

The Web is nowadays the primary means of access to a
plethora of online services with strict security requirements.
Electronic health records and online statements of income are a
well-established reality as of now, and more and more security-
sensitive services are going to be supplied online in the next
few years. Despite the critical importance of securing these
online services, web applications and, more specifically, web
sessions are notoriously hard to protect, since they can be
attacked at many different layers.

At the network layer, man-in-the-middle attacks can break
both the confidentiality and the integrity of web sessions
running (at least partially) over HTTP. The standard solution
against these attacks is deploying the entire web application
over HTTPS with trusted certificates and, possibly, making
use of HSTS [19] to prevent subtle attacks like SSL stripping.
At the session implementation layer, code injection attacks (or
again network attacks) can be exploited to steal authentication
cookies and hijack a web session, or to compromise the
integrity of the cookie jar and mount dangerous attacks like
session fixation [21]. This is particularly problematic because,
though the standard HttpOnly and Secure cookie attributes [2]
are effective at protecting cookie confidentiality, no effective
countermeasure exists as of now to ensure cookie integrity on
the Web [36]. Finally, web sessions can also be attacked at the
application layer: for instance, since browsers automatically
attach cookies set by a website to all the requests sent to
it, cross-site request forgery (CSRF) attacks can be mounted

by a malicious web page to harm the integrity of the user
session with a trusted web application and inject attacker-
controlled messages into it. Standard solutions against this
problem include the usage of secret tokens and the validation
of the Origin header attached by the browser to filter out
malicious web requests [3].

In principle, it is possible to achieve a reasonable degree of
security for web sessions using the current technologies, but
the overall picture still exhibits several important shortcomings
and it is far from being satisfactory. First, there are mecha-
nisms like the HttpOnly cookie attribute which are easy to use,
popular and effective, but lack flexibility: a cookie may either
be HttpOnly or not, hence JavaScript may either be able to
access it or be prevented from doing any kind of computation
over the cookie value. There is no way, for instance, to
let JavaScript access a cookie for legitimate computations,
at the cost of disciplining its communication behaviour to
prevent the cookie leakage. Then, there are defenses which
are sub-optimal and not always easy to implement: this is the
case for token-based protection against CSRF. Not only this
approach must be directly implemented into the APIs of a
web development framework to ensure that it is convenient to
use, but also it is not very robust, since it fails in presence of
code injection vulnerabilities which disclose the token value to
the attacker. Finally, we observe that some attacks and attack
vectors against web sessions are underestimated by existing
standards and no effective solution against them can be de-
ployed as of now: this is the case for many threats to cookie
integrity [36]. These issues will likely be rectified with ad-
hoc solutions in future standards, whenever browser vendors
and web application developers become more concerned about
their importance, and find a proper way to patch them while
preserving the compatibility with existing websites.

In this paper, we advocate that a large class of attacks harm-
ing the security of web sessions can be provably, uniformly,
and effectively prevented by the adoption of browser-enforced
security policies, reminiscent of a dynamic typing discipline
for the browser. In particular, we argue for the adoption of
micro-policies [16] as a convenient tool to improve the security
of web sessions, by disciplining the browser behaviour when
interacting with security-sensitive web applications. Roughly,
the specification of a micro-policy involves: (1) the definition
of a set of tags, used to label selected elements of the web
ecosystem, like URLs, cookies, network connections, etc.,
and (2) the definition of a transfer function, defining which



operations are permitted by the browser based on the tags and
how tags are assigned to browser elements after a successful
operation. This kind of security policies has already proved
helpful for deploying hardware-level security monitors and
nicely fits existing web security solutions, like cookie security
attributes [2] and whitelist-based defenses in the spirit of the
Content Security Policy [34].

Though previous work has already proposed browser-side
security policies as a viable approach for protecting the
Web [20], [23], [30], [33], [15], we are the first to carry out a
foundational study on a possible extension of a web browser
with support for micro-policies and discuss web session secu-
rity as an important application for this framework. There are
many different ways to deploy micro-policies in web browsers,
but our proposal is driven by two main design goals aimed at
simplifying a large-scale adoption. First, it is light-weight and
intended to minimize changes to existing web browsers, since
it embraces a coarse-grained enforcement approach. Second,
it is practical: though our proposal is based on a non-trivial
theory, we strive for supporting declarative policies for web
session security, reminiscent of the tools and the abstractions
which web developers already appreciate and use today. We
thus propose to express web session security requirements in
terms of a simple, declarative information flow policy, which
is automatically translated into a micro-policy enforcing it.

To assess the effectiveness of our approach, we developed
a proof-of-concept implementation of a significant core of our
proposal as a Google Chrome extension, Michrome, and we
performed a preliminary experimental evaluation on existing
websites. Our experiments show that Michrome can be easily
configured to enforce strong security policies without breaking
the functionality of websites. We see Michrome as a first
reasonable attempt at evaluating the practicality of our theory
rather than as a full-fledged defensive mechanism ready for
inclusion in standard web browsers. More work is needed to
support all the features of our formal model, though we were
able to implement and test a significant part of it.

A. Contributions

Our contributions can be summarized as follows:
1) we design FFτ , a core model of a web browser extended

with support for micro-policies. We define the operational
behaviour of FFτ using a small-step reactive semantics in
the spirit of previous formal work on browser security [9],
[8], [12]. The semantics of FFτ is parametric with respect
to an arbitrary set of tags and the definition of a transfer
function operating on these tags;

2) we instantiate the set of tags of FFτ to intuitive informa-
tion flow labels and we characterize standard attackers
from the web security literature in terms of these labels.
We then discuss how to translate simple information
flow policies for web session security into micro-policies
which enforce them: this is crucial to ensure that most
web developers can benefit from our proposal;

3) we discuss example applications of our theory by revis-
iting known attacks against web sessions and discussing

limitations of existing solutions. We then show how these
issues are naturally and more effectively solved by our
enforcement technique;

4) we develop a prototype implementation of our proposal
as a standard Google Chrome extension, Michrome, and
we run a set of experiments testing its practicality.

Michrome and a technical report including full proofs are
available online [13].

II. KEY IDEAS

In this section, we give an intuitive overview of the most
salient aspects of our framework. We model the browser as a
reactive system, transforming a stream of input events into a
stream of output events. Output events are network requests
that are sent by the browser, while input events represent
incoming network responses or user actions processable by the
browser, e.g., the insertion of a URL into the address bar. Our
sets of events include key elements of standard web browsing,
like HTTP(S) requests, responses and redirects. For example,
the input stream:

I = [load(u),doc respn(u : {ck(k, v)`},unit)],

instructs the browser to establish a new network connection
n to the URL u and retrieve from that connection a response
including a cookie ck(k, v)` and an empty document unit. The
cookie, formally seen as a mapping between key k and value
v, has a security label `, consisting of a confidentiality policy
and an integrity policy. For instance, the confidentiality policy
{https(d)} expresses that the value of the cookie should only
have a visible import for an attacker who is able to decrypt the
HTTPS communication with the domain d setting the cookie.

We argue for the adoption of browser-side micro-policies
enforcing this kind of security policies. Security is formalized
in terms of reactive non-interference, a property dictating that
similar input streams must always be transformed into similar
output streams. Confidentiality is characterized by identifying
suitable similarity relations on input streams, based on what
the attacker is able to observe about the corresponding output
streams. For instance, consider a network attacker with full
control of the HTTP traffic: to formalize that cookies with the
confidentiality policy {https(d)} have no visible import for
the attacker, the stream similarity on inputs may relate streams
which are identical except for the value of these cookies.

As an example, let us be a HTTPS URL on domain d, it is
safe to consider the following two input streams, differing in
the cookie value, as similar:

I1 = [load(u),doc respn(u : {ck(k, v)`},unit), load(us)]
I2 = [load(u),doc respn(u : {ck(k, v′)`},unit), load(us)]

The reason is that the browser will react to these input streams
by producing the following output streams:

O1 = [doc req(u : ∅), •,doc req(us : ck(k, v)`)]
O2 = [doc req(u : ∅), •,doc req(us : ck(k, v′)`)]

These streams include a document request to u without any
cookie, a dummy event (•) as a reaction to the empty docu-
ment, and a document request to us including the previously



received cookie, which is the normal behaviour of a web
browser. Since us is a HTTPS URL, the last events of O1

and O2 cannot be distinguished by a network attacker, hence
the two output streams are similar and there is no violation to
reactive non-interference.

But what if the load(us) event in I1, I2 was replaced by
load(uh), where uh is a HTTP URL on domain d? The
behaviour of the browser will be restricted by the underlying
micro-policy for non-interference, forcing the production of
two output streams not including any cookie in the last event to
ensure similarity upon output. These restrictions are enforced
by assigning labels to browser components (cookies, connec-
tions, scripts...) and by performing runtime label checks upon
event processing, reminiscent of a dynamic typing discipline
for the browser. Interestingly, simple and intuitive policies
like the one we discussed are expressive enough to prevent a
large class of known attacks against web sessions. Moreover,
despite their simplicity, these policies are actually stronger
than currently deployed web solutions (cf. Section VI), provid-
ing an expressive mechanism to formally define and enforce
confidentiality and integrity properties for web sessions.

III. BACKGROUND ON REACTIVE SYSTEMS

Web browsers can be formalized using labelled transition
systems known as reactive systems [9], [8]. A reactive system
is a state machine which waits for an input, produces outputs
in response to it, and repeats the process indefinitely.

Definition 1 (Reactive System). A reactive system is a tuple
R = 〈C,P, I,O, C0,−→〉, where C and P are disjoint sets
of consumer and producer states respectively, while I and O
are disjoint sets of input and output events respectively. The
consumer state C0 is the initial state of the system and the
last component, −→, is a labelled transition relation over the
set of states Q , C ∪ P and the set of events A , I ∪ O,
subject to the following constraints:

1) if C ∈ C and C a−→ Q, then a ∈ I and Q ∈ P;
2) if P ∈ P and P a−→ Q for some Q ∈ Q, then a ∈ O;
3) if C ∈ C and i ∈ I, then there exists P ∈ P s.t. C i−→ P ;
4) if P ∈ P , then there exist o ∈ O and Q ∈ Q s.t. P o−→ Q.

We define streams of events through the coinductive inter-
pretation of the following grammar: S ::= [ ] | a :: S. The
semantics of a reactive system R is defined in terms of traces
(I,O), where I is a stream of input events and O is a stream
of output events generated by R as the result of processing I .

Definition 2 (Trace). Let R = 〈C,P, I,O, C0,−→〉 be a
reactive system. Given an input stream I , the state Q ∈ C ∪P
generates the output stream O iff the judgement Q(I) ⇓ O
can be coinductively derived by the following inference rules:

(C-NIL)

C([ ]) ⇓ [ ]

(C-IN)

C
i−→ P

P (I) ⇓ O
C(i :: I) ⇓ O

(C-OUT)
P

o−→ Q
Q(I) ⇓ O

P (I) ⇓ o :: O

We say that R generates the trace (I,O) iff C0(I) ⇓ O.

A natural definition of information security for reactive
computations is reactive non-interference [9]. We presuppose
the existence of a label pre-order (L,v) and we represent
the attacker as a label ` ∈ L, defining its abilities to observe
and corrupt data. These abilities are formalized by a label-
indexed family of predicates rel`, identifying security relevant
events, and a label-indexed family of similarity relations ∼`,
identifying indistinguishable events. We collect these two
families of relations in a policy π = 〈rel`,∼`〉.

Given a policy π, we define a notion of similarity between
two streams of events for an attacker `. There are several sen-
sible definitions of similarity in the literature, the one we use
here (called ID-similarity) leads to a termination-insensitive
notion of non-interference and comes with a convenient proof
technique based on unwinding relations [9].

Definition 3 (ID-similarity). Two streams of events S and S′

are ID-similar (similar for short) for ` under π = 〈rel`,∼`〉
iff the judgement S ≈π` S′ can be coinductively derived by the
following inference rules:

(S-EMPTY)
[ ] ≈π` [ ]

(S-MATCH)
rel`(s) rel`(s′) s ∼` s′ S ≈π` S′

s :: S ≈π` s′ :: S′

(S-LEFT)
¬rel`(s) S ≈π` S′

s :: S ≈π` S′

(S-RIGHT)
¬rel`(s) S ≈π` S′

S ≈π` s :: S′

Intuitively, a reactive system satisfies non-interference under
a policy π if and only if, whenever it is fed two similar input
streams, it produces two similar output streams for all the
possible attackers (labels).

Definition 4 (Reactive Non-interference). A reactive system is
non-interferent under π iff, for all labels ` and all its traces
(I,O) and (I ′, O′) such that I ≈π` I ′, we have O ≈π` O′.

Reactive non-interference has been proposed in the past as
a useful security baseline to prove protection against common
attacks against web sessions, including authentication cookie
theft [18], [10], [11] and cross-site request forgery [22].

IV. MICRO-POLICIES FOR BROWSER-SIDE SECURITY

Our model FFτ is inspired by existing formal models for
web browsers based on reactive systems [8], [12]. It is an
extension of the Flyweight Firefox model [12] with tags and
support for enforcing micro-policies based on them.

A. Syntax

A map M is a partial function from keys to values. We let
{} stand for the empty map and we let dom(M) denote the
domain of M , i.e., the set of keys bound to a value in M . We
let M1]M2 be the union of two maps with disjoint domains.

1) Tags: We presuppose the existence of a denumerable set
of tags Tags and we let τ range over them. We do not put any
restriction on the format of these tags, though we instantiate
them to a specific format in the next section.



2) Terms: We presuppose a set of domain names D (ranged
over by d) and a set of strings S (ranged over by s). The
signature for the set of terms T is:

Σ = {http,https,url(·, ·, ·), ck(·, ·, ·)} ∪ D ∪ S ∪ Tags.

Let X be a set of variables and N be a set of names, the
set of terms T (ranged over by t) is defined as follows: if
t ∈ X ∪ N , then t ∈ T ; if f is an n-ary function symbol in
Σ and {t1, . . . , tn} ⊆ T , then f(t1, . . . , tn) ∈ T .

3) URLs: We let U ⊆ T be the set of the URLs, i.e., the set
of terms of the form url(t, d, s) with t ∈ {http,https}. Given
u = url(t, d, s), let prot(u) = t, host(u) = d and path(u) = s.
We assume that each URL u ∈ U comes with an associated
tag, returned by a function tag : U → Tags. For instance, the
tag function may assign the Secure tag to HTTPS pages and
the Insecure tag to HTTP pages: this information can be used
to apply different micro-policies in the browser.

4) Cookies: We let CK ⊆ T be the set of cookies, i.e.,
the set of terms of the form ck(s, s′, τ). Formally, cookies are
just key-value pairs (s, s′) extended with a tag τ . We assume
this tag is assigned by a function κ : D × S → Tags, so that
cookies with the same key set by the same domain must have
the same tag. We typically use the more evocative notation
ck(k, v)τ to represent cookies. Given ck = ck(k, v)τ , we let
key(ck) = k and value(ck) = v.

5) Scripts: We let values v, expressions e and scripts scr
be defined by the following productions:

Values v ::= t | unit | λx.e
Expr. e ::= v v′ | let x = e in e′ | get-ck(v)

| set-ck(v, v′) | xhr(v, v′) | v
Scripts scr ::= decτ@u

A script decτ@u is an expression e running in the origin u with
an associated tag τ . The origin u is needed to enforce the
same-origin policy on accesses to the cookie jar, while the tag
τ is used to enforce micro-policies on the script.

The expression (λx.e) v evaluates to e{v/x}; the expression
let x = e in e′ first evaluates e to a value v and then behaves
as e′{v/x}; the expression get-ck(k) returns the value of the
cookie with key k, provided that the tag assigned to the cookie
allows this operation; the expression set-ck(k, v) stores the
cookie ck(k, v)τ in the cookie jar, where τ = κ(host(u), k)
is a tag derived by the origin u in which the expression is
running and the cookie key k; again, the setting operation may
fail due to the enforcement of a micro-policy. The expression
xhr(u, λx.e) sends an AJAX request to u and, when a value v
is available as a response, it runs e{v/x} in the same origin of
the script which sent the request. Notably, micro-policies may
also be used to constrain AJAX communication in FFτ . For
simplicity, in our model we assimilate to AJAX requests any
network request which may be triggered by a script, e.g., the
request for an image triggered by the insertion of a markup
element in the page where the script is running.

6) Events: Input events i are defined as follows:

i ::= load(u)
| doc respn(u : CK , e) | doc redirn(u : CK , u′)
| xhr respn(u : CK , v) | xhr redirn(u : CK , u′).

The event load(u) models a user navigating the browser to
the URL u: the browser opens a new network connection to
u, sends a HTTP(S) request and then waits for a corresponding
HTTP(S) response to process over the connection. The event
doc respn(u : CK , e) represents the reception of a document
response from u, including a set of cookies CK to set and an
expression e to run in the origin u, which leads to the execution
of a new script. The event is annotated with the name n of
the network connection where the response is received: this
connection gets closed when processing the event. The event
doc redirn(u : CK , u′) models the reception of a HTTP(S)
redirection from u to u′ along the connection n, setting the set
of cookies CK ; the event keeps the connection open, while
pointing it to u′. A similar intuition applies to XHR responses
and redirects. For simplicity, we use net respn(u : CK , e) to
stand for any network response, including redirects.

Output events o are defined as follows:

o ::= • | doc req(u : CK ) | xhr req(u : CK ).

The event • represents a silent reaction to an input event with
no visible side-effect. The event doc req(u : CK ) models a
document request sent to u, including the set of cookies CK .
The event xhr req(u : CK ) models an XHR request sent to
u, including the set of cookies CK . We let net req(u : CK )
represent an arbitrary network request when we do not need
to precisely identify its type.

7) States: Browser states are tuples Q = 〈K,N,H, T,O〉:

Cookie Jar K ::= {} | K ] {d : CK},
Connections N ::= {} | N ] {nτ : u}
Handlers H ::= {} | H ] {nτ : (u′, dλx.ec@u)},
Tasks T ::= wait | scr ,
Outputs O ::= [ ] | o :: O′.

The cookie jar K maps domain names to the cookies they set
in the browser. The network connection store N keeps track
of the pending document requests: if {nτ : u} ∈ N , then
the browser is waiting for a document response from u over
the connection n. Notice that the network connection includes
a tag τ , which makes it possible to enforce micro-policies
on it. The handler store H tracks pending XHR requests: if
H(nτ ) = (u′, dλx.ec@u), the continuation λx.e is ready to
be run in the origin u when an XHR response is received
from u′ over the connection n. Also these connections have
an associated tag.

We use T to represent tasks: if T = decτ@u, then a script
is running; if T = wait, no script is running. Finally, O is a
buffer of output events, needed to interpret FFτ as a reactive
system: let Q = 〈K,N,H, T,O〉 be a consumer state when
T = wait and O = [ ], otherwise let Q be a producer state.
We let C0 = 〈{}, {}, {},wait, [ ]〉 be the initial state of FFτ .



B. Reactive Semantics

The reactive semantics of FFτ is parametric with respect to
a partial function transfer [16], which is roughly a tag-based
security monitor operating on the browser model. The transfer
function we consider has the following format:

transfer(event type, τ1, τ2) = (τn, τci, τco, τs),

where τ1 and τ2 are the (at most two) arguments passed to the
function when the browser model processes an event of type
event type, while τn, τci, τco, τs are the (at most four) tags
assigned to the new browser elements which are instantiated
as the result of the event processing. Specifically, τn is the
tag of the new network connection which is created, τci is the
tag passed to the cookie jar when storing some new cookies,
τco is the tag passed to the cookie jar when retrieving the
cookies to be attached to HTTP(S) requests, and τs is the
tag of the new running script. If any of these elements is not
needed when processing an event of a given type, e.g., since
no new cookie is set, we replace it with a dash (−). If the
transfer function is undefined for a given set of arguments, an
operation is not permitted. For space reasons, the full reactive
semantics of FFτ is given in the technical report [13]. Here,
we just present the main ideas needed to understand the paper.

A set of transitions of the form C
i−→ P describes how

the consumer state C reacts to the input event i by evolving
into a producer state P . Conversely, a set of transitions of the
form P

o−→ Q describes how a producer state P generates an
output event o and evolves into another state Q. Most of the
transitions invoke the transfer function before being fired, with
the following intuitive semantics:

• transfer(load, τu,−) = (τn,−, τco,−): invoked when a
URL u such that tag(u) = τu is loaded. The event creates
a new network connection with tag τn and uses tag τco
to access the cookie jar and retrieve the cookies to be
attached to the document request sent to u;

• transfer(doc resp, τn,−) = (−, τci,−, τs): invoked
when a document response is received over a network
connection with tag τn. The event uses tag τci to access
the cookie jar and set the cookies received in the response,
while tag τs is given to the new script which is executed
as the result of processing the response;

• transfer(doc redir, τn, τu) = (τm, τci, τco,−): invoked
when a document redirect is received over a network
connection with tag τn, asking the browser to load a
URL u such that tag(u) = τu. As a result, the tag of the
network connection is changed from τn to τm. The tags
τci and τco are used to access the cookie jar: specifically,
τci is used to set the cookies received along with the
processed redirect, while τco is used to get the cookies
to be sent to u upon redirection;

• transfer(xhr resp, τn,−) = (−, τci,−, τs): similar to
the case for doc resp, but for XHR responses;

• transfer(xhr redir, τn, τu) = (τm, τci, τco,−): similar to
the case for doc redir, but for XHR redirects;

• transfer(send, τs, τu) = (τn,−, τco,−): invoked when a
script with tag τs sends an XHR request to a URL u such
that tag(u) = τu. Tag τn is given to the new network
connection which is opened by the script, while τco is
used to access the cookie jar and get the cookies to be
sent to u;

• transfer(get, τr, τc) = (−,−,−,−): invoked when a
cookie with tag τc is read from the cookie jar. Here,
τr is the tag modelling the security assumptions about
the reader: for instance, when cookies are fetched by the
browser for inclusion in a HTTP(S) request to u, this tag
could correspond to the protocol of u;

• transfer(set, τw, τc) = (−,−,−,−): invoked when a
cookie with tag τu is written into the cookie jar. Similarly
to the previous case, τw is the tag modelling the security
assumptions about the writer.

If the transfer function is undefined for a specific set of tags,
the corresponding transitions C i−→ P and P o−→ Q just lead to
a dummy producer state firing the dummy event •.

V. ENFORCING REACTIVE NON-INTERFERENCE

The operational semantics of FFτ is parametric with respect
to an arbitrary set of tags and a transfer function. Here, we
instantiate these parameters to show that FFτ can enforce a
useful security property, i.e., reactive non-interference.

A. Labels, Policies and Threat Model

We define different threat models for the Web in terms of
labels from a pre-order (L,v), as required by the definition
of reactive non-interference. We start by introducing simple
labels, which we use to express confidentiality and integrity
policies. A simple label l is a (possibly empty) set of elements
of the form http(d) or https(d) for some domain name d ∈ D:

l ::= ∅ | {http(d)} | {https(d)} | l ∪ l.

Intuitively, simple labels define sets of endpoints which are
allowed to read/write a given datum or to observe/produce a
given event. A label ` = (lC , lI) is a pair of simple labels,
combining confidentiality and integrity. We write C(`) for lC
and I(`) for lI . We let ` v `′ iff C(`) ⊆ C(`′) and I(`) ⊆
I(`′). Simple labels form a bounded lattice under set inclusion,
while labels form a bounded lattice under v: the bottom and
top elements are ⊥s = ∅, >s = {http(d),https(d) | d ∈ D},
⊥ = (⊥s,⊥s) and > = (>s,>s).

We assign (simple) labels to URLs, so that it is easy to
define which events an attacker can observe and/or corrupt.
For a URL u ∈ U with host(u) = d, we let:
• msg label(u) = {http(d)} iff prot(u) = http;
• msg label(u) = {https(d)} iff prot(u) = https;
• evt label(u) = {http(d)}.

We use these functions to define the capabilities of an attacker
`. The presence of a message sent to u is visible to ` whenever
evt label(u) ⊆ C(`), while the content of the message is only
disclosed if also msg label(u) ⊆ C(`). If evt label(u) ⊆ C(`)
while msg label(u) 6⊆ C(`), the attacker is aware of the



TABLE I Attacker capabilities for `
Visibility of outputs:

evt label(u) ⊆ C(`)

vis`(net req(u : CK ))

Indistinguishability of outputs:

msg label(u) 6⊆ C(`)

net req(u : CK ) ∼C` net req(u : CK ′)

Taintedness of inputs:

msg label(u) ⊆ I(`)

tnt`(net respn(u : CK , e))

presence of all messages sent to u, but he has no access to
their contents; the presence of a message may be used to create
a side-channel and leak information through an implicit flow.
As to integrity, a message coming from u can be forged by
an attacker ` if and only if msg label(u) ⊆ I(`). There is no
distinction between message presence and message content
when it comes to integrity.

Based on this informal description, the following well-
formation hypothesis we make on the attacker should be clear.
It ensures that we cannot model attackers who are not aware of
the presence of a message, but still have access to its contents.

Definition 5 (Well-formed Attacker). An attacker ` is well-
formed if and only if, for all domains d ∈ D, https(d) ∈ C(`)
implies http(d) ∈ C(`).

From now on, we always implicitly consider only well-
formed attackers. It is easy to represent using labels several
popular web security attackers:

1) a web attacker on domain d is defined by:

`w(d) , ({http(d),https(d)}, {http(d),https(d)})

2) a passive network attacker is defined by:

`pn , ({http(d) | d ∈ D}, ∅)

3) an active network attacker is defined by:

`an , ({http(d) | d ∈ D}, {http(d) | d ∈ D}).

To formalize the previous intuitions, we introduce a few simple
ingredients: a visibility predicate vis` on output events, a
binary indistinguishability relation ∼C` on output events, and
a taintedness predicate tnt` on input events. These are defined
in Table I. The indistinguishability relation identifies network
requests which only differ for contents (cookies) which are
not visible to the attacker, because encrypted. We implicitly
assume that two indistinguishable requests have the same type.

We then define two specific classes of non-interference
policies, which correctly capture the attacker capabilities we
described. Our non-interference results will be restricted to
these two classes of policies.

Definition 6 (Confidentiality Policy). A confidentiality policy
is a pair πC = 〈rel`,∼`〉 such that:

1) ∀o ∈ O : rel`(o) , vis`(o);
2) ∀o, o′ ∈ O : o ∼` o′ ⇔ o = o′ ∨ o ∼C` o′.

Definition 7 (Integrity Policy). An integrity policy is a pair
πI = 〈rel`,∼`〉 such that:

1) ∀i ∈ I : rel`(i) , ¬tnt`(i);
2) ∀i, i′ ∈ I : i ∼` i′ ⇔ i = i′.

B. A Canonic Transfer Function for Non-Interference

Our goal is to instantiate the operational semantics of
FFτ with a transfer function that enforces confidentiality and
integrity policies. In principle, we could let web developers
provide selected entries of the transfer function, defining the
browser behaviour upon interaction with their own websites,
but this would be quite inconvenient for them. We believe that
web developers need a more effective and declarative way to
specify their desired confidentiality and integrity policies. In
our view, web developers should only:

1) assign security labels to the cookies they set. This is not a
hard task, since web developers are already familiar with
cookie security attributes like HttpOnly and Secure, and
the format of the labels is pretty intuitive;

2) assign security labels to the URLs they control. We argue
that also this is not hard to understand for web developers,
since this kind of policies is close in spirit to standard
Content Security Policy [34] specifications.

These labels define the expected security properties for cookies
and network connections:

1) cookie secrecy: if a cookie has label `, its value can only
be disclosed to an attacker `′ such that C(`)∩C(`′) 6= ∅;

2) cookie integrity: if a cookie has label `, it can only be set
or modified by an attacker `′ such that I(`) ∩ I(`′) 6= ∅;

3) session confidentiality: if a URL u has label `, an attacker
`′ can observe that the browser is loading u only if we
have C(`) ∩ C(`′) 6= ∅;

4) session integrity: if a URL u has label `, an attacker `′

can force the browser into sending requests to u only if
we have I(`) ∩ I(`′) 6= ∅.

Formally, we define a URL labelling as a function Γ : U → L,
assigning labels to URLs. If Γ(u) = ` for some label `, let
ΓC(u) stand for C(`) and ΓI(u) stand for I(`). We propose a
technique to automatically generate a canonic transfer function
from a labelling Γ: this function enforces the session confiden-
tiality and integrity properties formalized by Γ, while ensuring
that cookies are accessed correctly according to their security
label. The canonic transfer function operates on the set of tags
Tags , L ∪ U including labels and URLs, and assumes that
the tagging function for URLs tag is the identity on U .

The definition of the canonic transfer function is formalized
by using judgements of the following format:

Γ, f B transfer(event type, τ1, τ2) ~̀,

where Γ, f , event type and τ1, τ2 are known, while we
compute the labels ~̀ to be assigned to the newly created or



updated browser elements when processing an event of type
event type. Here, f : L → L is a script labelling, providing
a mapping from labels of network connections to labels of
scripts downloaded via these connections. Remarkably, while
Γ is used to specify different security policies for different
URLs and should be provided by web developers, f is just a
parameter used to tweak the generation of the canonic transfer
function for different use cases. It is useful to have f in the
formalism for additional generality, in particular to support
the examples in the next section, but in practice (and in our
implementation) a good candidate for f is simply the identity
function on L. The non-interference results we present hold
for any choice of f , as long as it satisfies the following well-
formation condition (implicitly assumed from now on).

Definition 8 (Well-formed Script Labelling). A script labelling
f is well-formed if and only if, for all labels ` ∈ L, we have
C(f(`)) ⊆ C(`) and I(`) ⊆ I(f(`)).

This well-formation requirement ensures that the confiden-
tiality of a script is always higher than the confidentiality of
the network connection from which it is downloaded, while its
integrity is always lower than the integrity of the connection.
This guarantees that the script cannot disclose the presence of
private network connections or trigger high integrity events as
the result of an interaction with the attacker.

The judgements defining the canonic transfer function are
shown in Table II, using inference rules which should be read
as follows: boxed premises amount to checks on Γ, τ1, τ2, de-
termining the domain of the transfer function, while premises
not included in boxes define the value of the new labels
~̀. If any of the boxed premises fails, the transfer function
is undefined and the browser does not process the event.
Observe that the necessary entries of the transfer function
can be generated “on the fly” upon event processing in an
implementation of our theory.

We briefly comment on the rules in Table II as follows.
In (G-LOAD), assuming that we load the URL u, we check
evt label(u) ⊆ ΓC(u), since a request is sent to u and this
request is visible to any network attacker or to any web at-
tacker controlling u. We use ΓC(u) as the confidentiality label
of the new network connection to ensure that the presence
of that connection in the browser may only be visible to an
attacker ` such that ΓC(u) ∩C(`) 6= ∅. We use msg label(u)
as the integrity label of the new network connection, since an
attacker controlling u may be able to compromise the integrity
of any response received over that connection. Finally, when
accessing the cookie jar to retrieve the cookies to be sent in
the request to u, we set msg label(u) as the confidentiality
component of the label `co passed to the cookie jar, which
ensures that only cookies intended to be disclosed to u will be
retrieved. We use >s as integrity label for retrieving cookies,
so that we get cookies irrespective of their integrity label.

(G-DOCRESP) and (G-XHRRESP) propagate the label `n
of the network connection to the cookie jar when setting
new cookies included in a network response received over
that connection. In terms of integrity, this implies that a

network connection can only set cookies with lower integrity
than itself. More subtly, in terms of confidentiality, this also
implies that a network connection can only set cookies with
higher confidentiality than itself: this is needed to ensure that
the attacker cannot detect the occurrence of private network
responses from the value (or the existence) of public cookies
set in those responses. The rules assign the label f(`n) to the
new scripts running after response processing; here, the well-
formation of f is crucial to ensure that the confidentiality and
integrity restrictions of the script are as least as strong as those
of the network connection where they have been downloaded.

In (G-DOCREDIR) and (G-XHRREDIR), when redirecting
to a URL u, we check evt label(u) ⊆ C(`n), since a network
request is sent to u upon redirection and it may reveal the
existence of the network connection. We also have to check
I(`n) ⊆ ΓI(u) to ensure that no low integrity connection
sends a request to a high integrity URL. We preserve the
confidentiality label of the existing network connection, so
that the existence of the connection cannot be revealed even
after the redirection. Instead, we update the integrity label of
the connection to the original integrity label of the connection
extended with msg label(u): this formalizes the intuition that
the integrity of a network connection gets downgraded through
cross-origin redirects. The label used for writing cookies is
`n, just as in (G-DOCRESP), while the label used for fetching
cookies is (msg label(u),>s), just as in (G-LOAD).

(G-GET) ensures that no high confidentiality cookie is read
by a low confidentiality context and that no low integrity
cookie is read by a high integrity context. (G-SET) is the
writing counterpart of (G-GET). Finally, (G-SEND) is similar
to (G-XHRREDIR), with the role of the incoming network
connection taken by a running script (and no cookie set).

C. Reactive Non-Interference

Having defined a canonic transfer function, we now analyze
which non-interference properties are supported by it. Let
FFτ (Γ, f) be the instantiation of FFτ with the transfer func-
tion derived from Γ and f using the judgements in Table II.

We first discuss confidentiality. The next definition of era-
sure removes from input events any cookie which must not be
visible to the attacker according to its label. By making similar
input events that are identical after such erasure, reactive non-
interference ensures that the value (and even the presence) of
the confidential cookies has no visible import to the attacker.

Definition 9 (Confidentiality Erasure). Given a set of cookies
CK , let ck-eraseC` (CK ) be defined as:

{ck(s, s′)`
′ ∈ CK | C(`′) ∩ C(`) 6= ∅}.

We then define eraseC` : I → I by applying ck-eraseC` to each
CK syntactically occurring in an input event.

The confidentiality theorem combines cookie confidentiality
with session confidentiality, i.e., the occurrence of a load(u)
event which must not be visible to the attacker according to
the label of u has indeed no visible import on the outputs
produced by the browser.



TABLE II Generation of a canonic transfer function from Γ

(G-LOAD)

evt label(u) ⊆ ΓC(u)

`n = (ΓC(u),msg label(u)) `co = (msg label(u),>s)
Γ, f B transfer(load, u,−) (`n,−, `co,−)

(G-DOCRESP)
Γ, f B transfer(doc resp, `n,−) (−, `n,−, f(`n))

(G-DOCREDIR)

evt label(u) ⊆ C(`n) I(`n) ⊆ ΓI(u)

`m = (C(`n), I(`n) ∪ msg label(u)) `co = (msg label(u),>s)
Γ, f B transfer(doc redir, `n, u) (`m, `n, `co,−)

(G-XHRRESP)
Γ, f B transfer(xhr resp, `n,−) (−, `n,−, f(`n))

(G-XHRREDIR)

evt label(u) ⊆ C(`n) I(`n) ⊆ ΓI(u)

`m = (C(`n), I(`n) ∪ msg label(u)) `co = (msg label(u),>s)
Γ, f B transfer(xhr redir, `n, u) (`m, `n, `co,−)

(G-GET)

C(`r) ⊆ C(`t) I(`t) ⊆ I(`r)

Γ, f B transfer(get, `r, `t) (−,−,−,−)

(G-SET)

C(`t) ⊆ C(`w) I(`w) ⊆ I(`t)

Γ, f B transfer(set, `w, `t) (−,−,−,−)

(G-SEND)

evt label(u) ⊆ C(`s) I(`s) ⊆ ΓI(u)

`n = (C(`s), I(`s) ∪ msg label(u)) `co = (msg label(u),>s)
Γ, f B transfer(send, `s, u) (`n,−, `co,−)

Theorem 1 (Confidentiality). Let πC = 〈rel`,∼`〉 be the
confidentiality policy such that:

1) ∀i : ¬rel`(i) , i = load(u) ∧ ΓC(u) ∩ C(`) = ∅;
2) ∀i, i′ : i ∼` i′ ⇔ eraseC` (i) = eraseC` (i′).

Then, FFτ (Γ, f) is non-interferent under πC .

We now focus on integrity. The next definition of erasure
removes from output events any cookie which can be set by the
attacker according to its label. By making similar output events
that are identical after such erasure, reactive non-interference
ensures that only low-integrity cookies can be affected by a
manipulation of the input stream performed by the attacker.

Definition 10 (Integrity Erasure). Given a set of cookies CK ,
let ck-eraseI` (CK ) be defined as:

{ck(s, s′)`
′
∈ CK | I(`′) ∩ I(`) = ∅}.

We then define eraseI` : O → O by applying ck-eraseI` to each
CK syntactically occurring in an output event.

The integrity theorem combines cookie integrity with ses-
sion integrity, i.e., the attacker can force the browser into
sending network requests to u only if the label of u has a
low integrity component.

Theorem 2 (Integrity). Let πI = 〈rel`,∼`〉 be the integrity
policy such that:

1) ∀o : rel`(o) , o = net req(u : CK )∧ΓI(u)∩ I(`) = ∅;
2) ∀o, o′ : o ∼` o′ ⇔ eraseI` (o) = eraseI` (o

′).

Then, FFτ (Γ, f) is non-interferent under πI .

D. Proof Sketch

To prove the main theorems in the previous section, we
first define a set of syntactic constraints over the structure of
the transfer function aimed at enforcing non-interference. One
example is the following constraint for load events:

(T-LOAD)
evt label(u) ∪ C(`n) ⊆ ΓC(u)

msg label(u) ⊆ C(`co) msg label(u) ⊆ I(`n)

Γ ` transfer(load, u,−) = (`n,−, `co,−)

Intuitively, rule (T-LOAD) ensures that, when a URL u is
loaded, the information ΓC(u) is an upper bound for both
evt label(u) and the confidentiality label C(`n) of the new
network connection. Having evt label(u) ⊆ ΓC(u) implies
that the load event is always visible to any network at-
tacker or any web attacker sitting at host(u), while having
C(`n) ⊆ ΓC(u) guarantees that the side-effects produced
by a response received over the network connection are only
visible to ΓC(u). The rule also checks two other conditions:
msg label(u) ⊆ C(`co) is needed to ensure that the cookies
attached to the document request sent to u can actually be
disclosed to it, while msg label(u) ⊆ I(`n) formalizes that
an attacker who controls u may be able to compromise the
integrity of any response received over the new network
connection.

Having defined the full set of constraints, we then use a
result from [9] to prove that the FFτ model satisfies non-
interference whenever it deploys a transfer function respecting
the constraints.



Definition 11 (Unwinding Relation [9]). An unwinding rela-
tion is a label-indexed family of binary relations R` on states
of a reactive system with the following properties:

1) if QR`Q′, then Q′R`Q;
2) if CR` C ′ and C

i−→ P and C ′
i′−→ P ′ and i ∼` i′ with

rel`(i) and rel`(i′), then P R` P ′;
3) if CR` C ′ and C i−→ P with ¬rel`(i), then P R` C ′;
4) if P R` C and P o−→ Q, then ¬rel`(o) and QR` C;
5) if P R` P ′, then either of the following conditions hold

true:
a) P o−→ Q and P ′ o

′

−→ Q′ with o ∼` o′ and QR`Q′;
b) P o−→ Q with ¬rel`(o) and QR` P ′;
c) P ′ o

′

−→ Q′ with ¬rel`(o′) and P R`Q′.

Theorem 3 ([9]). Let C0 be the initial state of a reactive
system R. If C0R` C0 for some unwinding relation R, then
R satisfies non-interference.

We then need to define a suitable unwinding relation to
establish non-interference. For confidentiality, we propose a
relation that requires equality of the two browsers on the low-
confidentiality components, while for integrity we propose a
relation that requires equality on high-integrity components.
Assuming the aforementioned constraints on the transfer func-
tion are respected, we prove that the relations fulfil the condi-
tions of Definition 11 and hence conclude non-interference by
Theorem 3. We then show that the canonic transfer function
we defined always satisfies the set of constraints, from which
we derive our two main theorems.

Note that this approach allows one to syntactically prove
non-interference also for transfer functions different from the
canonic one, which is a useful and interesting result by itself,
as it creates an easy way to show security guarantees of a
policy encoded with a custom transfer function. The proofs and
the full set of constraints can be found in the online technical
report [13].

E. Compatibility and Precision

Another interesting property of the canonic transfer function
is that it ensures compatibility for websites not implementing
the security mechanisms proposed in this paper. Intuitively, it
is possible to identify a “weak” URL labelling Γ which does
not improve security with respect to standard web browsers,
but ensures that no runtime security check performed by the
transfer function will ever stop a website from working as
originally intended. Formally, we extend the set of output
events of FFτ with a new event ?, called failure. We then
define a variant of FFτ which is parametric with respect
to a URL labelling Γ and explicitly models failures due to
the security enforcement performed by the canonic transfer
function derived from Γ. This is done by including the event ?
in the output stream generated by the reactive system whenever
the transfer function is undefined. The failure semantics is
presented in the technical report [13].

Let Γ> be the URL labelling assigning the > label to
each URL, let id be the identity function on labels and let

FFτ?(Γ>, id) be the failure-aware variant of FFτ implementing
the canonic transfer function derived from Γ> and id. We can
state the following compatibility theorem.

Theorem 4 (Compatibility). Let C0 be the initial state of
FFτ?(Γ>, id) and assume that the function κ : D × S → Tags
assigns the top label > to all the elements of its domain. If
C0(I) ⇓ O, then ? does not occur in O.

While we guarantee the soundness of our approach, we
cannot offer perfect precision, meaning that our framework
conservatively prevents some information flows, even though
non-interference is not violated. This is because we do not
analyse JavaScript and, consequently, we assume a worst case
scenario where information leaks may happen. For example,
a script may try to read a confidential cookie and then send
an unrelated request to an untrusted domain, which would not
break confidentiality. However, without an information flow
analysis for JavaScript, this cannot be guaranteed, and thus
our approach prevents either the access to the cookie or the
network request.

VI. CASE STUDIES

A. Cookie Protection Against Web Attackers

The HttpOnly attribute has been proposed as an in-depth
defense mechanism for authentication cookies against web
attackers [2]. If a cookie is marked as HttpOnly, the browser
forbids any access to it by JavaScript, thus preventing its theft
through a successful XSS exploitation. The HttpOnly attribute
also provides some integrity guarantees, since JavaScript can-
not set or overwrite HttpOnly cookies1.

Intuitively, a first attempt at representing HttpOnly cookies
in our model can be done by giving cookies set by the domain
d the label `c = ({http(d),https(d)}, {http(d),https(d)}),
and by ensuring that scripts are assigned the top label >. The
label `c allows the browser to send and set these cookies over
both HTTP and HTTPS connections to d. The label > assigned
to scripts, instead, ensures that JavaScript cannot read or write
these cookies, as enforced by rules (G-GET) and (G-SET).

As it turns out, however, this labelling forces the imple-
mentation of stricter security checks than those performed by
standard web browsers on HttpOnly cookies. This is not a
limitation of our model, but rather a consequence of the fact
that scripts are actually able to compromise the integrity of
HttpOnly cookies in current web browsers. Indeed, even if
an attacker-controlled script cannot directly set an HttpOnly
cookie by accessing the document.cookie property, it can
still force HttpOnly cookies into the browser by exploiting
network communication. For instance, assume that a trusted
website a.com uses HttpOnly cookies for authentication
purposes: a malicious script could run a login CSRF attack by

1Though this is not stated explicitly in the cookie specification [2], this is
a very sensible security practice and we experimentally verified it on many
modern web browsers. It would be easy to model in our framework also
HttpOnly cookies which can be set/overwritten by JavaScript, but we preferred
to consider the more secure and common behaviour.



submitting the attacker’s credentials to a.com, thus effectively
forcing fresh HttpOnly cookies into the user’s browser.

To prevent this class of attacks, the canonic transfer function
enforces two further invariants: (1) by rule (G-SEND), all the
network connections which are opened by a script are tagged
with label >, which enforces that no cookie with integrity
label {http(d),https(d)} can be set over these connections;
and (2) by rules (G-DOCREDIR) and (G-XHRREDIR), when
a redirect is performed, the integrity label of the network
connection receiving the redirect is downgraded to the union
of the original integrity label and the message label of the
redirect URL. Hence, if a cross-domain redirect is performed,
no cookie with integrity label {http(d),https(d)} can be set
over the network connection. This ensures that web attackers
cannot exploit malicious scripts or redirects to set cookies with
label `c in the browser, unless they control the domain d.

In the end, standard HttpOnly cookies cannot be accurately
modelled in our framework, since the integrity guarantees
they provide cannot be expressed by a non-interference policy.
Indeed, HttpOnly cookies cannot be set by a script using the
document.cookie property, but scripts can still set them
by exploiting network communication, so it is not clear which
label should be assigned to scripts to have non-interference.
As we discussed, this asymmetry leaves room for attacks.

Clearly, one can represent in our framework cookies which
cannot be read by scripts, but can be set by them, by replacing
the cookie label `c with `′c = ({http(d),https(d)},>s). These
cookies cannot be read by scripts running with the > label,
but they can be liberally set by them. Another plausible design
choice would be changing the label given to scripts to let them
access cookies labelled `′c, at the cost of limiting their cross-
origin communication. For instance, by giving scripts the label
of the connection where they have been downloaded, scripts
from the domain d would be allowed to read cookies labelled
`′c, but any cross-domain communication from these scripts
will be forbidden by rule (G-SEND) to prevent cookie leakage.
This may be a better solution for web applications like e-
banking services, which may need to access session state at
the client side, but do not interact with untrusted third-parties.

B. Protection Against Gadget Attackers

The gadget attacker has been first introduced in [4] as a
realistic threat model for mashup security. A gadget attacker
is just a web attacker with an additional capability: a trusted
website deliberately embeds a gadget (script) chosen by the
attacker as part of its standard functionalities. The embedded
gadget may be useful, e.g., for advertisement purposes or for
the computation of site-wide popularity metrics. It is well-
known that this kind of operation is dangerous on the Web,
since the embedded script may be entitled to run in the same
origin of the embedding page [28]. For instance, the embedded
script may be able to read the authentication cookies of the
embedding page. This is largely accepted, however, as long as
the author of the embedding page trusts the gadget. But what
if the gadget is compromised by the attacker?

Consider a web page hosted at the HTTPS URL u on
domain d and loading a gadget from the HTTPS URL u′ on
domain d′. We can define a labelling Γ such that ΓC(u) =
{https(d),https(d′)}, which would allow the web page at u
to only communicate with HTTPS URLs hosted at d and d′ by
rule (G-SEND). This may be fine, for instance, if the gadget
loaded from u′ only computes some local statistics shown in
the web page at u. Pick now the following input stream:

I = [load(u),
doc respn(u : {ck(k, v)`}, xhr(u′, λx.xunit)),
xhr respm(u′ : ∅, λy.let z = get-ck(k) in leak(z))]

The input stream I models a scenario where the normally
harmless gadget on u′ has been somehow compromised by
the attacker, so that it will read the value of the cookie k set
by the response from u and leak it to the attacker’s website,
which we assume to be hosted outside the domains d and d′.
This attack is prevented by the labelling above, since the XHR
request leaking the cookie value is stopped by rule (G-SEND),
given that this request would still originate from u.

C. Strengthening PayPal

In 2014 a severe CSRF vulnerability on the online payment
system PayPal was disclosed, despite existing server-side pro-
tection mechanisms [1]. PayPal employs authentication tokens
in order to prevent CSRF attacks, but these tokens could be
used multiple times for the same user and, through another
vulnerability, it was possible for an attacker to obtain such a
valid token for any user. The combination of these two flaws
could be used to mount arbitrary CSRF attacks against any
PayPal user, e.g., to authorize payments on the user’s behalf.

Figure 1 represents a typical payment scenario [29] for a
user that has already logged into her PayPal account. The
protocol starts with the user clicking on the “buy now” button
in an online shop. After being redirected to PayPal, she
confirms the payment and the article is successfully purchased.
One important detail for the present discussion is that the
initial request to PayPal (step 2) is explicitly triggered by
the user (step 1) in this scenario. Our goal is to enforce
a policy that prevents CSRF attacks against PayPal, while
still allowing benign payments. This can be done by setting
Γ(u) = (>s, {https(paypal.com)}) for all URLs u of
PayPal, while letting Γ(u′) = > for all URLs u′ of the online
shop (as we are only interested in protecting PayPal here).

We first explain why this policy does not block benign
payments via PayPal, like in Figure 1. Since we have an ex-
plicit user action that triggers the initial request to PayPal, we
assimilate steps 1-2 of the protocol to the processing of a load
event in our formal model. Since ΓC(u) = >s for all URLs u
of PayPal, the request at step 2 is successfully sent according
to rule (G-LOAD). Steps 3-12 of the protocol are always in
the domain of PayPal and thus the label used for scripts and
network connection is always (>s, {https(paypal.com)}).
This allows the browser to perform arbitrary redirects and
XHR request to URLs on PayPal, hence all these steps
succeed. Finally, since we have ΓC(u) = >s for all URLs u
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Fig. 1. A typical payment scenario on PayPal

at PayPal and we have ΓI(u
′) = >s for all URLs at the shop

domain, also steps 13-15 can be performed successfully, since
the cross-origin redirect is permitted by rule (G-DOCREDIR).

If we now consider a CSRF attack, then we do not have
a message that is triggered directly by the user at step 1.
This means that we do not have a load event to process, but
rather a xhr req, doc redir or xhr redir event coming from
a domain different from paypal.com. By the definition of
the canonic transfer function, we then always have to show
either I(`n) ⊆ ΓI(u) or I(`s) ⊆ ΓI(u) in these cases,
where u is the URL loaded at step 1. One can then observe
that we always have I(`n) 6⊆ {https(paypal.com)} and
I(`s) 6⊆ {https(paypal.com)}, hence the integrity checks
fail and the message is not sent. Thus, our technique effectively
prevents the aforementioned CRSF attack against PayPal, even
if vulnerabilities are not fixed at the server side.

D. Additional Examples

We also developed two more examples to show our frame-
work at work: cookie protection against network attackers
improving on Secure cookies [2] and protection against CSRF
in the spirit of Allowed Referrer Lists [15]. For space reasons,
these examples are only included in the technical report [13].

VII. IMPLEMENTATION

We developed a proof-of-concept implementation of a sig-
nificant core of our proposal as a Google Chrome extension,
Michrome, which we make available online [13]. We see
Michrome as a first reasonable attempt at evaluating the prac-
ticality of our theory rather than as a finished product ready
for inclusion in standard web browsers. More work is needed
to support all the features of FFτ : for instance, the current
prototype lacks support for defining arbitrary cookie labels. We
comment in the following on the main implementation choices,
our experiments and the current limitations of Michrome.

A. Michrome Implementation

Michrome changes the behaviour of Google Chrome by
mimicking the operational semantics of FFτ , assuming the
deployment of the canonic transfer function in Section V-B.
The prototype leverages the standard Google Chrome exten-
sion APIs, which allow for a rather direct implementation
of the semantics. Michrome intercepts web requests via the
APIs, and allows or denies them based on the underlying
information flow policy. If a blocked request is a navigation
to another page, the user receives a message that her request
was blocked by the extension. If a blocked request is loading
additional content for a page, the user does not receive any
specific notification, but she might see differences in the page
(e.g., missing images). We discuss below the main differences
between Michrome and the presented formal model.

1) User Inputs: FFτ uniformly treats user inputs as load
events. In practice, however, users have different ways to
interact with their web browser, most notably by typing in the
address bar and by clicking buttons or links. Assimilating all
user inputs to load events in Michrome would be a poor design
choice, since many of these inputs, e.g., button clicks, can be
triggered by malicious JavaScript code, but load events have
high integrity in our model. Unfortunately, the Google Chrome
extension APIs do not allow one to discriminate between user
clicks and clicks performed by JavaScript; similarly, they do
not provide any way to distinguish between the user writing
in the address bar and a navigation attempt by JavaScript.

Our choice is then to only endorse the first request which is
fired from an empty tab and to deem it as the result of a load
event, since the only way to trigger a network request from
an existing empty tab is by typing in its address bar. All the
other network requests are assimilated to less trusted xhr req
events and hence subject to stricter security checks. This policy
can be relaxed by defining in Michrome a white-list of trusted
entry points, i.e., URLs which are known to be controlled
by trusted companies and have a very high assurance of being
protected against CSRF attacks: a similar approach has already
been advocated in App Isolation [14]. Relaxing the standard
behaviour of Michrome is occasionally helpful in practice, for
instance to support the PayPal case study (see below).

2) Tagging Scripts: in normal web browsing, many scripts
run in the same page (and hence in the same origin) at the
same time. The Google Chrome extension APIs do not allow
one to detect which script is performing a given operation
when more than one script is included in the same page, so
Michrome cannot assign labels to individual scripts (unlike
the FFτ model). This issue is solved by giving a label to the
entire tab displaying the page rather than to individual scripts.
Intuitively, this label represents an upper bound for each label
which would be assigned to a script running in the tab.

When a remote content is included from a URL u, the label
of the including tab is downgraded and joined with Γ(u).
There is only one simple exception to this rule: if the included
content is passive, i.e., if it is an image, the integrity label of
the tab does not get downgraded. This prevents label creeping



for integrity and simplifies the specification of information
flow policies for web developers.

3) Policy Granularity: In the current prototype, security
labels are assigned to domain names rather than to URLs.
This choice is mainly dictated by the practical need of testing
our extension on existing websites: having a more coarse-
grained security enforcement simplifies the process of writing
information flow policies for websites we do not know and
control. There is no real mismatch from the formal model
here: we just implicitly assume that Γ(u) = Γ(u′) for all u, u′

such that host(u) = host(u′).
4) Default Behaviour: Formally, the labelling Γ is defined

as a (total) function from URLs to labels. In practice, however,
one cannot assign a label to all the URLs in the Web. Our
choice is to implicitly assume the > label for all the URLs
without an explicit entry in Γ. This solution is suggested by
the choice of preserving compatibility with existing websites:
since the > label does not constrain cross-origin communi-
cation, the browser behaviour is unchanged when interacting
with URLs not included in the labelling.

5) Cookies: At the time of writing, Michrome does not
have full support for cookie labels. We plan to implement
support for arbitrary labels in the next future, but the current
prototype always assumes that a cookie received from a URL
u has confidentiality label ΓC(u) and integrity label >s. This
choice is mainly done for the sake of simplicity: by implicitly
inferring cookie labels from Γ, we reduce the amount of
information which we must specify for the websites we test.
The confidentiality label ΓC(u) is justified by the fact that we
assume that all URLs on the same domain have the same Γ,
hence all the cookies set by them cannot be communicated
outside ΓC(u)2. The integrity label >s, instead, is motivated
by backward compatibility: since standard cookies do not
provide good integrity guarantees, we do not try to enforce
additional protection in order to avoid breaking websites.

B. Experiments

We performed a first test of Michrome by securing a
university website, call it U . Since this website does not
include many third-party contents and does not expect to
process cross-domain requests, we first assigned U the label:
({http(U),https(U)}, {http(U),https(U)}). This label states
that any session established with U should only be visible
to U itself and that only local web pages are allowed to send
requests to U . We then realized that this labelling modifies the
browser behaviour when navigating U , since the homepage of
U silently includes scripts from Google Analytics (GA) over
HTTP and the extension blocks any request for these scripts,
since GA should not be aware of the loading of U .

We tried to make Google Analytics work again by adding
http(GA) to the confidentiality label of U . This indeed allowed
the browser to send the request for the analytic scripts, but it
also prevented the correct rendering and navigation of U later

2This is only true if no cookie sharing between sub-domains is possible.
Indeed, the current prototype does not protect domain cookies [2], but we
plan to include support for them in future releases.

on. The reason is that, when a script from GA is included into
a page on U , the integrity label of the tab displaying the page
is downgraded to include https(GA). Since the integrity label
of U does not mention GA, further requests to U from the
page are dropped by Michrome: indeed, these requests may
be fired by a malicious script mounting a CSRF attack. To
recover functionality, we thus had to relax the integrity label
of U to also include https(GA).

Another small change we had to perform to seamlessly
navigate U was to extend its confidentiality label to include the
sub-domain where the private area of the university is hosted.
We also realised the need to include Google (G) in the integrity
label of U , otherwise Michrome would prevent the browser
from accessing U from the Google search page. Perhaps
surprisingly, though Google is entirely deployed over HTTPS,
extending the integrity label of U with just https(G) does
not suffice to fully preserve functionality. The reason is that,
just like most users, we often omit the protocol and just type
www.google.com in the address bar to access Google: the
browser then tries HTTP by default and then gets automatically
redirected to HTTPS by Google. Hence, the integrity label of
the tab after the redirect becomes {http(G),https(G)}, which
is not good enough to access U . This problem can be solved by
using HSTS [19] and preventing any communication attempt
to Google over HTTP.

An alternative, simpler solution to this problem is listing
the home page of U as a trusted entry point in Michrome, so
as to avoid listing all the most popular search engines in the
integrity label of U . This is a safe choice in practice, since the
homepage of U , like most homepages, is static and does not
expect any parameter or untrusted input to sanitize. All in all,
we found it pretty easy to come up with an accurate security
policy for the website and we think that most web developers
should find this process quite intuitive to carry out, especially
since this whitelist-based approach is already advocated by
existing web standards like Content Security Policy [34].

We also tested Michrome by placing an order on a well-
known digital distribution platform, call it D, and by perform-
ing the payment using PayPal. We first built an entry for D
in the URL labelling, ensuring that both the confidentiality
and the integrity components of its label only included D
and PayPal. We then set the confidentiality label of PayPal to
>s and its integrity label to PayPal itself (over HTTPS), thus
reconstructing the scenario in the Section VI-C. The payment
process worked seamlessly, confirming the result we expected
from the formal model.

C. Compatibility and Perceived Performances

Besides the experiments detailed above, we also wrote
information flow policies for a small set of national websites
and we left Michrome activated in our web browsers while
routinely browsing the Web for a few days. We never encoun-
tered any visible compatibility issue, even when interacting
with websites without an explicit label in the URL labelling,
which confirms that the > label given to them is a sensible
default. Clearly, we occasionally broke websites when trying



to come up with a correct label to assign to them, but this
operation only needs to be done once per website (and only if
additional protection is desired for that website). We envision
a collaborative effort by security experts and web developers
to write down policies for the major security-relevant websites,
as it already happens for HTTPS Everywhere [17].

We did not observe any perceivable performance degrada-
tion in any of the visited websites, which we do not find
surprising, given that the security enforcement ultimately boils
down to a few (light-weight) checks on labels.

D. Towards Full Practical Deployment

As we anticipated, Michrome is a proof-of-concept im-
plementation of our approach intended for a first evaluation
of its practicality. We implemented Michrome as a browser
extension primarily for the sake of simplicity, since the Google
Chrome extension APIs are powerful enough to allow us
to implement a significant core of our formal framework
with limited effort. We are currently investigating whether
the entire proposal put forward in this paper can be securely
implemented just by using a browser extension. This is not a
trivial task, in particular there are (at least) two particularly
interesting problems to address. First, implementing support
for arbitrary cookie labels would require one to inject wrappers
around the getters and setters of the document.cookie
property. This can be done using a browser extension, but
proving the security of the wrappers against arbitrary mali-
cious scripts may be hard: we plan to study existing literature
on language-based techniques for isolating JavaScript [6], [24]
to address this issue. Moreover, we are investigating to which
extent the security guarantees provided by Michrome may hold
in presence of other extensions running in the browser: formal
browser models representing the extension framework may be
useful for the task [5]. Understanding how effectively browser
extensions can be employed for improving browser security is
an interesting direction in general, since extensions are very
easy to deploy and install, hence hold great promise for having
a strong practical impact on web security.

VIII. RELATED WORK

Browser-enforced security policies have already been pro-
posed in the past, following two main lines of research.
The first research line proposed purely client-side defenses
like ZAN [32], SessionShield [25], CookiExt [10], [11], Cs-
Fire [29] and SessInt [10], which automatically mitigate web
applications vulnerabilities by changing the browser behaviour
to prevent certain attacks. We improve over these works by
giving web developers a tool to express their own browser-
enforced security policies, using simple tools and abstractions.
This choice makes our proposal more flexible and config-
urable than previous solutions. We argue that involving web
developers in the security process is crucial for the usability
and the large-scale deployment of a defensive solution, since
purely client-side defenses like the ones we mentioned must
implement heuristics to “guess” when their security policy
should be applied. These heuristics are bound to (at least

occasionally) fail: for instance, CookiExt sometimes breaks
the Facebook chat [11], while CsFire prevents certain uses of
the OpenId protocol [15].

The second research line on browser-side security, instead,
focused on hybrid solutions similar to our approach, where the
browser enforces a security policy specified by the server [20],
[23], [30], [33], [15]. These proposals, however, target very
specific attacks like XSS [20], [23], [30] or CSRF [15], rather
than providing full-fledged protection for web sessions. Also,
these proposals have not been formalized and proved correct.
Conversely, in this paper we formalize a rather general micro-
policy framework for web browsers and we prove it is expres-
sive enough to support a broad class of useful information flow
policies, subsuming existing low-level security mechanisms
for web sessions. We think that other useful security properties
beyond non-interference can be enforced using micro-policies
in the browser: we leave this study for future work.

The present paper was also inspired by previous work on
information flow control for web browsers. FlowFox [18]
was the first web browser enforcing a sound and precise
information flow control on JavaScript by using secure multi-
execution. There are many important differences between that
approach and the one proposed in this paper. First, FlowFox
exclusively prevents attacks posed by malicious scripts, while
our proposal covers more common web threats, including
malicious HTTP(S) redirects and network attacks. Second,
FlowFox does not address integrity threats, though an exten-
sion explicitly aimed at thwarting CSRF attacks via scripts
has been proposed [22]. Third, FlowFox requires profound
changes to the JavaScript engine and has a quite significant
impact on browsing performances, while we advocate a much
more lightweight approach based on simple checks on labels.
This is enough for the web session security properties we
target. FlowFox, however, allows the specification of arbitrary
fine-grained information flow policies on JavaScript which are
beyond the scope of this work.

Fine-grained information flow control for web browsers, and
JavaScript in particular, has also been proposed in [7], [27].
These works extend a production JavaScript engine (WebKit)
with dynamic information flow control operating at the level of
bytecode: [7] presents a first implementation, extended in [27]
to account for the intricacies of event handling and the DOM.
Both the works come with a soundness proof, establishing
termination-insensitive non-interference for the enforcement
mechanism. The relative strengths and weaknesses of our
proposal with respect to [7], [27] are essentially the same
discussed in the comparison between our work and FlowFox.
Combining browser-level micro-policies with fine-grained in-
formation flow control for JavaScript to provide precise, full-
fledged protection for web sessions is an interesting research
direction for future work.

Our proposal also shares similar design goals with coarse-
grained information flow control frameworks for JavaScript
like BFlow [35] and COWL [31]. These frameworks divide
scripts in compartments and assign security labels to the latter,
to then constrain communication across compartments based



on label checks. An important difference with respect to these
works is that the scope of the present paper is not limited to
JavaScript. Moreover, we carry out our technical development
in a formal model and prove security with respect to this
model, while neither BFlow nor COWL have been formalized.
Clearly, both BFlow and COWL support the enforcement of
general information flow policies on JavaScript code, which
is beyond the scope of the present work.

More recently, a research paper reported on the extension
of Chromium with support for information flow control based
on a lightweight, coarse-grained form of taint tracking [5].
This proposal complements previous work on information flow
control for JavaScript by focusing on the entire browser and
embracing a wider range of web threats. It might be interesting
to explore if the security mechanisms we advocate in this
paper can be implemented using the security labels discussed
in [5]. The scope of the two works, however, is different:
we focus on web session security, while [5] targets intra-
browser information flow policies. The threat model in [5]
is thus browser-centric, i.e., it identifies attackers with scripts
and browser extensions; this is not enough for web session
security, an area where network attackers must be taken into
account. On the other hand, [5] considers a more detailed
browser model than the one used in this paper and it could be
a good starting point to extend our work to deal with other
threats, e.g., malicious browser extensions. Though we model
a smaller fragment of the browser, our approach is intended
to require way less changes to existing web browsers than the
proposal in [5]: indeed, our framework deliberately targets a
good balance between strong web session security guarantees
and minimal browser changes to simplify a practical adoption.

Finally, we observe that our label-based policies for confi-
dentiality and integrity are reminiscent of the Same Origin
Mutual Approval (SOMA) proposal [26]. SOMA extends
the browser with stricter access control checks on content
inclusion: both the site operator of the including page and the
third party content provider must approve a content inclusion
before any communication is allowed by the browser. SOMA
is shown to be effective in particular against CSRF attacks
and malicious data exfiltration through XSS attacks, which
are threats considered also in our work. There are two relevant
differences, however, which make our proposal strictly more
expressive than SOMA. First and most importantly, SOMA
defines an access control mechanism and not an information
flow framework: all the security checks performed by SOMA
only depend on the including page and the embedded contents,
and there is no way to allow or deny a content inclusion
based on whether, e.g., the including page has been retrieved
by a redirect from the attacker website. Second, SOMA only
focuses on network communication and does not support
security policies for cookies.

IX. CONCLUSION

This work explores the usage of micro-policies for the
specification and enforcement of confidentiality and integrity
properties of web sessions. Micro-policies are specified in

terms of tags (here, information flow labels) and a transfer
function, which is responsible for monitoring security-relevant
operations based on these tags. We modelled the browser as a
reactive system and information flow security for web sessions
as a non-interference property. We designed a synthesis tech-
nique for the transfer function, which allows the end user to
specify the expected security policies as simple confidentiality
and integrity labels. We demonstrated how our framework
uniformly captures a broad spectrum of security policies (e.g.,
cookie protection, CSRF prevention, and gadget security),
improving over existing ad-hoc solutions in terms of soundness
and flexibility. We also managed to develop a proof-of-concept
implementation of a significant core of our proposal as a
simple and efficient Google Chrome extension, Michrome. Our
experiments show that Michrome can be configured to enforce
strong security policies without breaking the functionality of
existing websites.

As future work, we plan to complete the implementation
of Michrome to cover the entire framework presented in the
paper. We also want to extend our formal model by considering
additional browser and webpage components, striving for a
good balance between formal expressiveness and ease of de-
ployment in practice. We plan to formalize our development in
a theorem prover in order to provide machine-checked security
proofs. Furthermore, we would like to design micro-policies
tailored to other popular web applications, such as single sign-
on protocols, conducting a systematic security analysis of their
deployment in the wild.

While performing experiments we realized that Michrome
naturally acts as a learning tool that collects the integrity level
of any web resource that is accessed by a web application.
More specifically, when we do not assign security labels to a
website, any access is allowed and the integrity level of the
browser tab is populated by the security labels of the accessed
URLs. This information is useful to have an immediate idea
of the “trusted computing base” of the web application and,
in many cases, to discover potential vulnerabilities such as
importing scripts via HTTP. We plan to complement this
learning feature with information about violations of the
transfer function, so to automatically derive confidentiality and
integrity labels for a whole web application.
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