
Resource-aware Authorization Policies
for Statically Typed Cryptographic Protocols

Michele Bugliesi Stefano Calzavara
Università Ca’ Foscari Venezia

{bugliesi,calzavara}@dais.unive.it

Fabienne Eigner Matteo Maffei
Saarland University

{eigner,maffei}@cs.uni-saarland.de

Abstract—Type systems for authorization are a popular
device for the specification and verification of security
properties in cryptographic applications. Though promis-
ing, existing frameworks exhibit limited expressive power,
as the underlying specification languages fail to account for
powerful notions of authorization based on access counts,
usage bounds, and mechanisms of resource consumption,
which instead characterize most of the modern online
services and applications.

We present a new type system that features a novel
combination of affine logic, refinement types, and types
for cryptography, to support the verification of resource-
aware security policies. The type system allows us to
analyze a number of cryptographic protocol patterns and
security properties, which are out of reach for existing
verification frameworks based on static analysis.

I. INTRODUCTION

Authorization policies provide a well-established de-
vice for security analysis and specification of distributed
protocols and applications. Given an access request to
a sensitive resource in a system, an authorization policy
determines whether the request should be allowed [1],
[2]. Authorization policies are often expressed in code
by means of annotations: assumptions introduce new
hypotheses – formulas that are assumed to hold – and
assertions declare formulas that are expected to logi-
cally follow from the previously introduced hypotheses
[3]. Then, to prove that a protocol complies with a given
authorization policy, one must prove that at run-time the
assumptions are guaranteed to entail all the assertions.
To illustrate, consider the policy defined by the formula:

∀c, s, r. Req(c, s, r)⇒ Grant(c, s, r) (1)

and the annotated code for the one-step protocol below:

A , assume Req(A,B, res)
out(net, sign((A,B, res), sk(kA)))

B , in(net, y).let (A,B, x) = ver(y, vk(kA)) in
assert Grant(A,B, x)

The policy states that a server s may grant access to a
resource r to any client c that makes a corresponding

request. The protocol, in turn, is so defined as to allow
client A to authenticate her request for resource res
to server B. Before signing the message and sending it
over net, A assumes Req(A,B, res). B, in turn, asserts
Grant(A,B, x) to acknowledge the receipt of a signed
request on x from A and grant access. Proving this
protocol safe amounts to showing that, for all runs, the
assertion Grant(A,B, res) made by B is entailed by a
corresponding assumption Req(A,B, res) made by A.

Security proofs for annotated protocol code such as
the one above can be carried out very effectively by
static type systems: a number of papers have shown
that strong security guarantees may be achieved by
automated analysis at the expense of a modest effort
required for annotating the code [4], [5] and that type
systems outperform other analysis techniques in the
verification of protocol implementations [3], [6].

One weakness of existing type systems, that still
hinders their wide applicability, lies in the limited
expressive power of their underlying policy languages.
Indeed, except for a few noticeable exceptions [7],
[8], current type systems for authorization draw on
classical or intuitionistic logics, and hence fall short
of capturing the resource-conscious nature of the au-
thorization policies required in most practical scenarios
and applications. Our simple specification above already
shows the problem: if we interpret our formula (1)
above intuitionistically, we realize that one request for a
given resource is enough to justify unboundedly many
permissions to access that resource. This is clearly
problematic in various situations: to just name two, in
e-banking protocols, where the number of transactions
may not be overlooked, and in e-voting protocols, which
rely critically on the property that the vote cast by each
voter should be counted only once.

A. Resource-conscious policies

Resource-aware authorization policies are naturally
accounted for by relying on substructural logics such
as linear logic [11] or affine logic [10]. For instance,



the desired correspondence between requests and per-
missions may be accommodated in our policy above by
construing assumptions as linear formulas, and stating
the formula in terms of linear implication (() in place
of the original intuitionistic implication (⇒):

∀c, s, r. Req(c, s, r)( Grant(c, s, r)

Unlike classical and intuitionistic logic, which deal with
stable truths (if A and A⇒ B, then B, but A still holds
[11]) linear/affine logic emphasizes the role of formulas
as resources that are consumed along a proof, and of
implication as a reaction that transforms formulas. Thus,
in our example, each assertion Grant(A,B, res) by B
now requires a corresponding (distinct) justifying as-
sumption Req(A,B, res) by A, as expected. As it turns
out, this resource interpretation of formulas perfectly fits
the properties we often target in authorization policies.
Policy statements like “registered users can download
movies” provide rather poor means to govern streaming
services. Instead, one would rather want to quantify
the number of accesses to the service, and diversify it
for the different classes of users. For instance, “users
with a trial account may download at most one movie,
while unboundedly many downloads are available to
users with a premium account”. Linear and affine logics
offer direct support for expressing these policies, and
as we show in this paper, our typed calculus provides
an effective tool for their implementation in distributed
settings, and their static verification.

B. Contributions

We present a type system for the verification of
resource-aware security policies for distributed proto-
cols, expressed in a variant of the applied π-calculus
[12]. Our type system features a novel combination of
affine logic, refinement types, and types for cryptogra-
phy, which allows us to validate distributed resource-
conscious properties that were out of reach for existing
verification frameworks based on static analysis.

We identify and statically characterize several cryp-
tographic patterns that enforce the freshness of the
resources used in the authorization request, such as
nonce handshakes and bounded usage of session keys.
Interestingly, typing these patterns does not require
ad-hoc mechanisms: instead, it relies on the resource
interpretation of the refinement types associated with
nonce and key types and thus fits naturally the general
principles of logical entailment in the linear/affine logics
underlying our type system.

While we are certainly not the first to propose linear
and affine logics as formal devices for authorization
policies, our system is unique in its use of affine

formulas to refine the types of data exchanged over
an insecure network. As it turns out, this is a rather
challenging task: it requires strong protection against
replay attacks on linearly refined data, which may easily
defeat the purpose of any resource-conscious policy.

C. Advance over related work

Type systems supporting cryptography have been
applied widely in the literature: to enforce authorization
policies in distributed systems [4], guarantee run-time
invariants in functional code [3], [6], model properties
of zero-knowledge proofs [5] or secure multi-party
computations [13]. In none of these papers, the under-
lying authorization logics are amenable to expressing
resource-conscious policies, nor do they include mech-
anisms for injective agreement such as those described
in early attempts [14], [15].

In a recent, still unpublished manuscript [8], Swamy
et al. introduce F?, a core typed lambda calculus derived
from Fine [7] and RCF [3] that supports programming
with refinement types, security proofs, and erasure.
F? combines RCF’s refinements types for the static
verification of functional implementations of crypto-
graphic protocols, with Fine’s provision for resource-
aware authorization and information-flow policies in
stateful programs [16]. In particular, F? does allow the
use of digital signatures to witness the derivability of
refinement formulas. However, it constrains the payload
type of such signatures to include non-linear refine-
ments. As a result, F? does not support the exchange of
digitally signed linearly refined data, which is instead
the distinguishing, and arguably the most challenging,
feature of our system. Indeed, sending affine values over
the network must be handled with care, due to potential
replays by the attacker. This paper develops several
patterns to support the conversion of affine values into
a non-affine form suitable for transmission over the
network. Recipients of non-affine messages may be able
to convert these back to affine form upon verification of
signatures using suitably typed affine verification keys.
As such, our patterns resemble constructs proposed in
the context of various programming languages, e.g.,
the adoption and focus of [17], which similarly permit
temporary duplication/aliasing of affine values.

Linear and affine logics have been used by vari-
ous authors to express properties of distributed sys-
tems. Among other approaches, two appear closer to
ours. Cederquist et al. [18] introduce a framework for
checking compliance against discretionary access con-
trol policies that capture properties based on resource
consumption. However, their verification technique is
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dynamic and based on ex-post auditing, while our type
system is static, and based on a textual inspection of the
code that provides compile-time security guarantees.

Linear type systems have been proposed for a wide
range of applications in programming languages, from
garbage collection to encoding of side-effects, from
compiler optimization to detection of programming mis-
takes [19], [21], [22]. The core ideas for the treatment
of linear refinements have been explored in previous
works, such as the general theory of type refinements
for effectful programs presented by Mandelbaum et
al. [23] and the work on modular typestate checking
of object-oriented programs by Bierhoff et al. [24].
There are, however, significant differences from our
approach, since we consider concurrency, cryptography,
and active attackers operating on the network, which are
the source of the main technical challenges we had to
address in our work. Linear type systems have also been
considered in concurrency theory [25], [26], [27], [28]
but the focus there is on channel usage and resource
consumption rather than on security, as these works
consider neither cryptography nor attackers.

Bowers et al. [29] develop a mechanism to enforce
the consumption of credentials and use it to provide a
distributed implementation of the linear access-control
logic by Garg et al. [30]. Our goal in the present paper
is different, as we do not target the development of
new distributed protocols; rather, we aim at widening
the range of statically verifiable authorization systems.
Indeed, we show that the protocol proposed in [29] can
be validated by our type system.

By targeting the analysis of policies based on re-
source consumption, our type system is also related to
work on injective agreement [31] and, in particular, to
the type and effect systems for authenticity developed
by Gordon and Jeffrey [14], [15]. These type systems
use a kind of affine typing for nonces, where the
creation of a nonce justifies one subsequent nonce
check. Indeed, our type system constitutes a first step
towards filling a long standing gap between statically-
typed injective agreement properties [14], [15], [32],
[33], [34], [35], [36] and statically-typed non-linear
authorization policies [37], [5], [38], reconciling them
within a unique framework where injective agreement
is characterized as a mechanism of the same linear logic
used to express authorization. This enables an interplay
between the linear predicates (or formulas in general)
that are statically transferred via a nonce handshake
and the recipient’s authorization policy: for instance,
a linear predicate assumed on the sender’s side may
be used as an hypothesis of a linear implication on

the recipient’s side (we show an example of such an
interplay in Section VI-D).

In this paper, we consider the fundamental paradigms
to exchange linear information, namely, session keys
and nonce handshakes. For simplicity, we focus on the
nonce handshakes in which the response is authenti-
cated, the so-called Public-Out-Secret-Home (POSH)
handshakes, and we leave as a future work the Secret-
Out-Public-Home (SOPH) and Secret-Out-Secret-Home
(SOSH) patterns considered by the type and effect
system of [15]. This choice is motivated by the fact
that POSH handshakes are largely deployed in practice
and best fit distributed authorization systems, in which
authorization proofs are sent directly by one principal
to another. Backes et al. have recently shown that other
kinds of nonce handshakes (e.g., SOSH) can be enforced
using union and intersection types [39]. Integrating
these type systems is an interesting research direction.

In some scenarios, our approach turns out to be
even more precise than existing frameworks for analysis
of authentication based on theorem-proving. For in-
stance, the state-of-the-art theorem-prover ProVerif [6]
fails to validate the injective agreement between the
received(m) and sent(m) events in the code below:

new c. ! ( new m.event sent(m).out(c,m)
| in(c, x).event received(x) )

Here we have an unbounded number of copies of
two processes that exchange a fresh value m over a
private channel, not available to the attacker. Since each
input consumes one output, the protocol does provide
injective agreement. Yet, ProVerif fails to validate this
property as it builds on an over-approximation where
output messages can be received several times, no
matter whether the channel is private or not.

Structure of the paper. Section II introduces affine
authorization logics. Section III presents our dialect
of the applied π-calculus. Section IV and Section V
describe the type system, while Section VI shows it at
work on various examples. Section VII concludes.

II. RESOURCE LOGICS FOR AUTHORIZATION

Our process calculus and type system rely on in-
tuitionistic affine logic [10], and though they remain
largely independent of the exact choice of the logic,
we do make a number of assumptions on the set of
connectives and proof-theoretic properties we expect.
These assumptions are required to prove the soundness
of the type system and suffice to characterize the ex-
amples considered in this paper. Considering additional
connectives may be worthwhile for future work.
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Like linear logic, affine logic builds on the view of
formulas as transient resources rather than stable truths.
This view arises as the result (i) of dispensing with
the structural rule of contraction commonly found in
classical and intuitionistic logic, and (ii) of the novel,
multiplicative interpretation for linear connectives.

The consequences of this interpretation may be un-
derstood by looking at the proof-theoretic presentations
of the left-introduction rule for linear implication ((
LEFT) and the right-introduction rule for multiplicative
conjunction (⊗ RIGHT) in Definition II.1 below.

Definition II.1 (Authorization Logic) An authoriza-
tion logic (C, !,`) is characterized by (i) the set of
first-order formulas built over a set of connectives
C ⊇ {(,⊗}, (ii) an exponential modality !, and (iii)
an entailment relation Γ ` A between a multiset of
formulas Γ and a formula A, that is closed under
substitution, and includes a theory of equality and the
following rules:
( LEFT
Γ1 ` A Γ2, B ` C

Γ1, A( B,Γ2 ` C

⊗ RIGHT
Γ1 ` A Γ2 ` B

Γ1,Γ2 ` A⊗B

! LEFT
Γ, !A,A ` B

Γ, !A ` B

! RIGHT
!Γ ` A

!Γ ` !A

! WEAKENING
Γ ` B

Γ, !A ` B

IDENT

A ` A

WEAKENING
Γ ` B

Γ, A ` B

CUT
Γ1 ` A Γ2, A ` B

Γ1,Γ2 ` B

Notice how, in both cases, the formulas on the left hand-
side of the lower sequent get split in the hypotheses, so
that each formula may be used just once in a proof. In-
deed, in linear logic, each formula must be used exactly
once. Affine logic relaxes this constraint by introducing
the rule of weakening (cf. Definition II.1) which allows
certain formulas to be disregarded along a proof. Thus,
for instance, one has A,B ` B in affine logic but
not in linear logic. Besides simplifying the technical
development, the choice of affine logic over linear logic
has strong practical motivations: affine logic retains the
strong control over resources distinctive of linear logic,
but at the same time leaves the degree of flexibility
that appears necessary for the kind of specifications
we target. For example, in electronic voting protocols,
we might wish to express that a voter can only vote
once, but, of course, she is not forced to participate in
the election. Finally, the modality “!” qualifies formulas
which can be liberally duplicated: we refer to these as
exponential formulas.

Except for weakening, which is distinctive of affine
logic, our definition of authorization logic forms a

standard fragment of any proof-theoretic presentation of
intuitionistic linear logic. Interestingly, one can show
that our logic can be embedded into richer logical
fragments which enjoy efficient proof search strategies.
An example of such fragments may be readily obtained
by means of an affine extension of the linear logic
proposed by Garg et al. [30] or of the programming
language Lolli [40], [41], which admits a logically
complete, goal-directed proof strategy. Indeed, all the
authorization policies illustrated in the paper are very
naturally expressed as Lolli programs.

III. APPLIED PI-CALCULUS

This section introduces the syntax and the operational
semantics of the dialect of the applied π-calculus we
employ in the paper.

Table I Terms and Constructors (M̃ = M1, . . . ,Mn)

K,L,M,N ::= terms
a, b, c, k,m, n names
x, y, z, v, w variables
f(M̃)T constructor application

f ::= constructors
ek1, dk1, vk1, sk1, enc2, sign2, senc2, pair2

The set of terms is the free algebra built from names,
variables and constructor applications. We let u range
over both names and variables. The set of constructors
comprises the symbols ek, dk, sk, and vk, to form keys
(for encryption, decryption, signature, and verification,
respectively) from a seed k as in ek(k); sig, enc
and senc to construct digital signatures sig(M, sk(k)),
public-key encryptions enc(M, ek(k)), and symmetric
encryptions senc(M,k); and a final constructor pair
to construct pairs. Constructor applications carry an
(optional) typing annotation in the form of a subscript.
These annotations are convenient for the proofs, do
not influence the semantics by any means, and will be
omitted when uninteresting. For the sake readability,
we let (M,N) stand for pair(M,N).

Table II Destructor Evaluation g(M1,M2) ⇓ N

g ::= eq2, dec2, ver2, sdec2, check2 destructors

eq(M,M) ⇓ M
dec(enc(M, ek(K)), dk(K)) ⇓ M
ver(sign(M, sk(K)), vk(K)) ⇓ M
sdec(senc(M,K),K) ⇓ M
check(fresh(M,N), N) ⇓ M
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Destructors are partial functions to decompose terms.
eq performs equality tests, dec decrypts asymmetric
encryptions, ver verifies signatures, sdec decrypts sym-
metric encryptions, and check checks the freshness of
nonces. Applying a destructor g to terms M1,M2 either
succeeds and yields a term N , noted g(M1,M2) ⇓ N ,
or fails, noted g(M1,M2) 6⇓. The semantics of these
destructors is mostly standard, or self-explained by
looking at the definition.

Table III Processes
P,Q,R ::= processes

assume F assumption
assert F assertion
0 null
new a : T.P restriction
in(M,x : T ).P input of x from M
!in(M,x : T ).P repl. input
out(M,N).P output of N on M
P | Q parallel composition
let x : T = g(M̃) in P else Q term destruction
let (x : T, y : U) = M in P pair split
let x : T = f(M̃) in P term construction

The structure of processes is reported in Table III. The
syntax is explicitly typed, only to ease type checking,
as the typing annotations do not affect the semantics of
processes. We often omit the annotations when they are
clear from the context or unimportant. The processes
assume F and assert F are inert annotations that ex-
press security policies and help formalize the definition
of safety (cf. Section III-A). Here, and throughout,
we use A, . . . , F to range over possibly exponential
formulas, with the understanding that the exponential
modality may only occur at the top level of a formula
(i.e., not below a connective). The process forms for the
null process, restriction, (replicated) input, output, and
parallel composition are entirely standard. We introduce
an explicit form for term construction and distinguish
pair splitting from the remaining destructor forms for
typing purposes only. For pair splitting we assume an
implicit else-branch 0. We could easily extend this to
arbitrary else-branches. We say that a process P is static
if it does not contain any annotated constructor appli-
cation. The scope of names and variables is delimited
by restrictions, inputs, and lets. The notions of free
variables fv(P ) and names fn(P ) arise as expected and
we use fnfv(P ) to denote their union. A term is ground
if it does not contain any variables. A process is closed
if it does not have any free variables.

The semantics of the calculus is formalized in terms
of structural congruence and reduction. The former
allows for a syntactic rearrangement of processes, the

latter rules process synchronizations and let evaluations.
These rules are standard and omitted here.

A. Safety

Following [4], we decorate security-related protocol
points with assumptions and assertions. Intuitively, the
former introduce new hypotheses, while the latter de-
clare formulas that should logically follow from the
previously introduced hypotheses. Assumptions and as-
sertions do not have any computational significance
and are solely used to express security requirements.
Intuitively, a process is safe if and only if, in all
executions, the multiplicative conjunction of the active
assertions is entailed by the active assumptions. This
usage of assumptions and assertions to define the safety
property resembles previous definitions of authenticity
based on begin- and end-events [14], [15].

Definition III.1 (Safety) A closed process P is safe
iff P →∗ new ã : T̃ .(assert C1| . . . |assert Cn|Q) im-
plies Q ≡ new b̃ : Ũ .(assume F1| . . . |assume Fm|Q′),
where {b̃} ∩ (fn(C1) ∪ . . . ∪ fn(Cn)) = ∅, Q′ has no
top-level assertions, and F1, . . . , Fm ` C1 ⊗ . . .⊗ Cn.

As usual, we are interested in a stronger notion of safety,
namely safety in the presence of an active opponent.
Intuitively, the opponent is an arbitrary process that does
not contain assertions (as the opponent could otherwise
trivially break the safety property). Without loss of
generality, we require opponents to be static processes:
this restriction is technically convenient, and harmless,
as the opponent can bind arbitrary terms to variables
with term constructions. Similarly, we rule out the usage
of check in the opponent code, since this destructor can
be encoded by pair splitting and equality check.

Definition III.2 (Opponent) A static, closed process is
an opponent if it does not contain any assertions, check
destructors, and the only type occurring therein is Un.

Definition III.3 (Robust Safety) A closed process P
is robustly safe if and only if P | O is safe for every
opponent O.

IV. OVERVIEW OF THE TYPE SYSTEM

Existing type systems for authorization in crypto-
graphic protocols rely on a few well-established pat-
terns, based on the so-called refinement types [4].

A. Refinement type systems for authorization

Refinement types are dependent types of the form
{x : T | C} that refine the structural information T with
the property encoded by the formula C. We illustrate
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the main idea underlying refinement type systems with a
simplified version of the protocol discussed in Section I.

A , new m:Un.assume p(m) | out(c, sign(m, sk(k)))

B , in(c, x).let y = ver(x, vk(k)) in assert p(y)

A protocol run may be represented as follows:

A B

assume p(m)
sign(m,sk(k)) //

assert p(m)

Notice that in the process specification, the assertion
is made by B in terms of the variable y, not of the
message m as in the protocol run. The task of the type
system is precisely to make sure that at run-time y will
be bound to m, leading to the expected final assertion
p(m). To capture this dynamic behavior statically, the
type system relies on the type of keys (more generally,
of communication links) to enforce the invariants on
the payload exchanged needed to establish the desired
connections between the two end-points. In the protocol
in question, we may assume that sk(k) : SigKey(T ) and
vk(k) : VerKey(T ), where the payload type T is the
refinement type {x : Un | p(x)}. The type Un describes
untrusted messages, i.e., message that may come from
or be sent to the attacker. Under these typings, at
A’s end-point, the assumption p(m) together with the
binding m : Un justifies the typing m : {x : Un | p(x)},
hence the use of sk(k) to sign m. At the other end-
point, B may legally assume y : {x : Un | p(x)} as a
result of a successful signature verification, and use this
assumption to justify the assertion p(y).

B. Consumable refinements

The typing we have just illustrated works well as
long as the refinements of the data exchanged in a
protocol encode stable truths. It fails, instead, when
those refinements are meant to represent consumable
resources. To see the problem, assume p(m) grants
permissions that should not be iterated for free, and
consider multiple copies of B running in parallel with
A and an opponent. Since the opponent can duplicate
the messages in transit on the network, B will end up
verifying the same signature several times and asserting
p(m) multiple times, thus breaking our safety property.

To fix this problem, we must gain stronger control
over the exchange of payloads whose refinement is
meant to represent resources to be consumed. This is
easily achieved for exchanges that occur over protected
channels. For communications over insecure links, in-
stead, the problem is harder and the desired guarantees
may hardly be enforced directly at the source of the

exchange, because the opponent may always duplicate
any payload sent over the network. Our type system
provides two solutions, detailed below. The first solution
is based on a mechanism that constrains the usage of de-
cryption and verification keys at the target end of an ex-
change. A second solution exploits affine refinements to
devise a novel typing discipline for nonce handshakes.
The combination of the two mechanisms provides the
type system with a high degree of expressive power, as
illustrated by the typing examples of Section VI.

C. Affine typing of decryption / verification keys

We stipulate the following terminology: a refinement
type is exponential if the formula it conveys can be
asserted arbitrarily often; dually, a refinement type is
affine if its refinement can be asserted at most once.
We have a corresponding classification for the types of
keys: a key-type is exponential if keys with that type
can be used arbitrarily often; it is affine if keys of that
type can be used at most once.

Signing keys are an example of exponential key-type,
regardless of their payload type: in fact, even if we
use these keys only once, the resulting signatures can
still be duplicated by the opponent with an effect that
is equivalent to using these keys multiple times. As a
consequence, we may safely assume that types of the
form SigKey({x : Un | p(x)}) are exponential.

For the types of verification keys, instead, the situa-
tion is different, as enforcing an affine usage of verifi-
cation keys with affine payload type provides effective
control over the payload type. Given that verification
keys are public, however, we cannot constrain them to
occur only once in a process, because they can be read
and duplicated by the opponent. Instead, we can require
a verification key vk(k) to be used at most once with
the affine type VerKey({x : Un | p(x)}) and arbitrarily
often with the weaker, exponential type VerKey(Un). As
a consequence, vk(k) can be used at most once to justify
the predicate p(x) but can otherwise occur arbitrarily
often in the process.

D. Affine typing of nonce handshakes

Having affine keys as the only way to transfer affine
information over the network would clearly be overly
restrictive: first, our type system would only capture
protocols based on session keys, thus failing to address
all protocols based on long-term keys; second, we would
not know how to distribute the keys initially, since
we would need other affine keys to transfer them.
We therefore provide a further typing mechanism for
transferring affine information over the network based
on nonce handshakes. The idea is well-known, namely:
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keys can be used several times, as long as the receiver is
able to check the freshness of the payload using a nonce.
The following nonce handshake protocol is standard:

A B
noo

assume p(m)
sign((m,n),sk(k)) //

assert p(m)

The novelty is in the way we type-check the proto-
col, based on a rather natural use of affine refine-
ments, which makes it just a special case of the gen-
eral typing principles of resource-conscious authoriza-
tion. The technical development may be summarized
as follows. First, we introduce an affine type Nonce
to enforce the freshness of nonces: n may be used
at most once with type Nonce (to derive the affine
information p(m), as detailed below) and arbitrarily
often with the weaker type Un. The term (m,n)
is given type Fresh({x : Un | p(x)},Un). Unlike key
types, Fresh(·, ·) types are always exponential, irre-
spective of the type of the payload, i.e., fresh pack-
ets containing affine information are still exponential.
Hence, by our discussion on the typing of keys, this
implies that also the verification key used to extract
fresh packets is considered to be exponential, thus it
can be used multiple times and sent over the network
using standard techniques. In order to justify the typing
m : {x : Un | p(x)}, which entails the affine information
p(m), B has to verify that n is fresh, which is achieved
by pattern matching the pair (m,n) against the nonce
n at type Nonce. Since Nonce is affine, the affine
information may be derived only once.

V. TYPES AND TYPING RULES

The type system comprises several typing judgments:
well-formed environments Γ ` �, logical entailment Γ `
C, subtyping Γ ` T <: U , typing of terms Γ `M : T ,
and typing of processes Γ ` P . Typing environments,
denoted by Γ, track assumed formulas and map names
and variables to types. Formally, Γ is a list of formulas
and bindings of the form u : T .

A. Types, environments and logical entailment

The structure of types is defined in Table IV. Their in-
tuitive meaning should be clear by the brief description
provided there. The notion of well-formed environments
is standard, and simply amounts to verifying that the
free names and free variables of the formulas and types
of Γ occur in the domain of Γ. As to logical entailment,
we say that a typing environment Γ logically entails the
formula C, written Γ ` C, if the formulas that can

Table IV Types
T,U, V ::=

Un untrusted
Private private
Ch(T ) channel with T payload
{x : T | C} refinement type (x bound in C)
Pair(x : T,U) dependent pair type (x bound in U )
SigKey(T ) signing key for T payload
VerKey(T ) verification key for T payload
Signed(T ) signature with T payload
SigSeed(T ;U) key-pair for digital signatures
DecKey(T ) decryption key for T payload
EncKey(T ) encryption key for T payload
PubEnc(T ) encryption of T payload
EncSeed(T ;U) key-pair for public-key cryptography
SymKey(T ;U) symmetric key
SymEnc(T ) symmetric key enc. of msg of type T

Nonce nonce
Fresh(T,U) T payload with nonce of type U

be extracted from Γ logically entail C: these formulas
comprise the formulas in Γ and the formulas occur-
ring in the refinement types in Γ. Thus, for instance:
a : Un,Registered(a), b : {x : T | CanRead(a, x)} `
Registered(a)⊗ CanRead(a, b). The logical entailment
relation and the function to extract formulas from a
typing environment are defined in Table V.

Table V Logical Entailment Γ ` C

ENTAILED
Γ ` � fnfv(C) ⊆ dom(Γ) forms(Γ) ` C

Γ ` C

Definition:
forms(u : {x : T | C}) = forms(u : T ), C{u/x}
forms(C) = C
forms(Γ1,Γ2) = forms(Γ1), forms(Γ2)
forms(Γ) = ε, otherwise

Convention: forms returns a multiset of formulas.

B. Environment splitting

Consistently with their interpretation as resources, the
affine formulas occurring in typing environments must
be used at most once in typing derivations. A crucial
feature of our system is that affine values are split into
affine and non-affine components according to their type
and shared among the sub-terms of a process. Table VI
shows how to split bindings and formulas stored in Γ
between Γ1 and Γ2, written Γ = Γ1 ./ Γ2.

As expected, an exponential formula !F splits as
!F ./ !F and it is propagated to both environments
(SPLIT-EXP); an affine formula F splits as F ./ ε and

7



Table VI Environment Splitting Γ = Γ1 ./ Γ2

Formulas:

SPLIT-EXP
!F =!F ./!F

SPLIT-AFF
F affine

F = F ./ ε

Types:
SPLIT-EXP

T ∈ {Un,Private,Ch(U),SigKey(U),
EncKey(U), Signed(U),PubEnc(U), SymEnc(U),Fresh(U1, U2)}

T = T ./ T

SPLIT-READING-KEY
T = T ./ U T ∈ {VerKey,DecKey}

T(T ) = T(T ) ./ T(U)

SPLIT-SEED
U = U ./ V T ∈ {SigSeed,EncSeed,SymKey}

T(T,U) = T(T,U) ./ T(T, V )

SPLIT-REF
T = T ./ T ′ F = F ./ F ′

{x : T | F} = {x : T | F} ./ {x : T ′ | F ′}

SPLIT-PAIR
T = T ./ T ′ U = U ./ U ′

Pair(x : T,U) = Pair(x : T,U) ./ Pair(x : T ′, U ′)

SPLIT-NONCE
Nonce = Nonce ./ Un

Environments:
SPLIT-BIND

T = T1 ./ T2

u : T = u : T1 ./ u : T2

SPLIT-SEQ
Γ = Γ1 ./ Γ2 Γ′ = Γ′1 ./ Γ′2

Γ,Γ′ = Γ1,Γ
′
1 ./ Γ2,Γ

′
2

SPLIT-EMPTY
ε = ε ./ ε

Convention: ./ is symmetric and we let {x : T | ε} stand for T .

Notation: Γ = Γ1 ./ . . . ./ Γn is a short-hand for Γ = Γ′ ./ Γn with Γ′ = Γ1 ./ . . . ./ Γn−1.

it is thus propagated only to one environment (SPLIT-
LIN). The splitting of type bindings is defined by SPLIT-
BIND according to the splitting of types, written T =
T1 ./ T2. We say that T is exponential if T = T ./ T :
the set of exponential types comprises Un and Private,
channel types, writing-key types, signature and cipher-
text types, and the type Fresh(T,U). As we have seen,
the treatment of reading-key types depends on their
payload type. For example, the type VerKey(T ) splits as
VerKey(T ) ./ VerKey(U) if T splits as T ./ U (SPLIT-
READING-KEY). This means that, if T is exponential
(T = T ./ T ), then also VerKey(T ) is exponential;
otherwise, if T = T ./ U with T 6= U , then we
have that U is a sort of shallow copy of T lacking
all the affine information of the latter, and accordingly
the splitting VerKey(T ) = VerKey(T ) ./ VerKey(U)
allows to extract the affine information only in one
branch of the type derivation. This form of splitting
is also applied in SPLIT-REF and SPLIT-PAIR: this
simplifies proofs and has a quite limited impact on
the expressiveness of the formalism1. Key seeds and

1For example, we rule out protocols where the signing key is used
to create signatures of type Signed({x : {y : T | F1} | F2}) and the
verification key is used once to extract F1 and once to extract F2.

symmetric keys split according to the previous intuition,
with the writing type being always exponential and the
reading type handled on the basis of the payload type
(SPLIT-SEED). Finally, Nonce splits as Nonce ./ Un,
thus ensuring that nonces are used at most once with
the strong type Nonce, still allowing for several usages
with type Un (SPLIT-NONCE). This is necessary to
send nonces over the network (with type Un), while
being able to check their freshness only once (which
requires them to be of type Nonce). We explore this
point more in depth in the nonce handshaking example
of Section VI.

We note that we purposely chose affine types to hard-
code the desirable properties of nonces and keys into
the type system. In principle, it might be possible to
rely only on refinements and capabilities handled by the
logic, but the usage of the structured types underlines
the fundamental principles of our approach and saves
us from stating assumptions about such refinements.

C. Subtyping
The subtyping rules are given in Table VII. SUB-

PUB-TNT is borrowed from previous type systems for
authorization policies [4], [3], [5]. Intuitively, if T is a
subtype of Un, then messages of type T may be sent
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Table VII Subtyping Γ ` T <: U

SUB-REFL
Γ ` � fnfv(T ) ⊆ dom(Γ)

Γ ` T <: T

SUB-PUB-TNT
Γ1 ` T <: Un Γ2 ` Un <: U

Γ1 ./ Γ2 ` T <: U

SUB-REFINE-LEFT
Γ ` T <: U fnfv({x : T | C}) ⊆ dom(Γ)

Γ ` {x : T | C} <: U

SUB-REFINE-RIGHT
Γ1, x : T ′ ` C Γ2 ` T <: U T = T ./ T ′

Γ1 ./ Γ2 ` T <: {x : U | C}

SUB-PAIR-COV
Γ1 ` T1 <: T2 Γ2, x : T ′1 ` U1 <: U2 T1 = T1 ./ T ′1

Γ1 ./ Γ2 ` Pair(x : T1, U1) <: Pair(x : T2, U2)

SUB-INV
Γ′ ` T <:> U Γ = Γ ./ Γ′ T ∈ {Ch,SigKey,EncKey, Signed,PubEnc, SymEnc}

Γ ` T(T ) <: T(U)

SUB-COV
Γ′ ` T <: U Γ = Γ ./ Γ′ T ∈ {VerKey,DecKey}

Γ ` T(T ) <: T(U)

SUB-FRESH-COV
Γ′ ` T1 <: T2 Γ′ ` U1 <: U2 Γ = Γ ./ Γ′

Γ ` Fresh(T1, U1) <: Fresh(T2, U2)

SUB-SEED
Γ′ ` T1 <:> T2 Γ′ ` U1 <: U2 Γ = Γ ./ Γ′ T ∈ {SigSeed,EncSeed, SymKey}

Γ ` T(T1, U1) <: T(T2, U2)

SUB-FRESH-PAIR
Γ ` � fnfv(T ) ∪ fnfv(U) ⊆ dom(Γ) T = T ./ T ′ U = U ./ U ′ x /∈ dom(Γ)

Γ ` Fresh(T,U) <: Pair(x : T ′, U ′)

Notation: Γ ` T <:> U stands for Γ ` T <: U and Γ ` U <: T .

to the attacker (i.e., they are public); similarly, if T is
supertype of Un, then messages of type T may come
from the attacker (i.e., they are tainted). SUB-PUB-
TNT describes the fact that messages that may be sent
to the attacker may also come from the attacker. The
subtyping rules for Un are mostly standard [4]. SUB-
REFINE-LEFT is borrowed from [3], [6] and allows re-
moving refinements by subtyping. SUB-REFINE-RIGHT
is more interesting: this rule allows to add refinements
by subtyping, as long as the corresponding predicates
are entailed in the environment. In standard refinement
type systems, this rule looks as follows:

Γ, x : T ` C Γ ` T <: U

Γ ` T <: {x : U | C}

A natural adaptation to an affine setting would be:
Γ1, x : T ` C Γ2 ` T <: U

Γ1 ./ Γ2 ` T <: {x : U | C}

Unfortunately, this rule is unsound. In our setting we
must split not only the typing environment as expected,
but also T , otherwise the resources in T could be used
twice and we could prove, for instance, ε ` {x :
Un | C} <: {z : {x : Un | C} | C}. The rule for
pairs is covariant and presents a similar problem: the
type T1 has to be split, as it would otherwise be used
twice in the premise (SUB-PAIR-COV). For the sake of

simplicity, in both of these rules we choose to push all
affine resources into one type, similarly to what we do
for environment splitting. As expected, channel types
are invariant (SUB-INV). Perhaps surprisingly, we have
to require the typing environment Γ′ in the premises
to be exponential (Γ = Γ ./ Γ′ implies that Γ′ is a
copy of Γ where all affine resources have been stripped
away) as the type system would otherwise be unsound.
To illustrate this point, suppose we do not require Γ′ to
be exponential and just use in the premises the whole
environment Γ = A. We would then be able to prove
A ` Ch({x : Un | A}) <: Un by SUB-INV, since
ε ` {x : Un | A} <: Un by SUB-REFINE-LEFT and
A ` Un <: {x : Un | A} by SUB-REFINE-RIGHT.
A channel of type Un can be sent to the opponent.
The opponent could use this channel arbitrarily often
to write messages of type Un and all of them would be
given type {x : Un | A} by the processes reading from
that channel. This would be unsound as we have only
one instance of A in the typing environment and, in
particular, we can prove A ` Un <: {x : Un | A}
only once. The remaining rules are standard, except
for SUB-FRESH-PAIR, which allows for downgrading
a fresh packet to a pair where all the affine information
has been pruned away. Indeed, as we detail below, in
our setting fresh packets are simply obtained by pairing
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a term with a nonce.
The lack of an explicit transitivity rule is an important

design choice for our subtyping relation, as it is neces-
sary to make this relation decidable. Transitivity can be
recovered as a derived property through the interaction
among the different subtyping rules.

D. Typing terms

The type system relies on a typed interface for con-
structors and destructors, which is defined in Table VIII
and is mostly standard. We just note that we introduce
a specific typing rule pair : (T,U) 7→ Fresh(T,U)
for pairs intended to bind a term to a nonce. Standard
pairs should instead be typed using PAIR, as explained
below. This enables us to embed the nonce-checking
mechanism into the type system.

The typing rules for terms are reported in Table IX.
ENV is standard and allows for typing names and
variables by projection from Γ. KEY is also standard
and allows for typing keys. TERM gives signatures,
encryptions, and fresh packets the type expressed in
their typing annotation. The reader might wonder why
we do not use standard rules for constructors, for
instance, the following typing rule for signatures:

Γ `M : T Γ ` K : SigKey(T )

Γ ` sign(M,K) : Signed(T )

The reason is that this rule, albeit standard in security
type systems, is unsound in an affine setting. Assume
T is affine: for applying such a rule, one needs to
give M type T , i.e., to consume the affine information
expressed in T . A crucial property of type systems is
subject reduction, i.e., typing is preserved by process
reduction. Since signatures can be duplicated (e.g.,
by the attacker), we should be able to type-check an
unbounded number of signatures. The rule above, how-
ever, would allow us to type-check only one signature,
thus breaking subject reduction. Duplicating signatures,
however, should be safe, since the receiver derives the
affine information not from the type of the signature,
but from the type of the verification key. Hence, we
allow for the duplication of signatures and we type them
according to their type at creation time, namely, the type
expressed in the typing annotation. The rule TERM is
required in our soundness proofs to type terms obtained
at run-time, but it is not part of the type-checker, since
static processes do not contain annotated terms.

SUB is the standard subsumption rule. PAIR is used
to type-check pairs, whenever we do not want to use
them to bind a term with a nonce. REFINE allows for
giving the type {x : T | C} to a term M , provided that
M has type T and the predicate C holds for M .

E. Typing processes

The typing rules for processes are listed in Table X.
Below, we only comment the non-standard rules. PROC-
REPL-IN requires that the typing environment Γ′ used
to type-check the continuation process is exponential
(recall that Γ ./ Γ′ implies Γ′ exponential). This is nec-
essary as process !in(M,x).P may spawn an unbounded
number of copies of P , but P is type-checked only once.
PROC-DES and PROC-DES-EQ are self-explanatory:
we just note that we track equalities as exponential
formulas in the typing environment to make the type-
checking more flexible (we recall that we assume the
logic to be equipped with a theory of equality). Given a
typed interface f : (T1, . . . , Tn) → T for constructor
f , PROC-CONSTR checks that the arguments of the
term construction have type T1, . . . , Tn, that the result
variable x is annotated with type T , and that the con-
tinuation process is well-typed in a typing environment
extended with the binding x : T . The typing rule PROC-
SPLIT for pair splitting is standard for dependent pairs.
PROC-ASSERT says that the assertion of C is justified
if C is entailed in the typing environment. We say that
a process is simple if all restrictions and assumptions
occurring therein are guarded by an output, an input,
or a let and, in the following, we let S range over
simple processes. PROC-PAR applies to the parallel
composition of simple processes: this rule splits the
typing environment and type-checks each of the two
processes independently. PROC-EXTR is used to type-
check processes that are not simple. This rule relies
on the relation P  [Γ ‖ S], which, given a process
P , yields a typing environment Γ capturing the top-
level restrictions and assumptions in P and the simple
process S obtained from P by erasing such elements.
For instance, new m : Un.(assume p(m) | out(c, n)) 
[m : Un, p(m) ‖ 0 | out(c, n)] . The idea is that P
is well-typed if the corresponding simple process S is
well-typed in a typing environment extended with Γ.

F. Soundness results

The first property of our type system is subject reduc-
tion. Following the approach proposed by Kobayashi et
al. in their type system for enforcing the linear usage
of channels in the π-calculus [25], subject reduction
is proved as a corollary of a more general theorem in
which we track affine resources (i.e., keys and nonces)
and weaken their types as soon as they are used2.

2This is the reason why the definition of generative type in Table X
accounts for types of the form SigSeed(U ;V ), with V being the
exponential counterpart of U . This type is given to seeds after
the corresponding verification key has been used to extract affine
information, and thus can only be used with type V .
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Table VIII Typing Constructors and Destructors f : (T1, . . . , Tn) 7→ U, g : (T1, . . . , Tn) 7→ U

ek : EncSeed(T ;U) 7→ EncKey(T )
dk : EncSeed(T ;U) 7→ DecKey(U)
sk : SigSeed(T ;U) 7→ SigKey(T )
vk : SigSeed(T ;U) 7→ VerKey(U)
enc : (T,EncKey(T )) 7→ PubEnc(T )
sign : (T,SigKey(T )) 7→ Signed(T )
senc : (T,SymKey(T ;U)) 7→ SymEnc(T )
pair : (T,U) 7→ Fresh(T,U)

eq : (T, T ) 7→ T
dec : (PubEnc(T ),DecKey(T )) 7→ T
ver : (Signed(T ),VerKey(T )) 7→ T
sdec : (SymEnc(U), SymKey(T ;U)) 7→ U
check : (Fresh(T,U),Nonce) 7→ T

Table IX Typing Terms Γ `M : T

ENV
Γ ` � u : T ∈ Γ

Γ ` u : T

KEY
f ∈ {ek, dk, sk, vk} f : T 7→ U Γ `M : T

Γ ` f(M) : U

TERM
Γ ` � (f, T ) ∈ {(sign, Signed(U)), (enc,PubEnc(U)), (senc, SymEnc(U)), (pair,Fresh(U1, U2))}

fn(M1) ∪ fn(M2) ∪ fn(T ) ⊆ dom(Γ)

Γ ` f(M1,M2)T : T

SUB
Γ1 `M : T Γ2 ` T <: T ′

Γ1 ./ Γ2 `M : T ′

PAIR
Γ1 `M1 : T1 Γ2 `M2 : T2{M1/x}

Γ1 ./ Γ2 ` pair(M1,M2) : Pair(x : T1, T2)

REFINE
Γ1 ` C{M/x} Γ2 `M : T

Γ1 ./ Γ2 `M : {x : T | C}

Theorem V.1 (Subject Reduction) Let P be a closed,
static process and Γ a typing environment such that
Γ ` P . If P →∗ Q, then Γ ` Q.

An additional property of our type system is that
we can provide typing annotations such that any op-
ponent O is well-typed. In particular, we write OUn

to denote the process obtained from O by chang-
ing the typing annotations for term constructions into
Signed(Un),PubEnc(Un),Fresh(Un,Un) and so on.
Notice that typing annotations do not affect the seman-
tics of processes, thus we are not limiting the opponent.

Lemma V.2 (Opponent Typability) For all opponents
O, ã : Ũn ` OUn, where fn(O) = {ã}.

By combining subject reduction and opponent typa-
bility, we can prove the main result of this section, i.e.,
well-typed processes are robustly safe.

Theorem V.3 (Robust Safety) Let P be a closed, static
process such that fn(P ) = {m1, . . . ,mk} and let m1 :
Un, . . . ,mk : Un ` P . Then P is robustly safe.

VI. EXAMPLES

In this section we show our type system at work,
illustrating how to verify the nonce handshake presented
in Section IV and several other protocols.

A. Nonce handshakes

The process for the nonce handshake from Sec-
tion IV, along with the most important typing anno-
tations, is shown below3:

A , in(c, x).new m : Un.
assume p(m) | let y = (m,x) in
let z = sign(y, sk(k) in out(c, z)

B , new n : Nonce.out(c, n).in(c, x).
let y = ver(x, vk(k)) in
let z = check(y, n) in assert p(z)

P , new k : SigSeed(T ;T ).(A | B)

T , Fresh({x : Un | p(x)},Un)

The nonce generated by B has type Nonce. This type
is affine and splits as Nonce ./ Un: as we said, in
this way B can use n once with type Nonce and
arbitrarily often with type Un. The nonce is sent on
the network with type Un. A receives the nonce and
signs the term (m,n), which binds the message m to the
nonce n. This term has type Fresh({x : Un | p(x)},Un):
this type is exponential, which makes also the type
VerKey(T ) exponential (i.e., this verification key can
be used several times). After receiving and verifying the
signature, B checks the freshness of the nonce via the
destructor application check(y, n). The first argument
has the exponential type Fresh({x : Un | p(x)},Un),

3For the sake of readability, we omit branches of the form “else 0”.
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Table X Typing Processes Γ ` P

PROC-STOP
Γ ` �
Γ ` 0

PROC-OUT
Γ1 `M : Ch(T ) Γ2 ` N : T Γ3 ` P

Γ1 ./ Γ2 ./ Γ3 ` out(M,N).P

PROC-IN
Γ1 `M : Ch(T ) Γ2, x : T ` P

Γ1 ./ Γ2 ` in(M,x : T ).P

PROC-REPL-IN
Γ `M : Ch(T ) Γ′, x : T ` P Γ = Γ ./ Γ′

Γ `!in(M,x : T ).P

PROC-DES
g : (T1, T2) 7→ T g 6= eq i ∈ [1, 2].Γi `Mi : Ti

Γ3, x : T ` P Γ3 ` Q

Γ1 ./ Γ2 ./ Γ3 ` let x : T = g(M1,M2) in P else Q

PROC-DES-EQ
i ∈ [1, 2].Γi `Mi : T

Γ3, x : T, !(M1 = M2) ` P Γ3 ` Q

Γ1 ./ Γ2 ./ Γ3 ` let x : T = eq(M1,M2) in P else Q

PROC-CONSTR
f : (T1, . . . , Tn) 7→ T i ∈ [1, n]. Γi `Mi : Ti

Γn+1, x : T ` P Γ = Γ1 ./ . . . ./ Γn+1

Γ ` let x : T = f(M1, . . . ,Mn) in P

PROC-SPLIT
Γ1 `M : Pair(x : T,U) Γ2, x : T, y : U ` P

Γ1 ./ Γ2 ` let (x : T, y : U) = M in P

PROC-ASSERT
Γ ` C

Γ ` assert C

PROC-PAR
Γ1 ` S1 Γ2 ` S2

Γ1 ./ Γ2 ` S1 | S2

PROC-EXTR
P  [Γ′ ‖ S] Γ,Γ′ ` S fnfv(P ) ⊆ dom(Γ) ¬(P simple)

Γ ` P

Extraction:

EXTR-NEW
P  [Γ ‖ S] T generative
new a : T.P  [a : T,Γ ‖ S]

EXTR-ASSUME
assume C  [C ‖ 0]

EXTR-EMPTY
S  [ε ‖ S]

EXTR-PAR
P  [ΓP ‖ SP ] Q [ΓQ ‖ SQ]

¬(P | Q simple)

P | Q [ΓP ,ΓQ ‖ SP | SQ]

T generative iff T ∈ {Un,Ch(U),Private,Nonce}∪{SigSeed(U ;V ),EncSeed(U ;V ), SymKey(U ;V ) | U = V ∨U = U ./ V }

while the second argument has the affine type Nonce.
Our type system ensures that whenever such a destructor
application succeeds, the result z has indeed the affine
type {x : Un | p(x)}. Hence, this refinement type
justifies the final assert p(z).

B. Session keys and private channels

Session keys are used in real-life protocols for both
efficiency and security reasons. However, the interesting
point in our setting is that, by their own ephemeral
nature, session keys can additionally be used to ex-
change an affine formula. In the protocol shown below,
a session key is exchanged between A and B and then
used by A to authenticate a message with B.

A B

noo

assume p(m)

enc(sign((ks,n),sk(kA)),ek(kB)) //
senc(m,ks) //

assert p(m)

The (exponential) long-term keys derived from kA and
kB are typed similarly to the signature key pair de-
scribed in Section VI-A, so we will focus on the typing
of the session key. The session key ks is created with
type SymKey(T ;T ), where T = {x : Private | p(x)}.
The type T is affine, since it contains the affine pred-
icate p(x). A accesses ks twice, once to sign it and
once to encrypt m. The type binding for ks splits
as ks : SymKey(T ;T ) ./ ks : SymKey(T ;Private),
where the former (strong) type is used in the signing
operation, while the latter (weak) type is used to encrypt
m. Hence B receives ks with the strong type. This
allows him to give type {x : Private | p(x)} to the
message w, which he obtains by decrypting the last
message senc(m, ks) using ks. This type justifies the
final assertion. Notice that this protocol constitutes a
cryptographic implementation of a private channel of
type Ch({x : Private | p(x)}). Though this implemen-
tation is not fully abstract, since messages sent over
restricted channels cannot be blocked, as opposed to
cryptographic packets sent over public channels, this
encoding does preserve safety.
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C. Ratification of credentials

Bowers et al. exemplify the concept of consumable
credentials [29] on an e-payment protocol. We consider
a slightly simplified version of this protocol and show
how to type-check it.

The idea behind a consumable credential is simple:
if Alice wants to buy a good from Bob’s store, she may
prefer to avoid paying cash and just provide a proof
that Bob will indeed be paid. If Bob does not need to
receive the money immediately, as it happens for credit
card payments, this credential suffices as a credit check.
It is essential for such a proof to be consumable: on
Alice’s side, this ensures that Bob cannot receive the
payment more than once; on Bob’s side, this guarantees
that the transaction is fresh and Alice is actually allowed
to withdraw the money. The protocol involves Alice (A),
Bob (B), and a Clearing House (C) acting as a trusted
third party:

A B C

(B,n)oo

x= sign((A,B,fee,n),sk(kA)) //

assume Pay(A,B, fee)

y= sign(((A,B,fee,x),n),sk(kC))oo
y //

assert Pay(A,B, fee)

B creates a nonce n and sends it to A, who signs it along
with a withdrawal request fee to pay B. C verifies that
A can indeed withdraw the amount of money fee and
generates a consumable credential for A, which consists
of a signature on the message received from A, the
nonce, and the other parameters. Now A can provide
the payment proof to B, who checks the freshness of
the nonce and can then exercise his payment rights
whenever he prefers. The type-checking of this protocol
follows the same lines as the protocol discussed in
Section VI-A. The only interesting type is that of
C’s verification key that is used by B to verify the
received signature y, i.e, VerKey(Fresh(〈xid : Un, yid :
Un, {zfee : Un | Pay(xid , yid , zfee)},Un〉,Un))4. This
type says that C’s key is used to sign messages whose
components are, respectively, the identifiers xid and
yid , the withdrawal request zfee , for which the linear
predicate Pay(xid , yid , zfee) is derivable, and the nonce
at type Un. The types of the messages and the key
are exponential, i.e., the verification key can be used

4For the sake of readability, we use dependent tuple types, which
can be encoded straightforwardly through dependent pairs.

arbitrarily often: the freshness of the withdrawal request
is ensured by the nonce.

D. One-click file hosting

One-click file hosting services like Megaupload and
Rapidshare allow users to easily upload a file from their
hard drive to a server free of charge, returning a URL
used to retrieve the file later on. Here we design a simple
one-click file hosting service, GIGASHARE (GS). In the
following we show how to model GS and we show by
type-checking that its implementation is robustly safe.
This example relies on the nonce handshake mechanism
to transfer affine information over the network, which
is then used to enforce an authorization policy.

For the sake of readability, we rely on some short-
hands: we again omit empty else-branches and use
dependent tuple types of the form 〈x1:T1, . . . , xn:Tn〉.
We omit bound variables in dependent tuple types
if we never refer to them and we use the distin-
guished symbol “_” to stand for a variable in a
binder when that variable is not used in the contin-
uation. We let if (M==N) then P else Q denote
let _ = eq(M,N) in P else Q

1) Description of GIGASHARE: the architecture of
GS divides users in two categories: trial users and
premium users. Both kinds of users must register to
the site to access the service: the registration is free
for trial users, while it requires the payment of a
fee for premium users. The differences between trial
users and premium users concern both the access to
uploaded contents and the management of downloads:
trial users can download a limited number of files a
day from GS and suffer limitations on the available
bandwidth, due to the allocation of only a fixed number
of free download slots; conversely, premium users can
download an arbitrary number of files a day and launch
as many parallel downloads as they like. We assume that
each trial user can download only two files and only a
single trial user can download from the site at a time:
these parameters can be changed straightforwardly.

2) Defining the usage policy: to model the us-
age policy of GIGASHARE we rely on five different
predicates: Req(x, y), CanDL(x, y), Slot, Trial(x), and
Premium(x). The predicate Req(x, y) states that a user
x has requested the file y, the predicate CanDL(x, y)
grants x the permission to download y from the server,
while the predicate Slot is used to constrain the num-
ber of parallel downloads by trial users. Finally, the
predicates Trial(x) and Premium(x) distinguish trial
and premium users, giving them different capabilities
on the basis of formulas defining the GS usage policy.
For example, if the assumption Premium(p) is spawned
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an unbounded number of times for each premium user
p, the policy F below allows premium users to obtain
download capabilities on demand:

F ,!∀x.∀y.((Premium(x)⊗ Req(x, y))( CanDL(x, y))

Conversely, if the predicate Trial(t) is assumed n times
for each trial user t, the following policy G allows trial
users to download at most n files from the site, provided
that there are available download slots:

G ,!∀x.∀y.((Trial(x)⊗ Req(x, y)⊗ Slot)( CanDL(x, y))

3) Registering to GIGASHARE: we omit from our
model the registration phase of the service. We just
point out that we assume that at the end of the reg-
istration procedure the site stores in a database a triple
(u, acc, vk(ku)), where u is the id of the user, acc
defines the account type, and vk(ku) is a verification
key used to authenticate requests from u. The database
can be queried for an identity u via the channel udb and
returns the triple associated to u along the restricted
channel udbr , if u is a registered user that is still
allowed to download files. Thus, the database is the
component of the system that keeps track of whether
a trial user has reached the limit of his allowed down-
loads: we assume that it answers only two queries about
each specific trial user while it answers an unlimited
number of queries about premium users. Modelling this
component in the applied π-calculus is straightforward.

4) Downloading from GIGASHARE: the server waits
for requests on the public channel c and replies with
a nonce on channel d for the requesting user, who in
turn answers providing his identity u and a signed triple
(u, f, r), paired with the nonce. This signed request
specifies the desired file f and the return address r
used to get the file. After receiving the response, the
server queries the user database on udb to retrieve the
account information. Finally, the server dispatches the
request, along with the associated verification key and
the nonce, to a specific download manager component
PM or TM , depending on the account being premium
or trial. Before the dispatching, the download interface
assumes the predicate associated to the account of the
user. The code for the described process is shown below:

DL , !in(c, _).new n : Nonce.out(d, n).in(d, x).
let (xu, xr) = x in
out(udb, xu).in(udbr , y).
let (yu, ya, yv) = y in
if (xu == yu) then
if (ya == premium)
then
assume Premium(yu) | out(pm, (yu, xr, yv, n))

else
assume Trial(yu) | out(tm, (yu, xr, yv, n))

Download managers wait for requests from the down-
load interface over a restricted channel, verify their
validity using the provided verification key, assess their
freshness via the associated nonce, and then proceed
depending on the account type. If the requesting user
has a premium account, the manager asserts that she can
download the file, forwards the request to a file database
fdb, and finally provides the file to the end user:

PM , !in(pm, x).let (xu, xr, xv, xn) = x in
let z = ver(xr, xv) then
let y = check(z, xn) then
let (yu, yf , yr) = y in
if (xu == yu) then
assert CanDL(yu, yf ) |
out(fdb, yf ).in(fdbr , w).out(yr, w)

Otherwise, if the requesting user has a trial account, the
manager asks for the token on a free download slot via
an input over channel slot and only then behaves as the
corresponding component for premium users; finally, it
releases the token by outputting the dummy message
ack on slot :

TM , !in(tm, x).let (xu, xr, xv, xn) = x in
let z = ver(xr, xv) then
in(slot , _).
let y = check(z, xn) then
let (yu, yf , yr) = y in
if (xu == yu) then
assert CanDL(yu, yf ) |
out(fdb, yf ).in(fdbr , w).out(yr, w).
assume Slot | out(slot , ack)

5) Type-checking GIGASHARE: the file hosting ser-
vice can then be modeled as the process GS below:

GS , assume F | assume G |
new udb : Tun .new udbr : Tudbr .
new pm : Tp.new tm : Tt.
new fdb : Tun .new fdbr : Tun .new slot : Ts.
(assume Slot | out(slot, ack) | DL | PM | TM )

This process is well-typed in our type system under the
following assumptions:

Tr , Fresh(〈x:Un, {y:Un | Req(x, y)},Ch(Un)〉,Un)

Tudbr , Ch(〈Un,Un,VerKey(Tr )〉)
Tp , Ch(〈{x : Un | Premium(x)}, Signed(Tr ),

VerKey(Tr ),Nonce〉)
Tt , Ch({x : Un | Trial(x)},Signed(Tr ),

VerKey(Tr ),Nonce〉)
Ts , Ch({x : Un | Slot})
Tun , Ch(Un)

The nonce n is created by the DL with type Nonce,
which splits as Nonce = Nonce ./ Un. The nonce is
sent to the user with the weak type Un and, after a
request, to the respective download manager PM or
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TM with the strong type Nonce, which is used to
verify the freshness of the request. Due to this nonce
handshaking, the type VerKey(Tr) of the verification
keys used to validate download requests is exponential,
thus allowing an unbounded number of usages for these
keys. The predicate Req(x, y), which binds the identity
of the user x to the name of the requested file y, is
extracted by the download managers upon verification
of signed requests; this predicate is assumed by the
requesting users and consumed on the server’s side by
the affine implications in the aforementioned authoriza-
tion policy. The process modeling the requesting users
is straightforward. The types Tp and Tt, given to the
channels guarding the download managers for premium
and trial users respectively, allow the transfer of the
assumed predicate about the requesting user from DL
to the download managers. Finally, the type Ts of the
channel slot is used to handle the token on the predicate
Slot: reading from the channel takes the token, while
writing on it releases the token.

VII. CONCLUSIONS

Resource-aware authorization policies are a crucial
ingredient for the analysis of real-life applications,
where the freshness of the communication and the effec-
tive number of transactions cannot be overlooked (e.g.,
e-banking, e-voting, etc.). In this paper we presented
the first type system to statically enforce distributed
resource-aware authorization policies in cryptographic
protocols. The distinctive feature of our type system is
that the derivability of affine information is witnessed
by the (affine) type of the cryptographic material. We
showed how our approach can be used to verify a num-
ber of interesting applications, including authentication
protocols, nonce handshakes, session-key establishment
protocols, an e-payment protocol, and a model of a file
hosting service.

As a future work, it would be interesting to integrate
the typing discipline illustrated in this paper in a much
richer typed language such as F? [8] and to consider
more advanced cryptographic primitives, such as zero-
knowledge proofs and secure multi-party computations.
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