MODELING AND PERFORMANCE EVALUATION

Salvatore Orlando
Basics

• The parallel runtime of a program depends on
 – input size, processor number, communication/synchronization parameters of the machine
 – An algorithm must therefore be analyzed in the context of the underlying platform.

• A number of performance measures are intuitive.
 – Wall clock time / Completion time
 • the time from the start of the first processor to the stopping time of the last processor in a parallel ensemble. But how does this scale when the number of processors is changed or the program is ported to another machine?
 – How much faster is the parallel version?
 • What’s the baseline serial version with which we compare? Can we use a suboptimal serial program to make our parallel program look faster?
 – Raw FLOP count
 • How good are FLOP counts when they don’t solve a problem?
Overheads in parallel programs

• If I use two processors, shouldn’t my program run twice as fast?

• NO! due to overheads...
 – Communications
 – Interactions
 – Idling due to:
 • Load imbalance
 • Synchronization
 • Serial components
 – Excess computation
 • Sub-optimal algorithms
Performance Metrics

• Evaluating a parallel algorithm is difficult
 – Its performance may also depend on the architecture, on the network, on the homogeneity of the cluster, etc.

• Simple measures are:
 – Parallel execution time on n processors: $T_P(n)$
 – Total overhead: $T_0(n) = n \times T_P(n) - T_S$
 • Difference between total parallel and serial CPU time, where T_S is the serial time
 – Speed-up: $Sp(n) = T_S / T_P(n)$
 • How much faster is the parallel version of the algorithm when running on n processors?
 – Efficiency: $E(n) = T_S / (T_P(n) \times n) = Sp(n) / n$
 • Are the parallel resources well exploited?
Speedup

- Speedup on n processors: $Sp(n) = T_S / T_P(n)$
- Linear speedup: $Sp(n) = n$ Good!!
- Super-linear speedup: $Sp(n) > n$
 - due to a sub-optimal sequential algorithm
 - due to problem sizes whose data do not fit the memory available on a sequential architecture, while the parallel algorithm is able to exploit the aggregate memory of a parallel architecture
 - due to the higher aggregate cache/memory bandwidth of parallel algorithm, which can result in better cache-hit ratios, and therefore super-linearity
 - due to due parallel versions that do less work than the corresponding serial algorithm: e.g., *exploratory search*
Amdahl law and Speedup

- Maximum speedup we can obtain in parallelizing an algorithm
Amdahl law and Speedup

- Speedup
 \[Sp(n) = \frac{t_s}{f t_s + (1 - f) t_s/n} \]

- If the fraction of code that we cannot parallelize is \(f = 1/k \), the Amdahl law states that the maximum speedup we can obtain when \(n \to \infty \) is:

 \[Sp(n) = 1/f = k \]
Performance Metrics

- **Cost:** \(C(n) = n \times T_P(n) = n \times T_S / Sp(n) \)

- **Cost Optimality:** A parallel algorithm is cost-optimal if its cost has the same asymptotic growth as \(T_S \), i.e., the fastest serial algorithm (as a function of the input size)

- Since efficiency \(E(n) = T_S / (T_P(n) \times n) \), for cost optimal systems we have that efficiency is equal to \(O(1) \).
Scalability

\[E(n) = \frac{Sp(n)}{n} = \frac{T_S}{(T_P(n) \times n)} = 1 / \left(\frac{(n \times T_P(n)}{T_S} \right) = \frac{1}{(T_0(n) / T_S + 1)} \]

where the total overhead is: \[T_0(n) = n \times T_P(n) - T_S \]

• Since \(T_0(n) \) increases with \(n \) because of its sequential fraction (Amdahl), the efficiency of any parallel program has a reduced efficiency with more processors

• In real cases, \(T_0 \) increases also for the increased aggregate cost of communication/synchronization, as well as for load imbalance and idling time
Scalability

\[E(n) = \frac{1}{T_0(n)/T_s + 1} \]

- For many problems/algorithms, when we increase the problem size, we observe that \(T_s \) grows faster than \(T_0 \)
 - The parallel part dominates the sequential one
 - The serial fraction does not increase as the problem size
 - Therefore the efficiency increases

- For such problems/algorithms it would be possible to keep the efficiency constant when increasing both the number of processors and the problem size.
- Such algorithms are said to be **Scalable**.
- **Scalability** of a parallel system is its ability to increase the speed-up in proportion to the number of processors
Iso-efficiency

- **Question**: what is the most scalable algorithm?
- **Answer**: Algorithms requiring the problem size to grow at lower rate are more scalable.

- How can we measure such *speed*?

- Let \(W \) be the work, i.e. the number of basic computations the best sequential algorithm should executed to solve a given problem.

- We call \(W \) the *problem size*.
 - Different from the input size.
 - Is a function of the input size.
 - Is actually equal to \(T_S \).
Iso-efficiency

- From this definition of overhead:
 - \(T_0(W,p) = p T_P - T_S = p T_P - W \)

 we can derive:
 \[
 T_P = \frac{(W + T_0(W,p))}{p}
 \]

- Speedup is \(S = \frac{W}{T_P} = \frac{W p}{(W + T_0(W,p))} \)

- Efficiency is \(E = \frac{S}{p} = \frac{W}{(W + T_0(W,p))} \)
 \[
 = \frac{1}{1 + \frac{T_0(W,p)}{W}}
 \]

- If the problem size is kept constant and \(p \) is increased:
 - the efficiency \(E \) decreases because the total overhead \(T_0(W,p) \) increases with \(p \)
Iso-efficiency

- If \(W \) is increased keeping \(p \) fixed, then for scalable parallel systems, the efficiency increases.
 - This is because \(T_0(W,p) \) grows slower than \(W \) for a fixed \(p \). For these parallel systems, efficiency can be maintained at a desired value (between 0 and 1) for increasing \(p \), provided \(W \) is also increased.

- We can derive:
 \[\frac{T_0(W,p)}{W} = \frac{1-E}{E} \]

- The equation tells how much we must increment the problem size \(W \) wrt the overhead \(T_0(W,p) \) – see the ratio on the left - when augmenting the number of processors to keep efficiency constant.