
Digital Object Identifier (DOI) 10.1007/s00530-004-0138-3
Multimedia Systems 10: 72–82 (2004) Multimedia Systems

© Springer-Verlag 2004

Retrieval in multimedia presentations

Augusto Celentano1, Ombretta Gaggi1, Maria Luisa Sapino2

1 Dipartimento di Informatica, Università Ca’ Foscari di Venezia, Via Torino 155, 30172 Mestre (VE), Italy
e-mail: {auce,ogaggi}@dsi.unive.it

2 Dipartimento di Informatica, Università di Torino, Corso Svizzera 185, 10149 Torino, Italy
e-mail: mlsapino@di.unito.it

Abstract. In this paper we discuss issues concerning the con-
sistent retrieval of parts of multimedia presentations from mul-
timedia repositories. We introduce a class of multimedia pre-
sentations made of independent and synchronized media and
discuss retrieval requirements of presentation fragments. Then
we discuss a retrieval model capable of reconstructing the frag-
ments of a presentation from the atomic components returned
by the execution of queries to multimedia presentation repos-
itories. The retrieval model is based on an automaton that for-
mally describes the presentation states entered by the events
that trigger media playback. Retrieving a consistent fragment
corresponds to building a new presentation with all the media
related to the retrieved ones, with their original structural and
synchronization relationships.

Keywords: Information retrieval – Multimedia presentations
– Media synchronization – Event-based modeling – Finite-
state machine

1 Introduction

A multimedia presentation can be modelled as the composi-
tion of one or more continuous media files, such as video or
audio streams, that are presented to a user together with static
documents, such as images or text pages, that are displayed in
synchrony with them. From the user point of view the different
documents constitute a whole presentation ruled by the syn-
chronization relationships among the component media items.

News-oriented applications, such as news-on-demand and
Web advertising, and virtual museums are good representa-
tives of such presentations. News is presented through audio
or video clips, and images and texts are displayed according
to the particular subject the speaker is talking about. Artworks
in a virtual museum are illustrated by multimedia presenta-
tions made of text, images, and videos, possibly commented
by voice narrations and music.

In both cases the whole presentation is a collection of sec-
tions each of which is devoted to a single article or to a sin-
gle artwork according to a recurring schema. Sections can be
grouped into larger entities (e.g., museum rooms), giving the

whole presentation a structure that helps the user navigate its
contents.

Information retrieval in multimedia presentations can be
defined as the task of retrieving items of different media types
satisfying some query parameters from a repository of multi-
media presentations and returning the user all the presentation
fragments in which the retrieved items were originally located.
With respect to multimedia information retrieval as defined,
e.g., in [8], this task has a number of peculiarities.

The user queries a repository of presentations, expecting
(fragments of) presentations as results, but the query proces-
sor plausibly retrieves the component media items, which must
be integrated with other components in order to return to the
user coherent and understandable segments of the original pre-
sentation. More specifically, the query result extent must be
identified according to a context that takes into account the
presentation structure and dynamics.

We do not address here issues related to query processing
and retrieval of multimedia data. We simply assume that the
user formulates a query with proper parameters that identify
media items whose content is relevant, belonging to one or
more presentations.

The retrieval system executes the query and returns a
(ranked) list of references to media items, possibly of differ-
ent media types. Generally speaking, each returned reference
is a pair 〈Mid , P 〉, where Mid is the media item identifier,
i.e., a reference to a descriptor containing a file locator or a
URL, a media type, and possibly other information, and P
is a reference to the presentation in which it is located. If a
media item belongs to several presentations, several pairs are
returned with different values of P . Our goal is to reconstruct,
for each pair, a coherent and complete fragment of the presen-
tation P to be displayed as result of the query, identifying all
objects that belong to the fragment of P that contains the media
referenced by Mid . More precisely, a coherent and complete
fragment is a portion of the original presentation containing a
subset of media components, having the same behavior of the
original presentation, i.e., the same reactions to internal and
external events. Therefore we must

• Identify the missing media items to be supplied and
• Identify the fragment scope, i.e., the range of the original

presentation covered by the fragment.



A. Celentano et al.: Retrieval in multimedia presentations 73

We assume also that each presentation is described by a
schema according to a model able to reveal the relationships
among the media components, i.e., the static organization of
a presentation that relates media to one another, and the tem-
poral aspects of its behavior, which describe how the different
segments evolve.

The paper is organized as follows. After reviewing the
related works in Sect. 2, we discuss in Sect. 3 a synchroniza-
tion model for multimedia presentations and define in Sect. 4
a finite-state automaton describing the presentation dynamic
behavior. Section 5 presents the algorithm that builds the pre-
sentation fragments associated with retrieved media. Section 6
discusses variants in the identification of meaningful presen-
tation fragments, and Sect. 7 draws conclusions.

2 Related work

Multimedia information retrieval is an issue widely investi-
gated in the literature, but only few works focus on the issues
of querying and browsing excerpts of multimedia presenta-
tions.

In [1]Adali et al. present an algebra for creating and query-
ing interactive multimedia presentation databases. The authors
model a multimedia presentation as a tree whose branches rep-
resent different playouts due to user interactions and whose
nodes contain the set of active objects and the spatiotemporal
constraints between them. The algebra defines operators to se-
lect and present paths of the presentation the user is interested
in; this allows users to create new presentations, merging parts
of existing ones.

In [11] the authors propose an integrated query and naviga-
tion model that provides facilities for query writing activities
to users that have little familiarity with database contents and
schemas. Unlike the approach we propose, the authors are not
interested in modelling the temporal behavior of the retrieved
results but only in hiding problems related to the querying of
heterogeneous data in a distributed environment. They pro-
vide an interactive user interface that permits both the use of
conventional declarative queries and navigational techniques.

The same approach is used by Chiaramella in [5]. He
presents a model that fully integrates browsing and querying
of multimedia data capabilities, giving particular emphasis to
structured information, but problems related to temporal syn-
chronization in composite documents are not discussed. The
model contains two components: the hypermedia component
and the information retrieval (IR) component. The hypermedia
component allows the user to formulate queries (and browse
the results) that explicitly reference both content knowledge,
i.e., the semantic content of atomic data, and structural knowl-
edge, i.e., the types of documents and cross-reference links
between documents. The IR component contains information
about the resolution of the queries.

GVISUAL [9,10] is a graphical query language for for-
mulating queries on multimedia presentations based on con-
tent information. Multimedia presentations are modelled as
directed acyclic graphs. A query consists of a head with its
name and parameters, and of a body. The query body con-
tains an iconized representation of the objects involved and a
conditions box with the conditions required. An object’s icon
contains a name and can be nested to represent a composi-

tion relationship. Media items can be connected by edges that
represent temporal operators. The authors aim at querying not
only the information stored in individual streams but also the
flow of information that represents the theme of a multimedia
presentation.

Other works are more oriented toward building new pre-
sentations out of existing multimedia material, thus covering
only partially the issues related to the retrieval of presenta-
tions. DelaunayMM [6] is a visual tool for querying and pre-
senting multimedia data stored in distributed data repositories,
including the Web. It allows the user to define the layout of
a virtual document, by arranging graphical icons inside style
sheets, and of document content, through ad hoc queries to
multiple repositories. Also in this proposed paper, the authors
did not address any solution for the specification of temporal
synchronization among the objects.

In [2,3] SQL+D, an extension of the SQL language, is
presented that allows users to include spatial and temporal
specifications in an SQL query. The user can select data needed
and specify how it should be displayed. The clause DISPLAY-
WITH describes the screen areas, called panels, in which the
retrieved items are placed, and the clauses AUTOSKIP and
SHOW define, respectively, the duration of the media items’
playback and the temporal constraints among the objects of a
presentation.

This survey would not be complete without briefly men-
tioning SMIL, Synchronized Multimedia Integration Lan-
guage, a W3C standard markup language that defines tags
for presenting multimedia objects in a coordinated way [13].
Synchronization is achieved essentially through the compo-
sition of two tags: <seq>, to render two or more objects
sequentially, and <par>, to play them in parallel. The tag
<excl> is used to model some user interaction. It provides
a list of child elements of which only one may play at any given
time. The screen is divided into regions in which multimedia
objects are placed.

3 Synchronization description
in multimedia presentations

For modelling multimedia presentations we refer to a syn-
chronization model previously defined in [4,7]. The model is
oriented toward Web-based applications and describes the hi-
erarchical structure of a presentation and the temporal behav-
ior of its components in terms of synchronization relationships
among media items.

Other models could describe as well multimedia presen-
tations, e.g., SMIL, which is a standard language with rich
synchronization and layout specification constructs, assuring
portability across several platforms and players. In a retrieval
scenario like the one we face, however, it has a number of
drawbacks. SMIL does not provide a global, modular, or hier-
archical structure of the whole presentation, the only relation-
ships among media being induced by temporal synchroniza-
tion. Thus the identification of the retrieved fragment scope
and its isolation can be harder. In effect, SMIL is more suit-
able as an execution language than as a specification language
for multimedia presentations. For example, the tags <par>
and <seq> can be interchanged with suitable values of at-
tributes to obtain the same presentation behavior. Therefore,



74 A. Celentano et al.: Retrieval in multimedia presentations

building a timeline representation, to be used to retrieve a co-
herent fragment for the user, could require anticipating the real
execution of the original presentation rather than computing
it from the SMIL specification.

According to our model, a multimedia document is a col-
lection of modules. A module is a container of different kinds
of continuous and static media objects. Static objects like texts
or images are referred to as pages. Continuous media objects
are hierarchically organized: a video or an audio stream is
divided into stories, which are made up of clips, which are
media files played continuously. A clip can be divided into
scenes, which are temporal intervals inside the time span of
an object. The scenes are the lowest-level media units with
which synchronization events are associated. As a clip plays,
the scenes are played in sequence, thus generating events that
cause other media to be displayed, or played, or terminated
(see Table 1 for a precise definition of each component).

Each medium requires some device to be rendered or
played. A media object can use a new browser’s window, a
frame inside the window, an audio channel, or a combination
of audio and video resources (as required by a video file with
integrated audio). The model calls a channel such a virtual
device, which is used by the medium for all the duration of
its playback. A channel is busy if an active object is using it;
otherwise it is free. Free channels may hold some content, for
example, the last frame of a video clip or a page that has not
yet been replaced by a new one.

Synchronization among different components of a multi-
media document is described by five synchronization primi-
tives, which define object reactions to some events. Two rela-
tions describe the sequential and the parallel composition of
two media; the others model objects’ reactions to user inter-
actions.

The relationship “a plays with b”, written a ⇔ b, models
the parallel composition of media objects a and b: it states
that if one of the two objects is activated by the user or some
other event, the two objects play together. Object a acts as a
“master” in this relation: as soon as it ends, object b terminates,
too, if it is still active. The relation “plays with” therefore has
a symmetric behavior with respect to media activation but is

Table 1. Definition of the model components

Module a collection of media items, both continuous and
noncontinuous, related to a common topic

Story a set of continuous media items that constitutes the
“master” media stream of the module content

Clip an atomic continuous media stream; a story is a
sequence of clips played continuously

Scene a time interval in a clip’s playback

Page a static document that, once displayed, stays on the
screen until the user or some external event stops it.
Pages cannot be paused

Channel a (virtual) display or playback device like a window,
a frame, an audio device, or an application program
capable of playing a media file that can be used by
one medium at a time

asymmetric with respect to media termination since only the
natural end of object a causes object b to stop.

The relationship “a activates b”, written a ⇒ b, models the
sequential composition of two objects: when object a naturally
ends, object b begins its playback. These two relationships are
similar to the tags <par> and <seq> of SMIL [13], but
some differences exist that are detailed in [7]. In particular,
we distinguish between internal events, which are generated
by some components of the presentation and external events,
which are generated by the user, separating the natural termi-
nation of an object, occurring when it reaches its ending point,
from its forced end, occurring when the user stops it. In the
relationship a ⇒ b, if the user stops object a, object b is not
activated, and in the same situation, if the relationship a ⇔ b
holds, object b is not terminated.

The relationship “a is replaced by b”, denoted by a ⇀↽
b, is mainly used with static objects whose time duration is
potentially infinite. It states that, when object b starts, it forces
a to end, so its channel is released and can be used by b.

Two other relationships model object reactions to user in-
teractions. We describe them for completeness even if they
have a less important role in the context of multimedia presen-
tation retrieval. The relation “a terminates b”, written a ⇓ b,
terminates two objects at the same time as a consequence of
the forced termination of object a by the user or some other ex-
ternal event. The relation “a has priority over b with behavior

α”, symbolically written a
α
> b, means that object b is paused

(if α = p) or stopped (if α = s) when object a is activated; a
is supposed to be the target of a hyperlink that moves the user
focus from the current document (b) to another document or
to another presentation. When object a comes to the end, ob-
ject b is resumed, if it had been paused. The reader is referred
to [4,7] for a discussion of details and motivations about this
synchronization model.

We introduce a working example in order to show the
model application to a nontrivial case. Our example concerns
a collection of multimedia presentations about classical music
masterworks following a constant structure and containing in-
formation about musicians’life, the historical period, and their
masterworks. For each masterwork, the presentation contains
a description of its musical structure in the form of a graphical
score and text comments and a criticism in the form of written
text that accompanies the music.

Such a collection was published a few years ago in Italy as
a set of CD-ROMs [12]. Figure 1 shows a screen shot from the
Beethoven Symphony No. 6 “Pastorale” CD-ROM, featuring
a guide to listening.

The overall structure of the work is shown in the lower part
of the screen. As the music plays, a bar moves showing the
current position in the score. Text commentary that changes as
the symphony plays helps the user to understand the different
themes, the composer’s style, the orchestral arrangement, and
so on. This section of the presentation is divided into several
modules with a constant structure: Fig. 2 illustrates an excerpt
of the structure of the first module, which plays the symphony’s
first movement. For the sake of readability it contains only the
most relevant relationships.

The soundtrack of the first movement (and therefore of the
first module) is divided into stories (story1, story2, . . .), clips
(for the first story, c1,1, c1,2, . . .), and scenes (for the first clip,



A. Celentano et al.: Retrieval in multimedia presentations 75

Fig. 1. Guide to listening to the Pastorale symphony

Fig. 2. Synchronization schema for the presentation of the guide to
listening to music

sc1,1,1, sc1,1,2, . . .). Such a hierarchical structure corresponds
to a musical structure of sections, themes, and parts of the
symphony movement that are commented by different text
pages displayed at proper times during play.

We denote modules with uppercase letters M1, M2, . . . and
other components with lowercase letters and words. The over-
all synchronization schema of the symphony’s first movement
is described by the following relations, where I , K, and H
denote the cardinality of the stories, clips, and scenes, respec-
tively:

M1 ⇔ story1
storyi ⇒ storyi+1 ∀i i < I
storyi ⇔ ci,1 ∀i
ci,k ⇒ ci,k+1 ∀i, k k < Ki

ci,k ⇔ sci,k,1 ∀i, k
sci,k,h ⇒ sci,k,h+1 ∀i, k, h h < Hi,k.

The progress bar is an animation also divided into clips and
scenes (for the first clip of the animation, an1,1, an1,2, . . .).
Textual information is organized into pages.

Each module corresponds to a movement of the symphony.
This information is displayed in a header (i.e., a page in the
model terminology), title1 for the first module, which is vis-

ible for the entire duration of the module. This behavior is
modelled by the relation M1 ⇔ title1.

Each movement of the symphony is divided into sections
that correspond to the stories. The relation story i ⇔ tempoi

displays the current tempo of the music. Two other information
items help the user to understand the current location in the
score: a short title is changed each time a new theme (i.e.,
a clip) begins and the bar progresses in synchrony with the
music. The relations ci,k ⇔ infoi,k and sci,k,h ⇔ ani,k,h

display each title for the duration of the corresponding clip and
start the animations together with the scenes of the soundtrack.
The relations ani,k,h ⇔ text i,k,h complete the presentation
modelling by displaying some text comments to help the user
interpret the music execution.

Let us suppose that a collection of presentations about
different symphonies and musicians are stored in a multimedia
repository. Each presentation can be modelled with a structure
similar to the one discussed above. In this scenario, if we
want to retrieve all the music passages where strings play in
a crescendo style, we can ask for such a text description in
the guide to listening. The retrieval system will return a set
of media identifiers, but the user should receive composite
parts of the original presentation in order to understand the
query result. Browsing has similar problems: once the user
has identified relevant information, she may need to broaden
the scope and access more complex information in order to
understand it.

This synchronization model allows the system to fill the
gap between the retrieval of separate media items and the pre-
sentation of the composite document. In some cases a presen-
tation is a single file or a set of parallel tracks; therefore, a
reference from the components to the time interval in which
they are played is all that is needed to identify the relevant
context. In other cases the presentation is made up of separate
parallel files linearly integrated by a player; therefore, some-
thing similar to a time stamp could solve the problem. In the
general case, however, the temporal dependencies among the
media items could be more complex than a simple linear time
ordering, and several different files could participate at dif-
ferent times to build the presentation behavior. For example,
if we consider a distributed environment like the World Wide
Web as the scenario of our discussion, there are at least two
issues that make a model based on linearly integrated media
unrealistic:

• The media are delivered by a server according to a com-
posite document structure that spans several files and is
known as they are delivered to the client.

• A WWW document usually has links that allow the user to
explore its structure in a nonlinear way, and the user can
also interact by backtracking or reloading the documents
as they are displayed. Therefore, a synchronization model
more complex than a simple linearly timed composition is
needed.

4 A formal approach
to multimedia presentation modelling

In the previous section we introduced the relevant compo-
nents of our model. In particular, we showed that the playout



76 A. Celentano et al.: Retrieval in multimedia presentations

of a multimedia presentation can be described in terms of the
media items involved, the channels used for media playback,
the events that cause media to start, pause, and end, and the
synchronization relationships that describe dynamic media be-
havior. Such elements provide an intentional representation of
the evolution of the presentation in time. A formal definition
is as follows:

Definition 1 (Presentation). A multimedia presentation is a
4–tuple P = 〈MI, CH, E ,SR〉 where

• MI is a set of media items {m0, m1, . . . , mn};
• CH is a set of presentation channels {c0, c1, . . . , ch};
• E is a set of events {e0, e1, . . . , ek}, ei ∈ ET × MI,

where ET = {start, end, pause, stop} is the set of event
types;

• SR is a set of synchronization relationships {sr0,
sr1, . . . , srl}, sri ∈ SP × MI × MI, and SP = {⇔
,⇒,⇓,⇀↽,

p
>,

s
>} is the set of synchronization primitives

introduced in Sect. 3.

For clarity we shall denote event instances by e(m), where
e is an event type and m a media item, and synchroniza-
tion relationship instances by the symbolic infix notation
used in Sect. 3, e.g., m1 ⇔ m2 to denote the relationship
(⇔, m1, m2).

Two mappings describe channel occupation:

• channel : MI → CH, which, given a media object, re-
turns the associated channel, and

• isUsed : CH → MI ∪ { }, which returns, for every
channel, the media item that occupies it at a given time
instant. The underscore symbol denotes the absence of a
media item and is the value associated with free channels.

At any time instant, the presentation is completely de-
scribed by the set of media that are active at that time and the
corresponding channel occupation. This information is cap-
tured by the notion of the state of the presentation. Before the
presentation starts, no media item is active; thus all channels
are free. When an event occurs, the state of the presentation
changes: some items that were not active become active, some
active items end, and other items could be forced to stop due
to some interruption.

Definition 2 (State). The state of a multimedia presentation is
a triple S = 〈AM,FM,UC〉, where AM is the set of active
media, FM is the set of frozen (i.e., paused) media, and UC
is the set of pairs 〈c, m〉, where c is a channel and m is the
media item that occupies it as defined by the mapping isUsed
above. For clarity, in the following discussion, we shall refer
to the association between a channel x and an active media y
with the functional notation isUsed(x) = y.

The set S of the possible states for a presentation is finite,
since both the set of media items and the set of channels are
finite. The set of frozen media items FM is a subset of the
set of active media AM, since a frozen media item still holds
a channel, e.g., for the last frame of a video. The channel can

be used only by other media items for which a relation
p
> with

the paused object exists.
If we observe the system in time, the only relevant time

instants are the observable time instants, i.e., the time instants

in which an event occurs, or the effects of an event are assessed
and perceivable. Indeed, these are the time instants in which
something in the state of the presentation might change, as a
consequence of the occurred event.

The state of a multimedia presentation is thus a function
of observable time instants. We assume that at any observable
time instant at most one “master event” occurs, i.e., either a
media item is activated, paused or stopped by the user, or a me-
dia item naturally ends.Anyway, at the same time instant other
items may be activated, paused or stopped, according to the
synchronization relationships characterizing the presentation.

It is important to notice that, given the set of synchroniza-
tion primitives associated with the presentation, the effects
of any observable event are deterministically implied by (i)
the set of currently active media, (ii) the set of frozen me-
dia, (iii) the current channel occupation, and (iv) the occurred
event. Thus, all the possible evolutions in time of a multimedia
presentation P can be described by a finite-state automaton,
defined as follows.

Definition 3 (Automaton). Let P = 〈MI, CH, E ,SR〉 be
any presentation. Its associated finite-state automaton is the
5–tuple AUT (P ) = 〈S, E , s0, next, Final〉, where

• S is the set of possible states for the presentation P ;
• E is the set of possible event instances in the form start(m),

end(m), pause(m) and stop(m), m ∈ MI;
• s0, the initial state, is 〈AM0,FM0, isUsed0〉, where

AM0 = ∅, FM0 = ∅, and isUsed0(c) = , for all
c ∈ CH;

• The transition function next : S × E → S is the mapping
that deterministically associates any state s to the state s′
in which s is transformed by an event e ∈ E ;

• Final, the set of states that correspond to the end of the
presentation playback. Details on the set Final will be
given in Sect. 6.

The definition of the function next requires some extra
notions, that we introduce in the following. First, we need to
be able to capture all the consequences that an event might
have on the presentation, given the current state, according to
the synchronization rules. Starting and ending events might
indeed activate a cascade of simultaneous media activations
or stops. The following notions of closure of an item, with
respect to some category of rules, capture these effects.

Definition 4 ((⇔)Closure). Let a be a media item in MI.
The (⇔)Closure of a is the set inductively defined as follows:

• a ∈ (⇔)Closure(a);
• for any item b ∈ MI, if b ∈ (⇔)Closure(a) and b ⇔

c ∈ SR, then c ∈ (⇔)Closure(a).

(⇔)Closure(a) captures the asymmetry1 and the transitivity
of the plays with relation. In particular, we shall use the set
(⇔)Closure(a) to take care of the asymmetric consequences
of the end of a, in the presence of plays with rules.

Definition 5 ((⇔)1step). Let a be a data item in MI. The
(⇔)1step of a is the set defined as follows:

• For any item b ∈ MI, if a ⇔ b ∈ SR or b ⇔ a ∈ SR,
then b ∈ (⇔)1step(a);

1 As defined in Sect. 3



A. Celentano et al.: Retrieval in multimedia presentations 77

(⇔)1step(a) captures the symmetry of the plays with relation,
as defined in Sect. 3. In particular, we will use the set (⇔
)1step(a) to take care of the symmetric consequences of the
start of a, in the presence of plays with rules.

Definition 6 ((⇓)Closure). Let a be a data item in MI. The
(⇓)Closure of a is the set inductively defined as follows:

• a ∈ (⇓)Closure(a);
• for any item b ∈ MI, if b ∈ (⇓)Closure(a) and b ⇓ c ∈

SR, then c ∈ (⇓)Closure(a);

Intuitively (⇓)Closure(a) contains all the media items that,
according to the terminates relation, are required to stop if a
terminates.

The following two definitions take care of the hierarchi-
cal structure of the media items by relating a story with its
component clips, and a clip with its component scenes.

Definition 7 (ComponentOf ). Let a and b be data items in
MI. ComponentOf (a, b) evaluates to true if and only if at
least one of the following conditions holds:

• a is a story (clip) and b is a clip (resp. scene) and a ⇔ b ∈
SR;

• a is a story (clip) and b is a clip (scene) and n clips (scenes)
x1 . . . xn exist such that a ⇔ x1, xi ⇒ xi+1 for all i =
1 . . . n − 1 and xn ⇒ b.

Definition 8 (IsLast). Let a and b be data items in MI.
IsLast(a, b) evaluates to true if and only if both the following
conditions hold:

• ComponentOf (a, b) = True;
• For any item c ∈ MI, if b ⇒ c ∈ SR, then

ComponentOf (a, c) = False.

Definition 8 lets us identify the last clip (scene) of a story
(clip). When it naturally ends, the whole story (clip) ends.

The state transformation caused by an event might be a
complex procedure. For the sake of readability, we introduce
two parameterized functions that take care of the two most
complex actions, i.e., activating a nonactive media item and
restarting a paused media item. Then we shall define the state
transition function algorithm.

The ACTIVATE function activates object x: it starts x if
it is not active or resumes x if it is paused. Then it controls
which other objects must be activated by the beginning of x,
i.e., the objects that belong to (⇔)Closure(x). Step by step,
the function activates all media items y ∈ (⇔)1step(y) if their
channel is free. Otherwise the function controls if relationships

of type ⇀↽ or
α
> exist. Then it stops the media that use the same

channel as y and starts y.
The RESTART function resumes object x from the pause.

It resumes also all other objectsy such thaty ∈ (⇔)Closure(x).

ACTIVATE (x: media object; AM, ∆+, ∆−, ∆+
F :

set of media items; oldUsed, newUsed:
channel-media mapping)

// x: media item to be activated,
// AM: set of currently active media,
// ∆+: set of media items to be added to the set of
// active media,
// ∆−: set of media items to be removed from the set
// of active media,
// ∆+

F : set of media items to be added to the set of
// frozen media,
// oldUsed: channel occupation function when
// ACTIVATE is called,
// newUsed: channel occupation function after
// ACTIVATE is executed
begin

// the set of items to be activated
Set = {x}; // after x’s start
while Set �= ∅ do

begin
pick any y from Set;
if oldUsed(channel(y)) = then
begin // the channel of y is free, start y

∆+ = ∆+ ∪ {y}; newUsed(channel(y)) = y
end

else
begin // check if some relation exists

// that releases y’s channel
z = oldUsed(channel(y));

if z ⇀↽ y ∈ SR or y
s
> z ∈ SR then

begin // replace y for z in z’s channel
∆+ = ∆+ ∪ {y}; ∆− = ∆− ∪ {z};
newUsed(channel(z)) = y;

//stop all media w | w ⇓ z ∨ z ⇓ w
for all w ∈ (⇓)Closure(z)

if w ∈ AM then
begin // stop w

∆− = ∆− ∪ {w};
newUsed(channel(w)) =

end
end

else if y
p
> z ∈ SR then

begin // z pauses, then y starts
∆+

F = ∆+
F ∪ {z}; ∆+ = ∆+ ∪ {y};

newUsed(channel(y)) = y
end

// if y’s channel is used by one
// of its components, add y to
// the set of active media

else if ComponentOf (y, z) then
∆+ = ∆+ ∪ {y}

// if y is a component of z
else if ComponentOf (z, y) then

begin
// start y

∆+ = ∆+ ∪ {y};
newUsed(channel(y)) = y

end
end;

// if y is activated then try to activate all
// media in (⇔)1step(y)
if y ∈ ∆+ then

Set = Set ∪ ((⇔)1step(y) \ ∆+)
end

end.



78 A. Celentano et al.: Retrieval in multimedia presentations

RESTART (x: media item; AM, ∆−
F : set of media items;

oldUsed, newUsed: channel-media mapping)
// x: media item being restarted (with items in its closure),
// AM: set of currently active media,
// ∆−

F : set of media items to be removed from the set of
// frozen media,
// oldUsed: occupation function, before restart of x,
// newUsed: occupation function after restart of x and of
// media displayed in parallel with it

begin
for all y ∈ (⇔)Closure(x)

// restart all paused media y whose channel is
// free or already assigned
if (y ∈ AM) and (oldUsed(channel(y)) = y or

oldUsed(channel(y)) = ) then
begin

∆−
F = ∆−

F ∪ {y}; newUsed(channel(y)) = y
end

end.

Definition 9 (State transition function). The state transition
function next : S × E → S, where S is the set of all pos-
sible states and E is the set of events, is the function that,
given a state s and an event e at the observable time in-
stant n, returns the state s′ = next(s, e) at the observable
time instant n + 1 where s = 〈AMn,FMn, isUsedn〉,
s′ = 〈AMn+1,FMn+1, isUsedn+1〉, AMn+1 = AMn ∪
∆+ \ ∆−, FMn+1 = FMn ∪ ∆+

F \ (∆−
F ∪ ∆−), and

isUsedn+1, ∆+, ∆−, ∆+
F , and ∆−

F are defined according to
the following process in which e is the occurring event and m
the media item to which the event applies:

begin
∆− = ∅; ∆+ = ∅; ∆+

F = ∅; ∆−
F = ∅;

for all c ∈ CH do
isUsedn+1(c) = isUsedn(c);

case e = start(m):
if m ∈ FMn then

RESTART(m, AMn, ∆−
F , isUsedn, isUsedn+1);

if m /∈ AMn then
ACTIVATE (m, AMn, ∆+, ∆−, ∆+

F , isUsedn,
isUsedn+1);

case e = end(m):
x = m;
while ∃y ∈ MI such that ComponentOf (y, x) do

// if x is the last component of y then
// consider the event end(y)

if IsLast(y, x) then x = y
else exit while ;

if x ∈ AMn then 2

begin // x stops and releases its channel
∆− = ∆− ∪ {x}; isUsedn+1(channel(x)) = ;

// in relation a ⇔ b when a ends b must
// be stopped

for all y ∈ (⇔)Closure(x)
if (y ∈ AMn) then
begin

// stop media y which were activated by x
∆− = ∆− ∪ {y};

isUsedn+1(channel(y)) = ;
// stop all media z | z ⇓ y ∨ y ⇓ z
for all z ∈ (⇓)Closure(y)

if z ∈ AMn then
begin

∆− = ∆− ∪ {z};
isUsedn+1(channel(z)) =

end
end;

for all y ∈ MI such that x ⇒ y ∈ SR do
if y ∈ FMn then

RESTART(y, AMn, ∆−
F , isUsedn,

isUsedn+1);
if y /∈ AMn then

ACTIVATE (y, AMn, ∆+, ∆−, ∆+
F ,

isUsedn, isUsedn+1)
end;

case e = pause(m):
if m ∈ AMn then

begin
∆+

F = ∆+
F ∪ {m};

for all x ∈ (⇔)Closure(m)
if (x ∈ AMn) then ∆+

F = ∆+
F ∪ {x}

end;

case e = stop(m):
if m ∈ AMn then
begin

∆− = ∆− ∪ {m};
isUsedn+1(channel(m)) = ;
// stop all media x | m ⇓ x ∨ x ⇓ m

for all x ∈ (⇓)Closure(m)
if x ∈ AMn then
begin

∆− = ∆− ∪ {x};
isUsedn+1(channel(x)) =

end
end

end.

Figure 3 illustrates the finite-state automaton of the exam-
ple presentation introduced in Sect. 3, where a subset of the
states is considered. Specifically, we do not consider the events
related to user interaction since we assume that the query must
return a fragment of the original presentation and thus of its
original behavior. Then the user is free to interact with the re-
turned result, possibly reaching other states of the automaton
that are not illustrated in Fig. 3.

From the initial state s0 the activation of the presentation
is given by the event e = start(M1) that starts the first mod-
ule. The function next(s0, start(M1)) returns the state s1 =
〈AM1, ∅, isUsed1〉 where AM1 = {M1, title1, story1,
tempo1, c1,1, info1,1, sc1,1,1, an1,1,1, text1,1,1} and isUsed1
associates with each media item its channel, whose details are
not relevant here. Thus the transition from s0 to s1 captures
the fact that the first module activates the music play and a set
of text pages that show the position inside the masterwork and
other information about the music.

2 Nonactive items cannot end; the same holds for stop and pause
events.



A. Celentano et al.: Retrieval in multimedia presentations 79

Fig. 3. The automaton of the Pastorale Symphony guide to listening (excerpt)

Without considering user interaction, the only possible
events are end(an1,1,1) and end(sc1,1,1) since master events
concern the lowest-level media items (i.e., scenes) and not the
structured ones (i.e., clips, stories, and modules). Moreover,
static media like pages have an infinite time duration; therefore
end events are not meaningful.

In the first case, text1,1,1 is stopped, since text1,1,1 ∈
(⇔)Closure(an1,1,1), but remains on the screen till another
page needs the channel. The automaton reaches the state s3.

In the case of the natural termination of the first scene
[e = end(sc1,1,1)], the second scene starts, together with its
associated page and animation. The automaton reaches a new
state s2 = 〈AM2, ∅, isUsed2〉 where AM2 = {M1, title1,
story1, tempo1, c1,1, info1,1, sc1,1,2, an1,1,2, text1,1,2}.

If animation an1,1,2 ends, the associated page text1,1,2
is terminated and the automaton reaches state s5. When
the second scene naturally ends, the clip reaches its end-
ing point since IsLast(c1,1, sc1,1,2) = True; thus event
e = end(sc1,1,2) is equivalent to event e = end(c1,1).
The automaton goes to state s4, with AM4 = {M1, title1,
story1, tempo1, c1,2, info1,2, sc1,2,1, an1,2,1, text1,2,1}. The
media item info1,2 shows which part of the masterwork is
currently playing.

The second clip has the same structure and relation-
ships of the first one, and thus the same natural be-
havior. At the end of scene sc1,2,2, clip c1,2 naturally
ends, together with story1 in which it is contained,
since IsLast(story1, c1,2) = True. Since tempo1 ∈
(⇔)Closure(story1), info1,2 ∈ (⇔)Closure(c1,2), and
(⇔)Closure(sc1,2,2) = {sc1,2,2, an1,2,2, text1,2,2}, all these
media are stopped and their channels are released. By the rela-
tion story1 ⇒ story2 the second story is activated. Since each
story has the same structure of story1, this behavior repeats
till the end of the presentation.

5 Retrieving consistent presentation fragments

The automaton describes formally how the presentation
evolves; therefore it contains in each node the information
about which media play together, under all possible condi-
tions about triggering of events related both to unattended play
and to user interaction. It is therefore the candidate source of
information for reconstructing consistent presentation frag-
ments after some media items have been retrieved according
to a user query. As stated in Sect. 1, the retrieval engine is as-
sumed to return a set R of pairs 〈Mid , P 〉, each pair denoting
a media item Mid and a reference to the presentation P .

The set of consistent presentation fragments containing the
retrieved media items is built according to the following pro-
cedure, which is executed for each presentation P occurring
in R. For the sake of readability, in the following discussion
we omit any explicit reference to P , implicitly assuming that
media, states, events, and synchronization relationships are
related to the same presentation.

1. For each item r ∈ R returned, let Midr be the media
item identifier and Sr the set of states in which Midr is
active. Each state si ∈ Sr identifies the set of media items
AMi that play together and the corresponding channel
assignments.
Let Sf be the set of states that identify the fragments that
must be returned to the user as the answer to his/her query.
Initially, Sf = Sr. If Midr is active in two states s1 and
s2 = next(s1, e) for some e ∈ E , we consider only state
s1, i.e., Sf = Sf \ {s2}. If Midr is active in two non-
sequential states and inactive in the middle, we take both
states for subsequent analysis.

2. For each state si ∈ Sf , identify the event that activates the
retrieved media item Midr. Since media items are acti-
vated by plays with(⇔) or activate(⇒) relations, all states
are entered by end events, except for state s1, which is
entered by event start(M1). In terms of the presentation
synchronization relationships, state si is entered under one
of two conditions:



80 A. Celentano et al.: Retrieval in multimedia presentations

(a) An event start(M) has occurred where M ∈ AMi is
a module, or

(b) A relation x ⇒ m ∈ SR, where m ∈ AMi, x ∈
AMj , and si = next(sj , end(x)).

In case 2(a), the module itself acts as the “starting” com-
ponent of the presentation fragment. In case 2(b), only one
media item in each state acts as the “starting” object, the
others being activated in parallel with it or being already
active by virtue of previous events. Let us call it m0.

3. If condition 2(a) holds, the fragment to be returned is the
module itself.

4. Otherwise, the minimum presentation fragment enclosing
m0 to be returned to the user is described by a schema
obtained from the original presentation schema with the
following transformations:

(a) If relation M ⇔ m0 /∈ SR, where M is the presen-
tation module containing m0, add it to SR and re-
move from SR any other relation M ⇔ mch, where
mch ∈ AMi and channel(m0) = channel(mch);

(b) If ComponentOf (x, m0) and relation x ⇔ m0 /∈
SR, add it to SR and remove from SR any other
relation x ⇔ mch, where mch ∈ AMi and
channel(m0) = channel(mch);

(c) For each media item m ∈ AMi, if m /∈
(⇔)Closure(m0) and the relation m ⇔ m0 /∈ SR,
add relation m0 ⇔ m to SR;

(d) Iteratively remove all media items x /∈ Reach , where
Reach is the set of reachable objects defined as fol-
lows:

i. For any media item m ∈ AMi, m ∈ Reach;
ii. For any media items x and m such that m ∈

Reach, if m ⇒ x ∈ SR and ∃k | x ∈ AMk ∧
sk ∈ Sr ∧ sj+1 = next(sj , e) ∧ i ≤ j < k, for
any event e ∈ E , then x ∈ Reach;3

iii. For any media item x, if m ⇔ x ∈ SR or x ⇔
m ∈ SR and m ∈ Reach , then x ∈ Reach .

In this way the resulting fragment contains only the media
items that in the original presentation play together with
the items retrieved by the query. The items that temporally
precede the retrieved ones are removed and the fragment
ends when the retrieved media items are no longer active.
In step 4(d)ii, the procedure retains the part of the presenta-
tion corresponding to the sequence of states si . . . sk such
that sj+1 = next(sj , e), i ≤ j < k where the retrieved
media are active in all the states sj and not active in si−1
and sk+1.
In terms of the presentation synchronization relations, if
state sk does not lead to a final state, an x ⇒ y relation
must exist for a medium x in state sk. If this relation is
removed from the presentation, and iteratively all the un-
reachable media items are also removed, the presentation
stops playing when leaving state sk.

This procedure assures also that if two media items m1
and m2 belonging to the same automaton state s are retrieved,
the same presentation fragment is returned for both. Finally,
channels are preserved since they are associated with the me-
dia statically.

3 Sr is defined in step 1 of this procedure.

Fig. 4. A returned presentation fragment

Referring to our example, let us suppose that a user’s query
returns a pair 〈c1,2, P 〉. We can easily identify in the automa-
ton of Fig. 3 the set of states in which c1,2 is active, Sr =
{s4, s6, s7, s9}. Since s6 = next(s4, end(sc1,2,1)), s7 =
next(s4, end(an1,2,1)) and s9 = next(s6, end(an1,2,2)), we
consider only Sf = {s4}. The set of objects that play with
c1,2 is then equal to AM4 = {M1, title1, story1, tempo1,
c1,2, info1,2, sc1,2,1, an1,2,1, text1,2,1}, which correspond
to the text information about the position inside the music
work, the bar animation, and the text comments that help
to understand the music execution. Since the synchroniza-
tion rule c1,1 ⇒ c1,2 exists, c1,2 is the “starting object” m0.
Then the synchronization relationships M1 ⇔ story1 and
story1 ⇔ c1,2 are replaced by the relations M1 ⇔ c1,2 and
story1 ⇔ c1,2. The resulting fragment is shown in Fig. 4
where the unreachable items have been removed together with
the synchronization relationships involving at least one of
them.

6 Discussion

Given an automaton AUT (P ) = 〈S, E , s0, next, Final〉, since
we are not interested in recognizing acceptable streams of
events, but our investigation is based on the information con-
tent of the states, we can consider Final equal to the empty
set. If we want to recognize the sequence of events that natu-
rally lead from the starting point of the presentation to its end,
that is, to the point where no media item is active, and all the
channels are free, we let Final = {〈∅, ∅, isUsed0〉}, where
isUsed0(c) = ∀c ∈ CH.

The presentation fragment built by the procedure in Sect. 5
stops its execution when the media returned as query results
are no longer active. Let us call RM the set of media items
returned by the query; then Final = {si | si = next(sj , e)
for some j and e, RM

⋂
AMj �= ∅, RM

⋂
AMi = ∅}.

We could ask if this behavior, which is consistent with the



A. Celentano et al.: Retrieval in multimedia presentations 81

way the presentation is transformed, is correct for the user’s
expectations. Indeed, such a sharp identification of the tempo-
ral scope of the fragment could lessen the significance of the
result.

The presentation once started could follow its complete
execution up to its end. In this case, the system returns to
the user an access point and leaves the user free to stop the
presentation playback at will.4 Another choice could be to
identify the fragment scope based also on the presentation
static structure: a meaningful fragment ends when the module
that contains it ends. These solutions can help the user to better
understand the context and the significance of the resulting
fragment. Therefore, while it is easy to set the beginning of
the relevant scope of the fragment, its end is more a matter of
meaning and semantics than of structure.

A second comment concerns the hierarchical structure of
the presentation in terms of modules, stories, and sections.
They build up a hierarchy of contexts that can give the user dif-
ferent levels of access to the presentation content. The retrieval
model we have presented identifies only a minimal scope of
the fragment of the presentation and a set of media temporally
related. The design structure of the presentation can integrate
this dynamic information with other information related to
the identification of different “meaning scopes” in the pre-
sentation. For example, let us suppose that the user’s query
returns as two different results the text comments text1,1,1
and text1,1,2. Our procedure considers them separately.

Since they are active in two different states, s1 and s2
(Fig. 3), the system returns two different fragments. With ref-
erence to Fig. 5, (a) is the fragment returned for text1,1,1
that corresponds to state s1 and (b) is the result that contains
text1,1,2 corresponding to state s2. Since both text1,1,1 and
text1,1,2 belong to the same section, and s1 and s2 are two
consecutive states, it is reasonable to return a single fragment
that contains both the media items, much as the fragment de-

Fig. 5. Fragments returned for text1,1,1 and text1,1,2

4 This behavior is obtained removing step 4(d)ii from the procedure
described in Sect. 5.

picted in Fig. 4. The choice between these two possibilities
depends on the level of access required by the user.

In the same way, we suggest that a narrower scope than the
one defined here could come from computing the (⇔)Closure
and (⇔)1step sets on the retrieved media items. The scope
is narrower because it does not consider media that are not
directly connected by synchronization relationships to the re-
trieved ones. For example, background music in a cultural
heritage presentation that starts at the beginning of the pre-
sentation and lasts up to the end does not bear a meaningful
content to the presentation evolution; therefore it could be left
out from the presentation of retrieved results, at least in a first
browsing phase where the relevance of the returned items is
evaluated by the user.

In the same way, elements like generic menus, banners,
advertisements, and sidebars often surround the core infor-
mation in Web documents are not only scarcely relevant but
can divert the user’s attention from the primary results of in-
formation retrieval. We could cut off these components from
the fragment to return with a deep analysis of the automaton
that describes the behavior of the presentation. Consider the
following definitions:

Definition 10. A presentation naturally ends if the set of fi-
nal states in the corresponding automaton is Final = {sf},
where sf = 〈∅, ∅, isUsedf 〉, isUsedf (c) = ∀c ∈ CH and
there exists a path that leads to the final state that is an ordered
sequence of events e0, e1, . . . , en such that e0 = start(m0),
ei = end(mj), for some mediummj , and si+1 = next(si, ei)
∀i = 0 . . . n.

The ordered sequence of events might contain multiple in-
stances of the same event end(mj), corresponding to different
observable time instants.

Definition 11. Let P be a naturally ending presentation and
start(m0) . . . end(mj) . . . end(mk) the sequence of labels
of edges in the minimal path leading from the initial state s0
to the final state sf . We call master objects of the presentation
the media objects that appear in the labels of the edges of the
given path whose timing makes the presentation evolve in its
natural behavior.

By Definition 11, if a presentation naturally ends, we can
recognize which are the master objects that make the pre-
sentation to evolve and which media items are played as a
consequence of the progress of the presentation. Then, once
the set of states in which the user is interested is retrieved, the
master objects contained in them must belong to the fragment
returned. Other media items may belong or not according to
other considerations, as for example, the level of access given
to the user, the resources available at the client side, and so on.

As an example, in the result depicted in Fig. 4, c1,2 is the
master object (as are its scenes sc2,1 and sc2,2) and must be
returned to the user. Since the object tempo1 is not directly
related to the clip or to the scene, it can be omitted. The text
comments text2,1 and text2,2 can be returned or not according
to other information, like, e.g., the user preferences.



82 A. Celentano et al.: Retrieval in multimedia presentations

7 Conclusion

Information retrieval in distributed multimedia documents re-
quires modelling of the relationships among the media objects
that build the presentations. We have illustrated a synchro-
nization model that takes a step further, with respect to other
models defined in the literature, in considering also user ac-
tions among the events that drive the dynamics of a multimedia
presentation.

In this paper we have addressed the problem of identifying
consistent fragments of a presentation given a set of media
items contained in it. Based on the synchronization schema of
the presentation, we have discussed an algorithm able to find
media items that play at the same time and have shown how
such an algorithm can be used in building answers to queries to
multimedia presentation repositories. We have also discussed
how to identify different fragments based on a deeper analysis
of the media relations in terms of scopes and environments.

Technical issues concerning retrieval of multimedia data
and index construction for complex composite documents de-
serve, of course, great attention and investigation in order to
move from a modelling approach like the one described here
to a prototype implementation.

The retrieval model is based on an automaton that for-
mally describes the presentation states entered by the events
that trigger media playback. The same automaton can be used
to study some properties of the presentation and its behav-
ior. The automaton allows one to classify media objects, e.g.,
which ones are the master objects that make the presentation
evolve. Our future work will discuss this property with deeper
consideration.

References

1. Adali S, Sapino ML, Subrahmanian VS (2000) An algebra for
creating and querying multimedia presentations. Multimedia
Sys 8(3):212–230

2. Baral C, Gonzalez G, NandigamA (1998) SQL+D: extended dis-
play capabilities for multimedia database queries. In: Proceed-
ings of ACM Multimedia 1998, Bristol, UK, September 1998,
pp 109–114

3. Baral C, Gonzalez G, Son T (1998) A multimedia display exten-
sion to SQL: language and design architecture. In: Proceedings
of the international conference on data engineering, Orlando,
FL, February 1998

4. Celentano A, Gaggi O (2000) Synchronization model for hyper-
media document navigation. In: Proceedings of the ACM sym-
posium on applied computing (SAC2000), Como, Italy, March
2000, pp 585–591

5. Chiaramella Y (1997) Browsing and querying: two comple-
mentary approaches for multimedia information retrieval. In:
Proceedings of Hypertext – Information Retrieval – Multimedia
’97, Dortmund, WA, September 1997, pp 9–26

6. Cruz IF, Lucas WT (1997) A visual approach to multimedia
querying and presentation. In: Proceedings of the 5thACM inter-
national conference on multimedia ’97, Seattle, WA, November
1997, pp 109–120

7. Gaggi O, Celentano A (2004) Modeling synchronized hyperme-
dia presentations. Multimedia Tools Appl (in press)

8. Gupta A, Jain R (1997) Visual information retrieval. Commun
ACM 40(5):71–79

9. Lee T, ShengL, Hurkan Balkir N, Al-Hamdani A, Ozsoyoglu
G, Meral Ozsoyoglu Z (2000) Query processing techniques for
multimedia presentations. Multimedia Tools Appl 11(1):63–99

10. Lee T, Sheng L, Bozkaya T, Hurkan Balkir N, Meral Ozsoyo-
glu Z, Ozsoyoglu G (1999) Querying multimedia presentations
based on content. IEEE Trans Knowl Data Eng 11(3):361–385

11. Miller RJ, Tsatalos OG, Williams JH (1995) Integrating hier-
archical navigation and querying: a user customizable solution.
In: Electronic proceedings of the ACM workshop on effective
abstractions in multimedia, San Francisco, CA, November 1995

12. Enda Multimedia: Il Mondo della Musica Classica. Enda Srl,
Milano, Italy, 1996

13. Synchronized Multimedia Working Group of W3C (2001) Syn-
chronized Multimedia Integration Language (SMIL) 2.0 Speci-
fication, August 2001


