
Client Side Web Session Integrity as a
Non-Interference Property

Wilayat Khan1, Stefano Calzavara1, Michele Bugliesi1, Willem De Groef2, and
Frank Piessens2

1 Ca’ Foscari University of Venice, Italy
2 iMinds-DistriNet, KU Leuven, Belgium.

Abstract. Sessions on the web are fragile. They have been attacked suc-
cessfully in many ways, by network-level attacks, by direct attacks on ses-
sion cookies (the main mechanism for implementing the session concept)
and by application-level attacks where the integrity of sessions is violated
by means of cross-site request forgery or malicious script inclusion. This
paper defines a variant of non-interference – the classical security notion
from information flow security – that can be used to formally define the
notion of client-side application-level web session integrity. The paper
also develops and proves correct an enforcement mechanism. Combined
with state-of-the-art countermeasures for network-level and cookie-level
attacks, this enforcement mechanism gives very strong assurance about
the client-side preservation of session integrity for authenticated sessions.

Keywords: web security, information flow control

1 Introduction

Because of the stateless nature of the HTTP protocol, web applications that need
to maintain state over multiple interactions with a client have to implement some
form of session management: the server needs to know to which ongoing session
(if any) incoming HTTP requests belong. Sessions are usually implemented by
means of session cookies. The server generates an unpredictable random identifier
at the start of a session, and sends it to the browser as a cookie. All subsequent
requests from the same client will carry this cookie, and this tells the server which
session incoming requests belong to. Session management is an important but
vulnerable part of the modern web, in particular because client authentication
is usually tied to sessions: the client is authenticated using either a password,
a single-sign-on system or some multi-factor scheme, and if authentication is
successful, the server marks the session as authenticated. Hence, attacks against
session management can be used to impersonate clients to the server.

Sessions can be attacked at many layers. First, at the network layer, network
sniffing or man-in-the-middle attacks can break the confidentiality or integrity of
web sessions. This is a well-understood problem with well-understood solutions:
by appropriate use of transport level security techniques such as SSL/TLS, these

2 W. Khan, S. Calzavara, M. Bugliesi, W. De Groef, F. Piessens

attacks can be stopped. Second, at the session implementation layer, script in-
jection or again network level attacks can be used to steal a session cookie and
hijack the session, or to impose a session cookie on a client (a so-called session
fixation attack [19, 15]). Again, this is a well-understood problem: ensuring that
sessions only run over SSL/TLS, prohibiting script access to session cookies (by
setting the HttpOnly and Secure attributes on session cookies), and enforcing
renewal of a session on authentication, are appropriate countermeasures to such
attacks. Third, sessions can be attacked at the application layer: since cookies
are attached to HTTP requests by the browser automatically – without any web
application involvement – any page in the browser can send malicious requests
to any of the servers that the browser currently has a session with, and that
request will automatically get the session cookie attached and hence will be con-
sidered as part of a (possibly authenticated) session by the server. If the page
sending the malicious request is from a different origin, such attacks are called
CSRF (cross-site request forgery) attacks [4]. But malicious requests can also be
sent by scripts included in – or injected by an attacker into – a page from the
same origin. Since both inclusions of third-party scripts [23] and script injection
vulnerabilities are common [18], these are important attack vectors.

The focus of this paper is on client-side protection against application-level
attacks against sessions. We assume that state-of-the-art countermeasures are in
place for network-level and session management-level attacks, and our objective
is to formally define the notion of client-side session integrity and to develop
provably secure countermeasures for application-level attacks. While point so-
lutions exist to protect against various forms of CSRF and script injection, the
problem of application-level session integrity is not yet well-understood. There
are two existing formalizations of the notion of web session integrity: Akhawe et
al. [2] develop an Alloy model of the web platform and define session integrity
as the property that no attacker is in the causal chain of any HTTP request be-
longing to the session. This is an excellent definition for the purpose of studying
CSRF attacks and countermeasures, but the underlying model does not have
a sufficiently detailed representation of scripts to study other application-level
session integrity issues. In a very recent paper, Bugliesi et al. [10] are the first
to provide a formal definition of session integrity that is browser-centric and
amenable for client-side enforcement. They define how an attacker can influence
execution traces of the browser, and then define session integrity as the property
that the attacker has no effective way of interfering with an authenticated session.
Based on this definition, they also design an access control/tainting mechanism
that enforces session integrity at the client side.

The main objectives of this paper are (1) to refine the definition of Bugliesi
et al. to a classical non-interference property [25], under the assumption that
appropriate defenses against both network-level and cookie-level attacks are put
in place, and (2) to design an information flow control technique that can enforce
session integrity in a more permissive and fine-grained way than access control
mechanisms can. This is crucial to foster the usability of the client-side protection
mechanism and support collaborative web scenarios, like e-payment.

Client Side Web Session Integrity as a Non-Interference Property 3

In summary, the main contributions of this paper are:

– the development of login history dependent non-interference for reactive sys-
tems, a variant of non-interference where the security labeling function is
execution history dependent.

– the application of login history dependent non-interference to web session
integrity: we show how this notion of non-interference captures the peculiar-
ities and complexities of web session integrity.

– the development of a mechanism for enforcing login history dependent non-
interference by means of secure multi-execution, with a formal proof of se-
curity.

– the design of additional improvements to this mechanism for the web context.
– a prototype implementation of the mechanism as an extension of the FlowFox

information flow secure web browser.

The remainder of this paper is structured as follows. First, in Section 2, we give
an informal overview of the problem of application-level session integrity and
the idea of login history dependent non-interference. We formalize this in Sec-
tion 3, where we define an enforcement mechanism and prove it secure. Then, in
Section 4 we show how this applies to web session integrity, and in Section 5 we
describe a few extensions to the formal model to make the enforcement mech-
anism more compatible with the web. In Section 6 we describe our prototype
implementation. Sections 7 and 8 discuss related work and conclude.

2 Informal Overview

Consider a user using his web browser to interact with a number of web sites.
With some of these web sites, the user has an ongoing authenticated session (for
instance with his web mail provider M and with a social networking site S).
Other sites have been opened in the browser by casually surfing the web, and
the user has no authenticated session with them. Both pages from more trusted
sites (like M or S) and less trusted sites (e.g., a web site O) might themselves
consist of content retrieved from a variety of origins. A page served by M might
include scripts, images and other resources from anywhere on the web.

The problem we consider in this paper is the following one: how can we make
sure that the browser protects the integrity of the authenticated sessions that
it has, for instance, with M , in the sense that no other web site than M itself
can influence authenticated HTTP requests from the browser to M . Even if we
assume (as we do in this paper) that network communication and session cookies
are adequately protected, the following example attacks are still possible:

– CSRF: Pages from O can send HTTP requests to M or S, for instance by
including an image or a script from these sites, or (in some cases) by sending
an XHR request. The browser will automatically attach cookies to these
requests, including the session cookie, and hence such requests are treated
by the server as belonging to the authenticated session.

4 W. Khan, S. Calzavara, M. Bugliesi, W. De Groef, F. Piessens

– Malicious resource inclusions: ifM includes a script from some script provider
(e.g. an advertisement network, a JavaScript library provider, or a web an-
alytics company) then that script can send arbitrary authenticated HTTP
requests to M .

– Client-side or reflected XSS: Pages from O can load pages from M and use a
mal-formed fragment identifier or URL parameter that trigger a client-side
(DOM-based) or reflected XSS vulnerability. The injected script can then
send arbitrary authenticated requests to M .

A common way to formalize integrity properties such as the one above is
based on concepts from information flow security. One defines a partially ordered
set of security labels that represent integrity levels (in the simplest case, two
labels > and ⊥ for high, respectively low, integrity). All inputs and outputs from
the program under consideration (in our case, the browser) are labeled. Inputs
are labeled > if they come from a trustworthy source, and ⊥ otherwise. Outputs
are labeled > if their integrity is important and ⊥ otherwise. A program is
information flow secure (non-interferent) if low integrity inputs do not influence
high integrity outputs (i.e. no information flows from low integrity sources to
high integrity targets).

A complication in the case of web session integrity is that both the set of
integrity labels, as well as the labeling function, evolve over time as the user
logs into more sites. The same message sent by site O to site M (for instance
if the page from O sends a request to load a resource from M) will be of low
integrity level if the browser is currently not logged into M , and it will be of a
higher integrity level if the browser is logged into M . This kind of login history
dependent non-interference is exactly what we will formalize and then instantiate
to the web context in the following sections.

3 Login History Dependent Non-Interference: Definition
and Enforcement

Following Bohannon et al. [9, 8, 7], we model a browser as a reactive system. Then
we introduce the property of login history dependent reactive non-interference
and an enforcement mechanism for it.

3.1 Reactive system

A reactive system is a constrained labeled transition system that transforms
input events into sequences of output events.

Definition 1 (Reactive System). A reactive system is a tuple (C,P, I,O,−→),
where C and P are disjoint sets of consumer and producer states respectively, I
and O are disjoint sets of input and output events respectively. The last compo-
nent, −→, is a labeled transition relation over the set of states S , C ∪ P and
the set of labels A , I ∪ O, subject to the following constraints:

Client Side Web Session Integrity as a Non-Interference Property 5

1. C ∈ C and C
α−→ Q imply α ∈ I and Q ∈ P;

2. P ∈ P, Q ∈ S and P
α−→ Q imply α ∈ O;

3. C ∈ C and i ∈ I imply ∃P ∈ P : C
i−→ P ;

4. P ∈ P implies ∃o ∈ O,∃Q ∈ S : P
o−→ Q.

We limit our attention in this paper to deterministic reactive systems.
We assume given a set of web domains D, and we stipulate that the set

of input events I contains an event login(d) for all d ∈ D. This event models
a successful login of the browser into domain d. We assume the set of output
events O contains an event · that represents a silent output, i.e. an internal
computation step of the reactive system. A stream is defined by the coinductive
interpretation of the grammar S ::= [] | s :: S′, where s ranges over individual
stream elements. Bohannon et al. define the behaviour of a reactive system in a
state Q as a relation between input and output streams. To handle login history
dependence, we instead define it as a relation between input streams and event
streams that contain both input and output events, appropriately interleaved:

Definition 2 (Reactive behaviour). A reactive system state Q generates the
event stream S from the input stream I if the judgment Q(I) S holds, where
this judgment is coinductively defined by:

C([]) []

C
i−→ P P (I) S

C(i :: I) i :: S

P
o−→ Q Q(I) S

P (I) o :: S

3.2 Login history dependent non-interference

The lattice of possible integrity levels L has elements > (highest integrity), ⊥
(lowest integrity), and d for all d ∈ D (integrity level of authenticated commu-
nication with domain d). Since higher integrity information can flow to lower
integrity levels but not vice-versa, we define the ordering relation on L as
> ≤ d ≤ ⊥, and for different d and d′, d and d′ are incomparable.

The key idea of login history dependent non-interference (LHDNI) is to make
the labeling function that assigns integrity levels to events dependent on the lo-
gin events that have occurred. Initially, all network events are low integrity (⊥),
but after a login(d) event, network communication with d will have level d. This
models the behaviour of a web browser: because of the automatic attaching of
cookies (including the session cookie), the integrity of network communication to
domain d becomes more important after a login to d. It also models our assump-
tion that the server will be more careful with HTTP responses for authenticated
sessions (integrity level of these responses is higher).

The login history is represented as a finite sub-lattice L of L, where L is
initially {>,⊥}, and L evolves with inputs processed as follows (where we write
L⊕ d for extending L with element d):

(τ -LOGIN)

i = login(d)

L
i−→ L⊕ d

(τ -NIL)

i 6= login(d)

L
i−→ L

6 W. Khan, S. Calzavara, M. Bugliesi, W. De Groef, F. Piessens

In words, whenever the user logs into a domain d, label d is added to the set
of integrity labels L.

The function lblL(e) : I]O → L that labels events depends on the login his-
tory L. The intuition is that interactions that belong to a session with a domain d
will get label d iff d ∈ L, otherwise they get label ⊥, i.e. once logged in to d, we
care about the integrity of messages to d. We stipulate that lblL(login(d)) = d
for any d.

We use the notation L|l for the list of labels l′ ∈ L such that l ≤ l′ and L|l
for the list of labels l′ ∈ L such that l′ ≤ l. For an input i, for simplicity, we
write L|lblL(i) as just L|i.

LHDNI is defined in terms of the relation LHD-similarity, which defines when
two streams look the same to an observer at level l while taking the login history
into consideration.

Definition 3 (LHD-similarity). Under login history L, two streams S and
S′ are LHD-similar at level l if the judgment L ` S ≈l S′ holds, where this
judgment is coinductively defined by:

(ID-NIL)

L ` [] ≈l []

(ID-LOGIN)

s = login(d) d ≤ l L⊕ d ` S ≈l S′

L ` s :: S ≈l s :: S′

(ID-SIM)

s 6= login(d) lblL(s) ≤ l L ` S ≈l S′

L ` s :: S ≈l s :: S′

(ID-L)

lblL(s) 6≤ l L ` S ≈l S′

L ` s :: S ≈l S′

(ID-R)

lblL(s) 6≤ l L ` S ≈l S′

L ` S ≈l s :: S′

Now, a state is LHDNI if l-similar inputs lead to l-similar outputs:

Definition 4 (LHDNI). A state Q of a reactive system is LHDNI if Q(I) S
and Q(I ′) S′ imply that ∀l ∈ L, ∅ ` I ≈l I ′ ⇒ ∅ ` S ≈l S′.

Notice that it is important that we compare S and S′, the event streams that
contain interleaved input and output events, because of the history dependence of
the definition of LHD-similarity. If we would only consider the output events, as
classic non-interference definitions do, then there would be no login event present
in the output streams; but we have to keep the login events there, because they
influence the labeling function.

3.3 Enforcement

We now build an enforcement mechanism based on secure multi-execution (SME) [16,
6, 24]. The basic idea is to construct a new reactive system that is a wrapper

Client Side Web Session Integrity as a Non-Interference Property 7

around multiple copies (sub-executions) of the original reactive system, one for
each level in the login history L. When the wrapper consumes an input event,
it is passed to the copies at or higher than the level of the input. When a sub-
execution produces an output, if its level matches the level of the execution, the
output is produced by the wrapper, otherwise it is suppressed.

A state of the wrapper is a triple (L,R,Lq), where

– L is the login history,
– R is a function mapping security labels in L to states, i.e. R(l) is the sub-

execution at level l, and
– Lq is a waiting queue of levels that still need to process the last input con-

sumed. It is initially empty and when an input is consumed it is set to all
levels that should process this input. We order these from low integrity to
high integrity such that the sub-execution at level ⊥ is always executed first.

States (L,R, []) are consumer states, and states (L,R,Lq) with Lq 6= [] are
producer states. The initial state of the wrapper is a state ({>,⊥}, R, []) with
R(>) and R(⊥) being the initial state of the original reactive system.

(LOGIN)

i = login(d) d 6∈ L L′ = L⊕ d Lq = L′|d

R(l)
i−→ Pl R′(d) = P> R′(l) = Pl for l ∈ Lq \ {d} R′(l) = R(l) for l 6∈ Lq

(L,R, [])
i−→ (L′, R′, Lq)

(LOAD)

i 6= login(d) ∨ (i = login(d) with d ∈ L)

R(l)
i−→ Pl Lq = L|i R′(l) = Pl for l ∈ Lq R′(l) = R(l) for l 6∈ Lq

(L,R, [])
i−→ (L,R′, Lq)

(OUT-P)

R(l)
o−→ P lblL(o) = l

(L,R, l :: Lq)
o−→ (L,R[l 7→ P], l :: Lq)

(OUT-C)

R(l)
o−→ C lblL(o) = l

(L,R, l :: Lq)
o−→ (L,R[l 7→ C], Lq)

(DROP-P)

R(l)
o−→ P lblL(o) 6= l

(L,R, l :: Lq)
.−→ (L,R[l 7→ P], l :: Lq)

(DROP-C)

R(l)
o−→ C lblL(o) 6= l

(L,R, l :: Lq)
.−→ (L,R[l 7→ C], Lq)

Fig. 1. Basic semantics for secure multi-execution of a reactive system

The semantics is shown in Figure 1. The main extension with respect to
standard SME for reactive systems [6] is the way in which login events are
handled: these update the login history L, and hence also the number of sub-
executions in the wrapper, and (implicitly) the labeling function lblL. Note how

8 W. Khan, S. Calzavara, M. Bugliesi, W. De Groef, F. Piessens

the newly created sub-execution at level d is initialized: P> is the resulting state
after giving i to R(>), i.e. we essentially clone the sub-execution at level >
and feed it i. This is the right thing to do, as we want the newly created sub-
execution to have seen all the events of higher integrity than d. The (LOAD)
rule handles other input events than initial login events. It essentially feeds the
input to all sub-executions with a level ≤ lblL(i), by updating the appropriate
sub-executions in R to a state where they have received i, and by setting the
waiting queue to contain all levels that have to process this input event. The
other four rules implement the SME output rules, making sure that output of
level l is only performed by the execution at level l. They also make sure that, as
sub-executions return to a producer state, the next sub-execution in the waiting
queue gets a chance to run.

These rules effectively block all cross-origin requests to authenticated do-
mains. For instance, if a page received from an unauthenticated domain (a ⊥
event) loads an image from an authenticated domain d, the corresponding HTTP
request (a d-level event) will be suppressed.

We can do substantially better: instead of dropping such requests, we can
strip the session cookie from the request as in other client-side CSRF protection
systems [10, 14]. We assume the existence of a function stripL(o) that for any o
with lblL(o) = d (for some d) strips the session cookies from o, and for all other o
returns o.

We define the projection functions πLl as follows:

πLl (o) =

{
stripL(o) if l = ⊥
o otherwise

We assume that the event labeling function lblL checks for the presence of
an authentication cookie to deem a network output as a high integrity event.
Hence lblL(stripL(o)) is always ⊥.

(OUT-P)

R(l)
o−→ P releaseL,l,Lq

(o)

(L,R, l :: Lq)
πL
l (o)
−→ (L,R[l 7→ P], l :: Lq)

(OUT-C)

R(l)
o−→ C releaseL,l,Lq

(o)

(L,R, l :: Lq)
πL
l (o)
−→ (L,R[l 7→ C], Lq)

(DROP-P)

R(l)
o−→ P ¬releaseL,l,Lq

(o)

(L,R, l :: Lq)
.−→ (L,R[l 7→ P], l :: Lq)

(DROP-C)

R(l)
o−→ C ¬releaseL,l,Lq

(o)

(L,R, l :: Lq)
.−→ (L,R[l 7→ C], Lq)

Fig. 2. Semantics for secure multi-execution of a reactive system (updated)

The basic semantics (Figure 1) released an output o from a sub-execution at
level l only if lblL(o) = l. We can now generalize this: a sub-execution at level l
can release πLl (o) if the following predicate holds:

Client Side Web Session Integrity as a Non-Interference Property 9

releaseL,l,Lq (o) = lblL(o) = l ∨ (l = ⊥ ∧ lblL(o) 6∈ Lq)

That is, an output is released from a sub-execution if its label matches the
label l of the sub-execution, or when l = ⊥ and there is no sub-execution at
the level of the output in the waiting queue. Since we process sub-executions
in the order from low integrity to high integrity, this means that this output is
being sent in response to an input that was not of level lblL(o), and hence is a
cross-domain request to an authenticated domain. We show the updated rules
in Figure 2.

3.4 Security

We now show that the enforcement mechanism defined above guarantees LHDNI.
All the proofs of lemmas and theorems are given in the full version [21].

Theorem 1 (Security). All the initial states of the wrapper are LHDNI.

We prove the theorem using Bohannon’s ID-bisimulation proof technique [9].
It suffices to prove that there exists an ID-bisimulation ≈l such that for every
state of the wrapper (L,R,Lq), we have (L,R,Lq) ≈l (L,R,Lq). The proof
of security consists of two steps: first we have to define the relation ≈l and
then we need to show that it is indeed an ID-bisimulation relation. Note the
overloading of the ≈l notation. When used between streams, it is interpreted
as LHD-similarity (Definition 3), when used between reactive system states, it
refers to the definition below.

Definition 5 (l-similarity relation ≈l). The state (L1, R1, Lq1) is l-similar
to the state (L2, R2, Lq2) (written (L1, R1, Lq1) ≈l (L2, R2, Lq2)) iff:

– L1|l = L2|l, and

– R1 ≈l R2, meaning ∀l′ ≤ l: R1(l′) = R2(l′), and
– Lq1|l = Lq2|l.

Lemma 1. The l-similarity relation is an ID-bisimulation relation.

4 Instantiation to Web Session Integrity

In this section, we show by example how LHDNI protects browsers from typical
attacks on session integrity. Recall that we assume that best practices for ses-
sion security (i.e. the use of SSL/TLS and the use of the Secure and HttpOnly
attributes on session cookies) are in place. We assume that login events are rec-
ognizable by the browser; they are triggered for instance by a bookmarklet or
password manager, and the response page of the site that one is logging into is
shown in a separate top-level frame (tab) in the browser. The browser should
enforce that logins to these known and trusted domains must happen through
these bookmarklets, to avoid attacks such as login CSRF [4].

10 W. Khan, S. Calzavara, M. Bugliesi, W. De Groef, F. Piessens

We show by example how remaining attacks such as classic CSRF and ma-
licious script inclusion are countered by our enforcement mechanism. A similar
example can be constructed for client-side or reflected XSS.

Applying the enforcement mechanism described by the semantics in Figure 2
to web browsers requires us to define the sets of input and output events for
a browser. We limit our attention to a simple set of events that can model the
attacks we care about. These events are described in Table 1 (the first 4 events
are input events, the last 4 are output events). The table also shows the value
of the lblL function.

All these events are standard browser events and easy to recognize by the
browser (for the login(d) event because of the assumptions we made above).

Table 1. User actions, input/output events and their labels

User actions I/O events lblL
d ∈ L d 6∈ L

typing URL to domain d in the address bar ui load(d) > >
network response from domain d with header h net resp(d, h) d ⊥
clicking link on the page from domain d ui link click(d) d ⊥
entering password on the page from domain d login(d) d d

network request to domain d (incl. cookie) net req(d) d ⊥
network request to domain d (no cookie) net req(d) ⊥ ⊥
loading a page at the screen ui page loaded ⊥ ⊥
dummy · ⊥ ⊥

CSRF Figure 3 gives a schematic overview of a classic CSRF attack. The user
signs into web site A (messages 1-4) and opens a page in another tab from
malicious web site E (messages 5-8), which implicitly sends a cross-origin request
to load remote content (e.g. an image) from A (message 9). As the browser will
attach all the cookies with this request to A, it will lead to a CSRF attack on A.

Figure 4 shows an encoding of this attack in our browser model, and shows
how our enforcement mechanism stops the attack. Each line of the encoding is
of the form (E, [Rule]) : (L,R, [])

n−→ (L′, R′, Lq), where E is the input or output
event, Rule is the semantics rule (Figure 2), (L,R,Lq) represents the state of the
wrapper and n is the message number in the corresponding interaction diagram
figure. Outputs are shown slightly indented, so that it is easy to see by which
input event they are caused. We write L0 for the set {⊥,>}, and LA for the set
{⊥, A,>}. For simplicity, the finite list l1 :: l2 :: [] is denoted with l1 :: l2. If we
do not care about a specific component of the browser state, we write .

Events and semantics rules corresponding to each event in Figure 3 are shown
in Figure 4. In this scenario, using a standard web browser, the attack would
happen in message 9, where the request to A (initiated in response from E)
would include cookies. However, under the wrapper, the attack is prevented.

Client Side Web Session Integrity as a Non-Interference Property 11

Origin8A

User

Browser Origin8E

10:8hidden8response

9:8hidden8request

7:8page

6:8open8page

3:8success

2:8login

8:8page

4:8success

5:8open8page

1:8login

Fig. 3. Classic CSRF

Specifically, the basic semantics in Figure 1 would drop the request, since a low
integrity sub-execution is not allowed to send A-labeled requests; the updated
semantics in Figure 2, instead, would strip the cookies from the request for the
very same reason. Both options are secure, but the second option will break less
existing web sites.

Malicious script inclusion Figure 5 gives a schematic overview of a script in-
clusion attack. The user signs into web site A (messages 1-4) and then opens
a page (messages 5-6). This page includes a script tag that will include a third
party script from E. When the page from A is being rendered (messages 7-8),
the remote script is loaded from the web site E (message 9-10). The script can
then for instance install an event handler that will trigger an (authenticated)
request to A at a later time.

This example is encoded in Figure 6. The response input from E (message
10) gets a ⊥ label, hence is fed only into the low integrity sub-execution. All
the requests to A initiated by the user (in the context of A) or directly by input
from A are released from the sub-execution at level A, and hence are not affected
by the script injected to the sub-execution at ⊥. Requests released from the ⊥
sub-execution may be affected but as those outputs do not include cookies, they
are safe. In the example, the request to A (message 12) as the result of the user
input (message 11) is released from the execution at ⊥ (release line 12 in Figure
6). The sub-execution at A label never received the script from E, so it will not
react to the link click, and just output a silent event (·).

12 W. Khan, S. Calzavara, M. Bugliesi, W. De Groef, F. Piessens

1. (login(A), [LOGIN]): (L0, , [])
1−→ (LA, ,⊥ :: A)

2. suppress (net req(A), [DROP-C]): (LA, ,⊥ :: A)
·−→ (LA, , A)

2. release (net req(A), [OUT-C]): (LA, , A)
2−→ (LA, , [])

3. (net resp(A, h), [LOAD]): (LA, , [])
3−→ (LA, ,⊥ :: A)

4. release (ui page loaded, [OUT-C]): (LA, ,⊥ :: A)
4−→ (LA, , A)

4. suppress (ui page loaded, [DROP-C]): (LA, , A)
·−→ (LA, , [])

5. (ui load(uE), [LOAD]): (LA, , [])
5−→ (LA, ,⊥ :: A :: >)

6. release (net req(E), [OUT-C]): (LA, ,⊥ :: A :: >)
6−→ (LA, , A :: >)

6. suppress (net req(E), [DROP-C]): (LA, , A :: >)
·−→ (LA, ,>)

6. suppress (net req(E), [DROP-C]): (LA, ,>)
·−→ (LA, , [])

7. (net resp(E, h), [LOAD]): (LA, , [])
7−→ (LA, ,⊥)

8. release (ui page loaded, [OUT-P]): (LA, ,⊥)
8−→ (LA, ,⊥)

9. release w/o cookies (net req(A), [OUT-C]): (LA, ,⊥)
9−→ (LA, , [])

Fig. 4. Classic CSRF attack encoding and prevention

5 Extensions

The enforcement mechanism described by the formal semantics in Figure 2 en-
forces security policies to protect against attacks on session integrity, but by
doing so it does break some common web scenarios that technically violate ses-
sion integrity, but do so without malicious purposes. These scenarios can be
handled in our approach by means of endorsement (the integrity variant of de-
classification [24, 28]).

Endorsements will typically have to be declared by the web site that the
browser has an authenticated session with. In the two approaches below, these
declarations are done by means of request headers, similar to how Content Se-
curity Policy (CSP) [27] policies are communicated to the browser.

Endorsing script inclusions A first, simple and common kind of endorsement is
for script inclusion. The script inclusion example in Figure 5 is commonly not
an attack: web site A includes the script from E intentionally and trusts it to
influence the session. While some scripts can be usefully included without having
the possibility to influence the session (e.g. analytics scripts), inclusion of other
scripts is only useful when these scripts have the right to influence the session
(e.g. the jQuery library).

Fortunately, endorsing script inclusions is straightforward. The server A de-
clares in a HTTP header which origins can provide trusted scripts, and the
browser uses this information to label outgoing and incoming requests to these
white-listed origins from A’s pages as being of level A. One could even argue
that this should be the default interpretation of the CSP policy directives that
allow script inclusions (e.g. the script-src directive).

Endorsements for collaborating applications Endorsements are also required for
collaborating web applications such as e-payment systems (e.g. Paypal). Con-

Client Side Web Session Integrity as a Non-Interference Property 13

Fig. 5. Script inclusion attack

1. (login(A), [LOGIN]): (L0, , [])
1−→ (LA, ,⊥ :: A)

2. suppress (net req(A), [DROP-C]): (LA, ,⊥ :: A)
·−→ (LA, , A)

2. release (net req(A), [OUT-C]): (LA, , A)
2−→ (LA, , [])

3. (net resp(A, h), [LOAD]): (LA, , [])
3−→ (LA, ,⊥ :: A)

4. release (ui page loaded, [OUT-C]): (LA, ,⊥ :: A)
4−→ (LA, , A)

4. suppress (ui page loaded, [DROP-C]): (LA, , A)
·−→ (LA, , [])

5. (ui link click(A), [LOAD]): (LA, , [])
5−→ (LA, ,⊥ :: A)

6. suppress (net req(A), [DROP-C]): (LA, ,⊥ :: A)
·−→ (LA, , A)

6. release (net req(A), [OUT-C]): (LA, , A)
6−→ (LA, , [])

7. (net resp(A, h), [LOAD]): (LA, , [])
7−→ (LA, ,⊥ :: A)

8. release (ui page loaded, [OUT-P]): (LA, ,⊥ :: A)
8−→ (LA, ,⊥ :: A)

9. release (net req(E), [OUT-C]): (LA, ,⊥ :: A)
9−→ (LA, , A)

8. suppress (ui page loaded, [DROP-P]): (LA, , A)
·−→ (LA, , A)

9. suppress (net req(E), [DROP-C]): (LA, , A)
·−→ (LA, , [])

10. (net resp(E, h), [LOAD]): (LA, , [])
10−→ (LA, ,⊥)

release (·, [DROP-C]): (LA, ,⊥)
.−→ (LA, , [])

11. (ui link click(A), [LOAD]): (LA, , [])
11−→ (LA, ,⊥ :: A)

12. suppress (net req(A), [DROP-C]): (LA, ,⊥ :: A)
·−→ (LA, , A)

12. release (·, [OUT-C]): (LA, , A)
·−→ (LA, , [])

Fig. 6. Script inclusion attack encoding and prevention

14 W. Khan, S. Calzavara, M. Bugliesi, W. De Groef, F. Piessens

sider, for example, a user who wants to buy an airline ticket at web site A and
pay via paypal.com (Figure 7).

PayPalOriginEABrowser

User

15:EdispatchEpage

13:Eredirect

9:EpaymentEpage

7:Eredirect

14:EGET:Edispatch

12:EPOST:Econfirm

8:EGET:EpaymentEpage

6:EPOST:EclickedEbutton

17:EGET:Econfirmed

16:EdispatchEpage

10:EpaymentEpage

4:ErenderEpage

2:EGETErequest

11:Econfirm

5:EclickE2buyEnow2

3:EGETEresponse

1:EloadEpage

Fig. 7. E-payment scenario

The user opens a page from web site A where he clicks the buy button and
then the user confirms the payment on the paypal.com web site. Messages 3-4
and 15-17 of Figure 7 are encoded in our model in Figure 8. We assume the user
is logged into both A and P (Paypal), i.e. L contains both A and P .

The message 17 (GET: confirmed) is a cross-origin request to A and hence
the wrapper will release it from the execution at ⊥. As all the session cookies
are erased, the payment operation will fail.

To support such collaborating web applications, endorsement is needed. For
these cases, we propose the use of a response header, used by the web site
to specify allowed entry points from different origins. A web site s (source of
white-list) sends a list of URLs url pointing to s specifying that another site
w (white-listed site) is allowed to send cross-origin requests to these URLs, by
setting a connect-destination (cd) header <cd: {W:w,U:url}> in the response.

The wrapper will keep track of these headers by updating a set ω of key-
value pairs of the form (w, url), where w is the white-listed web site (the who
part) and url is the list of URLs (the how part) specified as the allowed entry
points white-listed for the w. The list of URLs url can also include URLs with
wildcard character ∗ such as s.com/∗, where the web site w can send cross-origin
(authenticated) requests to any URL of the site s.com.

Client Side Web Session Integrity as a Non-Interference Property 15

3. (net resp(A, h), [LOAD]): (L, , [])
3−→ (L, ,⊥ :: A)

4. release (ui page loaded, [OUT-C]): (L, ,⊥ :: A)
4−→ (L, ,A)

4. suppress (ui page loaded, [DROP-C]): (L, ,A)
·−→ (L, , [])

...
(user clicks ”buy” button, and confirms payment)

...

15. (net resp(P, h), [LOAD]): (L,R, [])
15−→ (L, ,⊥ :: P)

16. release (ui page loaded, [OUT-P]): (L, ,⊥ :: P)
16−→ (L,R,⊥ :: P)

17. release w/o cookies (net req(uA), [OUT-C]): (L, ,⊥ :: P)
17−→ (L,R, P)

16. suppress (ui page loaded, [DROP-P]): (L, , P)
·−→ (L, , P)

17. suppress (net req(uA), [DROP-C]): (L, , P)
·−→ (L, , [])

Fig. 8. E-payment application encoding

As a simple example, assume two web sites A and B send the endorsement
headers <cd: {W:P, U:[a.com/∗]}> and <cd: {W:P, U:[b.com/u1, b.com/u2]}>
in their responses. Initially, when the response from A is received, the wrapper
will store in ω an entry (P, [a.com/∗]) and when the other response from B is
received, it will add the two URLs to the value bound to P , hence ω will become
(P, [a.com/∗, b.com/u1, b.com/u2]). The URL a.com/∗ represents all the URLs
of web site A.

Now we have the required information to decide if a cross-origin request
should be endorsed. After receiving the example headers above, an output from
P to any URL of A or to any of the two URLs b.com/u1 and b.com/u2 of web
site B should include cookies. On receipt of an input event i with label d, the
wrapper will compute the set of URLs that d is allowed to send cross-origin
requests to by looking it up in ω. Let us call the resulting set Ui.

We generalize the release predicate so that it takes Ui into account. An
output is released from a state if (1) its label matches the label l of the current
sub-execution or, (2) when l = ⊥ and there is no sub-execution at the level of
the output and the request URL is not white-listed, or (3) when l 6= ⊥, and the
request URL is white-listed. The predicate releaseL,l,Lq

(o, u, Ui) is defined as
follows:

l = lblL(o) ∨ (l = ⊥ ∧ lblL(o) 6∈ Lq ∧ u 6∈ Ui) ∨ (l 6= ⊥ ∧ u ∈ Ui).

We can now show that the Paypal example (Figure 7) works. We show an
encoding in our model in Figure 9. (We show ω and Ui as the third and fourth
component of the tuple representing the extended browser state.)

Assume the site A sends the header <cd: {W:P, U:[a.com/∗]}> in the re-
sponse input (message 3, Figure 7) and the wrapper creates the entry ω =
(P, [a.com/∗]). Later on, when the input in message 15 is received from P , the
corresponding list of URLs for P is retrieved, that is, Ui = [a.com/∗]. The en-
coding in Figure 8 will now change as shown in Figure 9. The GET: confirmed

16 W. Khan, S. Calzavara, M. Bugliesi, W. De Groef, F. Piessens

cross-origin (legitimate) request to web site A is now sent from the sub-execution
at label P with its authentication cookie.

. . .

15. (net resp(P, h), [LOAD]): (L, , ω, [], [])
15−→ (L, , ω, [a.com/∗],⊥ :: P)

16. release (ui page loaded, [OUT-P]):

(L, , ω, [a.com/∗],⊥ :: P)
16−→ (L, , ω, [a.com/∗],⊥ :: P)

17. suppress (net req(uA), [DROP-C]):

(L, , ω, [a.com/∗],⊥ :: P)
·−→ (L, , ω, [a.com/∗], P)

16. suppress (ui page loaded, [OUT-P]):
(L, , ω, [a.com/∗], P)

.−→ (L, , ω, [a.com/∗], P)
17. release (net req(uA), [OUT-C]):

(L, , ω, [a.com/∗], P)
17−→ (L, , ω, [a.com/∗], [])

Fig. 9. E-payment application encoding (updated)

6 Implementation

Our prototype implementation is constructed as a modification of the FlowFox
browser [12, 13]. Crucial for our implementation is the ability to keep track of
all sites a user is logged into and to make sure that the labelling of JavaScript
API calls can be dependent on this login history.

The biggest modification to FlowFox’s core is the addition of a shared state
variable, shared between all browser windows. This variable contains the login
history log of the browser. This history log is a list of strings and contains all
domain names for which the browser has established an authenticated session. In
our prototype, authentication to a web site has to happen by means of a book-
marklet that interacts with this login history log to add authenticated domains.

The second modification is in the policy library that comes with FlowFox.
This library now offers an API to query the login history log so that the labelling
of JavaScript API calls can depend on this information. We illustrate in a small
example how the extended FlowFox can be used.

New top level windows exist only in the low integrity copy of the browser,
unless the new window is created by a login bookmarklet. In that case, the new
window will exist in two levels of the browser: the ⊥ level, and the level of the
authenticated origin.

Consider again the classic CSRF scenario from Figure 3. This executes in
our prototype as follows. First, the user starts an authenticated session with
mail.com by selecting the appropriate bookmarklet. This bookmarklet posts the
correct login credentials (stored in the bookmarklet) over HTTPS to mail.com.
The bookmarklet also interacts with FlowFox’s core to store mail.com in the
login history log. Next, the user loads a page from the attacker.com site, and

Client Side Web Session Integrity as a Non-Interference Property 17

a script on this page tries to influence the current session with mail.com by
crafting an XMLHttpRequest.

For this example, we configure FlowFox with the policy that makes calls to
XMLHttpRequest of d integrity if they go to a domain d in the login history log,
and low integrity (⊥) otherwise.

When the user visits attacker.com, and the script performs an XHR request
to mail.com, the window containing attacker.com exists only in the ⊥ level of
the browser, and the policy above causes the request to be suppressed. Hence,
this policy effectively prevents the classic CSRF attack as described in Fig. 3.
Requests that go to other sites (with no open authenticated session) would be
left untouched. Blocking a request is done by making sure that the skipCall

primitive used internally by FlowFox (it is hidden from the policy writer by
the policy library, which is in fact a domain specific language on top of those
primitives) returns the appropriate value.

The current protoype is just a proof-of-concept, and has important limita-
tions. The most important one is that FlowFox only performs multi-execution of
JavaScript code, and hence no policies can be enforced on network requests that
are not triggered by scripts. If attacker.com tries to influence the session with
mail.com via other means, e.g., an embedded image tag, thereby not relying on
any JavaScript code, we have no way to intercept this in FlowFox. Removing
this limitation is possible by multi-executing the entire browser, as proposed
by Bielova et al. [6], but that would require a major overhaul of FlowFox and
hence a substantial implementation effort. Despite this limitation, we believe
the prototype is evidence of the feasibility of our proposed mechanism in real
browsers.

Our prototype implementation is available online at http://distrinet.cs.
kuleuven.be/software/FlowFox/.

7 Related Work

There has been a wide variety of work on web session integrity over the past
decade. The lines of work most closely related to our contributions are: (1)
formal models of web session integrity, (2) countermeasures against CSRF, and
(3) information flow control for the web.

7.1 Formal models of web session integrity

Bohannon et al. [9] propose reactive non-interference, a non-interference property
for reactive programs such as web scripts that is proposed to replace the Same
Origin Policy in browsers. This was a direct inspiration for our notion of login
history dependent non-interference. Later, Bohannon and Pierce [8] developed
Featherweight Firefox, a formal model of a simple browser, with the purpose of
formally studying confidentiality and integrity policies for browsers, including
reactive non-interference policies. This browser model did not yet model session
management, and very recently Bugliesi et al. [10] developed Flyweight Firefox, a

18 W. Khan, S. Calzavara, M. Bugliesi, W. De Groef, F. Piessens

variant of Featherweight Firefox, and provided a formal definition of web session
integrity as well as a provably sound enforcement mechanism. The advantage
of our approach is that, by providing information flow control instead of access
control, we can more precisely enforce session integrity.

An alternative approach to formally model session integrity was taken by
Akhawe et al. [2]. They develop a coarse grained model of the entire web plat-
form in Alloy, and use bounded model checking to find flaws in proposed web
security techniques. They model the entire web platform, whereas in our ap-
proach we focus on modeling the browser only. Hence, their model is better
suited to evaluate security techniques that span client and server, whereas our
model is more suitable for pure client-side enforcement techniques.

7.2 Countermeasures against CSRF

CSRF is the most important session integrity attack that is not handled by
just protecting the session implementation layer. Server-side countermeasures
against CSRF are well-understood. The most widely deployed countermeasure
is the use of anti-CSRF tokens. We limit our attention to related work on client-
side enforcement. Client-side enforcement of CSRF protection was pioneered by
RequestRodeo [20]. This system interposed a proxy between client and server,
and stripped authentication information from suspicious requests. Many variants
of RequestRodeo have been proposed [14, 26, 1], differing in (1) how suspicious
requests are detected, (2) how suspicious requests are handled (either dropping
them or stripping session cookies, or just detecting the attack), and (3) the im-
plementation technique (as a proxy or as a browser extension). All these variants
are useful but heuristic solutions, that provide no formal assurance. The only
system that provides some formal guarantees is CsFire [14]: it was formally val-
idated through bounded model checking to defend against CSRF in the formal
model of the web developed by Akhawe et al. [2].

Our approach for endorsements, where the server tunes or sets a browser
policy, is closely related to existing server-driven policies on the web, like Content
Security Policies [27], or Allowed Referrer Lists [11].

7.3 Information flow control for the web

Information flow control in web scripts is usually proposed by means of dy-
namic mechanisms [22] due to the dynamic nature of the JavaScript language,
the de facto programming language on the client side web applications. Our
work is directly based on existing information flow secure browsers that use
the mechanism of secure multi-execution [16] for information flow control. The
theoretical development is based on Bielova et al. [6], whereas the implementa-
tion extends the FlowFox browser [12, 13]. Alternative dynamic information flow
control mechanisms for browser scripts are usually monitors. Austin and Flana-
gan [3] and Hedin and Sabelfeld [17] study runtime monitors for non-interference
in JavaScript-like languages. Bichhawat et al. [5] formalize and develop an infor-
mation flow monitor at the level of JavaScript bytecode in the WebKit engine.

Client Side Web Session Integrity as a Non-Interference Property 19

8 Conclusions

Web session security is a key cornerstone of web security. We have shown how
client-side application-level web session integrity can be understood as a non-
interference property. To make this possible, we introduce LHDNI, login-history-
dependent non-interference, and show how this notion captures client-side web
session integrity. We also developed and proved correct an enforcement mecha-
nism based on secure multi-execution. A prototype implementation in the Flow-
Fox browser is available online.

There are many avenues for future work. While we have formally proven
security of our enforcement mechanism, we believe the mechanism has several
other interesting properties that deserve a formal study. In particular we believe
it to be precise in the sense that it does not impact the observable behaviour of
the browser as long as the browser is only visiting secure sites. In other words,
security is not overapproximating: the enforcement mechanism only does some-
thing observable if the browser is definitely behaving insecurely. We also believe
that we can prove compatibility results saying that – under some conditions –
behaviour of existing sites is preserved, even if they do something insecure; our
approach of stripping session cookies instead of blocking requests could allow us
to show that such sites behave as if the browser was not logged into other sites.

Acknowledgments. This research is partially funded by the Research Fund
KU Leuven, by the IWT project SPION, and by the MIUR projects ADAPT
and CINA. Willem De Groef holds a PhD grant from the Agency for Innovation
by Science and Technology in Flanders (IWT).

References

1. https://www.requestpolicy.com/security.html
2. Akhawe, D., Barth, A., Lam, P.E., Mitchell, J., Song, D.: Towards a formal foun-

dation of web security. In: CSF (2010)
3. Austin, T.H., Flanagan, C.: Multiple Facets for Dynamic Information Flow. In:

Proc. of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. pp. 165–178 (2012)

4. Barth, A., Jackson, C., Mitchell, J.C.: Robust defenses for cross-site request forgery.
In: Proceedings of the 15th ACM Conference on Computer and Communications
Security. pp. 75–88 (2008)

5. Bichhawat, A., Rajani, V., Garg, D., Hammer, C.: Information flow control in we-
bkits javascript bytecode. In: Principles of Security and Trust, pp. 159–178 (2014)

6. Bielova, N., Devriese, D., Massacci, F., Piessens, F.: Reactive non-interference for
a browser model. In: Proc. of the International Conference on Network and System
Security. pp. 97–104 (2011)

7. Bohannon, A.: Foundations of web script security. Ph.D. thesis, University of Penn-
sylvania (2012)

8. Bohannon, A., Pierce, B.C.: Featherweight firefox: Formalizing the core of a web
browser. In: Proceedings of the 2010 USENIX Conference on Web Application
Development. pp. 11–11. WebApps’10, USENIX Association, Berkeley, CA, USA
(2010)

20 W. Khan, S. Calzavara, M. Bugliesi, W. De Groef, F. Piessens

9. Bohannon, A., Pierce, B.C., Sjöberg, V., Weirich, S., Zdancewic, S.: Reactive Non-
interference. In: Proceedings of the ACM Conference on Computer and Commu-
nications Security. pp. 79–90 (2009)

10. Bugliesi, M., Calzavara, S., Focardi, R., Khan, W., Tempesta, M.: Provably sound
browser-based enforcement of web session integrity. In: CSF 2014

11. Czeskis, A., Moshchuk, A., Kohno, T., Wang, H.J.: Lightweight server support for
browser-based csrf protection. In: Proceedings of the 22Nd International Confer-
ence on World Wide Web. pp. 273–284 (2013)

12. De Groef, W., Devriese, D., Nikiforakis, N., Piessens, F.: FlowFox: a Web Browser
with Flexible and Precise Information Flow Control. In: Proc. of the ACM Con-
ference on Computer and Communications Security. pp. 748–759 (2012)

13. De Groef, W., Devriese, D., Nikiforakis, N., Piessens, F.: Secure multi-execution
of web scripts: Theory and practice. Journal of Computer Security (2014)

14. De Ryck, P., Desmet, L., Joosen, W., Piessens, F.: Automatic and precise client-side
protection against csrf attacks. In: European Symposium on Research in Computer
Security (Esorics) (2011)

15. De Ryck, P., Nikiforakis, N., Desmet, L., Piessens, F., Joosen, W.: Serene: Self-
reliant client-side protection against session fixation. In: DAIS (2012)

16. Devriese, D., Piessens, F.: Noninterference Through Secure Multi-Execution. In:
Proc. of the IEEE Symposium on Security and Privacy. pp. 109–124 (2010)

17. Hedin, D., Sabelfeld, A.: Information-Flow Security for a Core of JavaScript. In:
Proc. of the IEEE Computer Security Foundations Symposium. pp. 3–18 (2012)

18. Johns, M.: On JavaScript Malware and Related Threats - Web Page Based Attacks
Revisited. Journal in Computer Virology 4(3), 161 – 178 (August 2008)

19. Johns, M., Braun, B., Schrank, M., Posegga, J.: Reliable protection against ses-
sion fixation attacks. In: Proceedings of the 2011 ACM Symposium on Applied
Computing. pp. 1531–1537 (2011)

20. Johns, M., Winter, J.: In: Proceedings of the OWASP Europe 2006 Conference.
pp. 5 – 17 (2006)

21. Khan, W., Calzavara, S., Bugliesi, M., De Groef, W., Piessens, F.: Client side
web session integrity as a non-interference property: Extended version with
proofs, available at http://www.cs.kuleuven.be/publicaties/rapporten/cw/

CW674.abs.html
22. Le Guernic, G.: Confidentiality Enforcement Using Dynamic Information Flow

Analyses. Ph.D. thesis, Kansas State University (2007)
23. Nikiforakis, N., Invernizzi, L., Kapravelos, A., Van Acker, S., Joosen, W., Kruegel,

C., Piessens, F., Vigna, G.: You Are What You Include: Large-scale Evaluation of
Remote JavaScript Inclusions. In: Proc. of the ACM Conference on Computer and
Communications Security. pp. 736–747 (2012)

24. Rafnsson, W., Sabelfeld, A.: Secure multi-execution: Fine-grained, declassification-
aware, and transparent. In: CSF (2013)

25. Sabelfeld, A., Myers, A.C.: Language-Based Information-Flow Security. IEEE
Journal on Selected Areas of Communications 21(1), 5–19 (January 2003)

26. Shahriar, H., Zulkernine, M.: Client-side detection of cross-site request forgery at-
tacks. In: Software Reliability Engineering (ISSRE), 2010 IEEE 21st International
Symposium on. pp. 358–367 (Nov 2010)

27. Stamm, S., Sterne, B., Markham, G.: Reining in the web with content security
policy. In: Proceedings of the 19th international conference on World wide web.
pp. 921–930. ACM (2010)

28. Vanhoef, M., De Groef, W., Devriese, D., Piessens, F., Rezk, T.: Stateful declassi-
fication policies for event-driven programs. In: CSF (2014)

