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Abstract. Liferay is the leading opensource portal for the enterprise,
implementing a role-based access control (RBAC) mechanism for user
and content management. Despite its critical importance, however, the
access control system implemented in Liferay is poorly documented and
lacks automated tools to assist portal administrators in configuring it
correctly. To make matters worse, although strongly based on the RBAC
model and named around it, the access control mechanism implemented
in Liferay has a number of unconventional features, which significantly
complicate verification. In this paper we introduce a formal semantics for
Liferay RBAC and we propose a verification technique based on abstract
model-checking, discussing sufficient conditions for the soundness and the
completeness of the analysis. We then present a tool, called LifeRBAC,
which implements our theory to verify the security of real Liferay portals.
We show that the tool is effective at proving the absence of security flaws,
while efficient enough to be of practical use.

1 Introduction

Liferay1 is the leading opensource portal for the enterprise, adopted by impor-
tant companies like Allianz, Cisco, Lufthansa and Vodafone, just to name a
few [16]. Liferay allows portal administrators to conveniently manage both users
and contents in a unified web framework. Users are typically structured into
a hierarchy of organizations, where members of a child organization are also
members of the parent organization. Contents, instead, are collected into sites,
built as assemblies of different pages, portlets and social collaboration tools, like
blogs and wikis. Both organizations and sites belong to a top-level company, and
a single portal may host different companies at the same time.

For enterprises, the Liferay portal is at the core of the business process, since
security-critical portlets may allow, for instance, to access sensitive information
and/or to reorganize workflows. To ensure that private contents are only accessed
by the intended recipients and that business processes are only handled by autho-
rized users, Liferay implements a role-based access control (RBAC) mechanism.

1.1 Liferay RBAC

In the standard RBAC model, permissions are assigned to a relatively small and
fixed set of roles, while roles are assigned to a potentially large and dynamic set

1 http://www.liferay.com



of users: since user privileges only depend on the assigned roles, this approach
simplifies the access control management task [6]. When role administration is
itself role-based, like in the case of Liferay, the RBAC model is typically called
administrative and abbreviated as ARBAC [19]. For the sake of simplicity and
for consistency with the Liferay documentation, in this paper we uniform the
two models and we just use the acronym RBAC everywhere.

Though extremely popular and widely deployed, real-world RBAC systems
are notoriously difficult to get right, since the set of roles dynamically assignable
to each user is easily under-estimated and occasional changes to the access con-
trol policy may introduce overlooked security flaws. The research community
has then proposed formal methods as an effective tool to strengthen complex
RBAC systems and ensure that they meet their intended goals [3, 8, 7, 2, 18].
Notable examples of useful security goals include role (un)reachability, ensur-
ing that a given role granting powerful privileges is never assigned to untrusted
users, or mutual exclusion properties, preventing the assignment of dangerous
combinations of permissions to the same user.

Despite its critical importance and these well-known problems, the access
control system implemented in Liferay is poorly documented and lacks auto-
mated tools to assist portal administrators in configuring it correctly. To make
matters worse, although strongly based on the RBAC model and named around
it, the access control mechanism implemented in Liferay does not constitute,
strictly speaking, an RBAC system. First, users of the portal may be allowed
to impersonate other users and inherit all the privileges granted to them: this
implies that, contrary to the RBAC model, the identity of the users is not imma-
terial and the verification problem becomes more challenging. Moreover, besides
regular roles, Liferay also features site roles, organization roles and owner roles,
used to constrain access rights exclusively to site members, organization mem-
bers and resource owners respectively. These special roles have an unconventional
semantics, reminiscent of a specific kind of parametrized roles [9, 14, 21]. Their
introduction breaks a desirable property of the standard RBAC model: user
privileges do not depend only on the assigned roles, but also on the state of the
Liferay portal, which further complicates verification.

1.2 Contributions

Our contributions can be summarized as follows:

1. we define a formal semantics of Liferay RBAC in terms of a state transition
system, which concisely and precisely captures all the subtleties of the access
control model. We additionally discuss how we ensure the adequacy of the
formal semantics with respect to the behaviour of the real portal;

2. we introduce an abstract semantics which provides a finite approximation
of the infinite-state transition system induced by the (concrete) formal se-
mantics. We show that the abstract semantics can be used to soundly verify
useful security properties expressed in a fragment of a standard modal (tem-
poral) logic. Moreover, we prove that, when impersonation is not used, the



adoption of the abstract semantics does not introduce any loss of precision
in the security analysis;

3. we implement a tool, called LifeRBAC, which leverages the abstract se-
mantics and the modal logic to verify the security of real Liferay portals. We
show that the tool is effective at proving the absence of security flaws, while
efficient enough to be of practical use on a realistic case study.

Structure of the paper. Section 2 defines the formal semantics of Liferay RBAC.
Section 3 introduces the abstract semantics and studies the verification problem.
Section 4 presents the tool and the experiments. Section 5 discussed related work.
Section 6 concludes. The proofs of the formal results are given in the appendix.

2 Semantics of Liferay RBAC

Liferay users are organised into a hierarchy of groups, including companies, or-
ganizations and sites. Similarly, different items in the portal are assigned to
these groups on an ownership basis: for instance, a given portal page may be-
long to the site s, which in turn is under the control of the company c. Liferay
provides various tools to grant or deny access to a given resource based on the
group hierarchy: scoping allows to extend access rights on a group to each item
belonging to that group, while parametrized roles like organization roles and
site roles provide facilities for granting access privileges which are restricted to
organization-specific/site-specific resources and organization/site members. For
example, the assignment of an organization role Reader[o] may allow members
of the organization o to get read access to all the items belonging to o. Finally,
owner roles can be used to define access rights for individual resource owners.

2.1 Syntax

We let Users be an unbounded set of users and (G,�) be a poset of groups.
Groups and their underlying order uniformly model different collections handled
by the portal, i.e., companies, organizations and sites. We assume an unbounded
set Items, which includes a number of resources of interest, e.g., portlets, message
boards, layouts, etc. Each item i belongs to a fixed set of groups, written i.groups.

We assume a set of regular roles RegRoles and a set of role templates [9]. A
role template r[·] ∈ RoleTemps is a role with a hole (the dot): by instantiating
the hole with an object o, we generate a new parametrized role r[o]. As we
formalize below, parametrized roles enforce additional runtime restrictions on
the privileges which are granted by the Liferay portal. We assume that role
templates are sorted, i.e., they are partitioned into two different sets GrpTemps
and {Ownerj [·]}j∈J (with J = {0, . . . , n} for some natural n) with holes of type
G and Items respectively: we let ParRoles be the set of the parametrized roles
obtained by instantiating the holes occurring in role templates with objects of
the correct type. We let R = RegRoles ∪ ParRoles be the set of roles.



Finally, we let O = Users ∪ Items ∪ G ∪ R be the set of objects. Access to
objects is regulated by permissions, drawn from a set Perms. The scope of a
granted permission can be narrowed or extended using a flag s ∈ {−, ↓}, which
specifies if a permission is given over an individual object or if it can be inherited
through the group hierarchy.

Definition 1 (System). A system is a tuple S = (PR,GR, U, I,UR,UG ,UU ):

– PR ⊆ (RegRoles × Perms × O × {−, ↓}) ∪ (RoleTemps × Perms) is the
permission-assignment relation;

– GR ⊆ G× RegRoles is a relation mapping groups to regular roles;
– U ⊆ Users is a finite set of users;
– I ⊆ Items is a finite set of items;
– UR ⊆ U ×R is a relation mapping users to their assigned roles;
– UG ⊆ U ×G is a relation mapping users to the groups they belong to;
– UU ⊆ U ×U is a relation mapping users to users, modelling impersonation.

By convention we assume that ∀p ∈ Perms : (Owner0[·], p) ∈ PR, i.e., the first
owner role template in the system has full permissions.

2.2 Semantics

As per previous studies [3, 8], we find it convenient to decouple a system S into a
static policy P and a dynamic configuration σ. A policy is a pair P = (PR,GR),
while a configuration is a 5-tuple σ = (U, I,UR,UG ,UU ). The reduction se-

mantics of Liferay RBAC has then the form P ` σ β−→ σ′ for some label β.
To specify the semantics, we start by defining to which groups is assigned a

given object o under a user-to-group mapping UG . Formally, we inductively de-
fine the set groupsUG(o) through the self-explanatory inference rules in Table 1.

Table 1 Group Assignment

(G-Item)

g ∈ i.groups
g ∈ groupsUG(i)

(G-User)

(u, g) ∈ UG

g ∈ groupsUG(u)

(G-Group)

g ∈ groupsUG(g)

(G-Inherit)

g′ � g
g′ ∈ groupsUG(o)

g ∈ groupsUG(o)

We then define when a user u is granted a permission p over an object o in
the system S. The definition of the judgement S ` granted(u, p, o) is in Table 2.

Rule (P-RegI) is standard: it states that, if a user u has a regular role r
which grants permission p on the object o, then u has p on o. Rule (P-RegG)
allows to extend a permission given over a group g to any object o belonging
to g: notice that this must be made explicit in the policy, by using the flag ↓



Table 2 Permission Granting, where S = (PR,GR, U, I,UR,UG ,UU )

(P-RegI)

(u, r) ∈ UR
(r, p, o,−) ∈ PR

S ` granted(u, p, o)

(P-RegG)

(u, r) ∈ UR
(r, p, g, ↓) ∈ PR
g ∈ groupsUG(o)

S ` granted(u, p, o)

(P-GroupI)

(u, g) ∈ UG
(g, r) ∈ GR

(r, p, o,−) ∈ PR

S ` granted(u, p, o)

(P-GroupG)

(u, g) ∈ UG (g, r) ∈ GR
(r, p, g′, ↓) ∈ PR g′ ∈ groupsUG(o)

S ` granted(u, p, o)

(P-Template)

(u, r[g]) ∈ UR (r[·], p) ∈ PR
g ∈ groupsUG(u) ∩ groupsUG(o)

S ` granted(u, p, o)

(P-Owner)

(u,Ownerj [i]) ∈ UR
(Ownerj [·], p) ∈ PR

S ` granted(u, p, i)

(P-Impersonate)

(u, u′) ∈ UU S[UU 7→ ∅] ` granted(u′, p, o)

S ` granted(u, p, o)

Convention: for any u and i occurring in the judgement we require u ∈ U and i ∈ I

when assigning the permission. Rules (P-GroupI) and (P-GroupG) are the
counterparts of (P-RegI) and (P-RegG) for (regular) roles assigned to groups:
they state that any role given to a group is inherited by any user in that group.

Rule (P-Template) is subtle and defines the semantics of parametrized
roles: if a role template r[·] is given the permission p and the parametrized role
r[g] is assigned to a given user u, then u has p on any object in g, provided that
u is himself a member of that group. In this way, a parametrized role r[g] allows
to constrain the scope of a permission p inside the group g.

Rule (P-Owner) formalizes the intuition behind owner roles: if a role tem-
plate Ownerj [·] is given the permission p and the parametrized role Ownerj [i]
is assigned to a user u for some item i, then u has p on i. Notice that, by the
convention in Definition 1, a user with role Owner0[i] has full permissions on i.

Finally, rule (P-Impersonate) deals with permissions which are granted
upon impersonation: if u is impersonating u′ and u′ has permission p on the
object o, then u has p on o. There is a subtle point to notice though: if u is
impersonating u′ and u′ is impersonating u′′, then u is not granted the permis-
sions of u′′. Formally, this is ensured by emptying the UU component of S before
deriving the judgement in the premises of rule (P-Impersonate). In Liferay,
only the permissions which are statically known to be granted to u′ are inherited
by a user impersonating u′.

Having defined when a user is granted a given permission, the formal se-
mantics is relatively simple. The reduction rules are given in Table 3, we just
comment the most interesting points. First, owner roles can only be assigned
when new items are created and are only removed when items are deleted; we
conservatively assume that the owners of dynamically created items have full



Table 3 Reduction Semantics of Liferay RBAC

(Assign-Role)

S ` granted(u1,AssignRole, r) r 6= Ownerj [i]

P ` (U, I,UR,UG,UU )
assign role(u1,u2,r)−−−−−−−−−−−−−→ (U, I,UR ∪ {(u2, r)},UG,UU )

(Remove-Role)

S ` granted(u1,RemoveRole, r) r 6= Ownerj [i]

P ` (U, I,UR,UG,UU )
remove role(u1,u2,r)−−−−−−−−−−−−−−→ (U, I,UR \ {(u2, r)},UG,UU )

(Assign-Group)

S ` granted(u1,AssignGroup, g)

P ` (U, I,UR,UG,UU )
assign group(u1,u2,g)−−−−−−−−−−−−−−→ (U, I,UR,UG ∪ {(u2, g)},UU )

(Remove-Group)

S ` granted(u1,RemoveGroup, g)

P ` (U, I,UR,UG,UU )
remove group(u1,u2,g)−−−−−−−−−−−−−−−→ (U, I,UR,UG \ {(u2, g)},UU )

(Impersonate)

u1 /∈ dom(UU ) S ` granted(u1, Impersonate, u2)

P ` (U, I,UR,UG,UU )
impersonate(u1,u2)−−−−−−−−−−−−−→ (U, I,UR,UG,UU ∪ {(u1, u2)})

(Deimpersonate)

P ` (U, I,UR,UG,UU )
deimpersonate(u1,u2)−−−−−−−−−−−−−−→ (U, I,UR,UG,UU \ {(u1, u2)})

(Add-User)

P ` (U, I,UR,UG,UU )
add user(u)−−−−−−−−→ (U ∪ {u}, I,UR,UG,UU )

(Remove-User)

u /∈ dom(UU ) UR′ = {(u′, r) ∈ UR | u′ 6= u} UG ′ = {(u′, g) ∈ UG | u′ 6= u}

P ` (U, I,UR,UG,UU )
remove user(u)−−−−−−−−−−→ (U \ {u}, I,UR′,UG ′,UU )

(Add-Item)

S ` granted(u,AddItem, g) g ∈ i.groups

P ` (U, I,UR,UG,UU )
add item(u,i)−−−−−−−−−→ (U, I ∪ {i},UR ∪ {(u,Owner0[i])},UG,UU )

(Remove-Item)

S ` granted(u,RemoveItem, i) UR′ = {(u′, r) ∈ UR | r 6= Ownerj [i]}

P ` (U, I,UR,UG,UU )
remove item(u,i)−−−−−−−−−−−→ (U, I \ {i},UR′,UG,UU )

Notation: we assume P = (PR,GR) and S = (PR,GR, U, I,UR,UG,UU )



permissions on them, by using the role template Owner0[·] in rule (Add-Item).
We then notice that each user can only impersonate a single user at a time,
by the side-condition u1 6∈ dom(UU ) in rule (Impersonate); this implicitly
ensures that impersonation is not transitive, i.e., if u is impersonating u′ and u′

can impersonate u′′, then u cannot impersonate u′′. Finally, when removing a
user u, we require that u is not impersonating anyone: this is technically con-
venient and not limiting, since we can always apply rule (Deimpersonate) up
to a configuration where u is impersonating none and then remove him. Notice
that no permission is needed to deimpersonate an impersonated user.

We write P ` σ
−→
β

=⇒ σ′ if and only if there exist σ1, . . . , σn−1 such that

P ` σ β1−→ σ1 ∧P ` σ1
β2−→ σ2 ∧ . . .∧P ` σn−1

βn−−→ σ′ for some
−→
β = β1, . . . , βn.

3 Verification of Liferay RBAC

The formal semantics in the previous section can be useful to spot improper
privilege escalations by untrusted users of the portal, but it cannot be directly
used to prove the absence of undesired accesses by an exhaustive state space
exploration, since the corresponding labelled transition system has an infinite
number of states. We now discuss how we tackle the problem of policy verification
by abstract model-checking [5].

3.1 A Modal Logic for Verification

We let the syntax of formulas be defined by the following productions:

State formulas φ ::= granted(u, p, o) | φ ∧ φ | φ ∨ φ,
Path formulas ϕ ::= ♦φ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ.

This is a simple modal logic, where the modality � is equivalent to the “finally”
operator F available in full-fledged temporal logics like CTL, CTL∗ or LTL [4].
The (standard) satisfaction relations for state formulas and path formulas are
defined by the judgements P, σ |= φ and P, σ |= ϕ in Table 4. The path formula
♦φ is satisfied by P, σ whenever there exists a reachable configuration from σ
under P where the state formula φ holds true.

Though simple, the logic above allows to formalize several standard security
properties of interest for RBAC systems. For instance, we have:

– role reachability: user u can never be assigned to regular role r:

P, σ |= ¬♦(granted(u, p∗, o∗)),

where p∗ is a dummy permission on a dummy object o∗ assigned only to r;
– mutual exclusion: user u can never possess both p and p′ on object o:

P, σ |= ¬♦(granted(u, p, o) ∧ granted(u, p′, o))



Table 4 Satisfaction Relation

(LS-Basic)

P, σ ` granted(u, p, o)

P, σ |= granted(u, p, o)

(LS-And)

P, σ |= φ1

P, σ |= φ2

P, σ |= φ1 ∧ φ2

(LS-Or)

P, σ |= φi

P, σ |= φ1 ∨ φ2

(LP-Finally)

P ` σ
−→
β

=⇒ σ′ P, σ′ |= φ

P, σ |= ♦φ

(LP-Not)

P, σ 6|= ϕ

P, σ |= ¬ϕ

(LP-And)

P, σ |= ϕ1

P, σ |= ϕ2

P, σ |= ϕ1 ∧ ϕ2

(LP-Or)

P, σ |= ϕi

P, σ |= ϕ1 ∨ ϕ2

Notation: in rules (LS-Or) and (LP-Or) we let i ∈ {1, 2}

– group reachability: user u can never join group g:

P, σ |= ¬♦(granted(u, p∗, g)),

where p∗ is a dummy permission assigned only to the dummy role template
r[·] and the parametrized role r[g] is assigned to u in the configuration σ.

3.2 Abstract Semantics

The abstract semantics builds on two core ideas. First, we observe that the actual
identity of users and items is often immaterial: for instance, two items belongings
to the same groups behave exactly in the same way for Liferay RBAC. Second,
many transitions of the semantics (e.g., removing roles) actually weaken the
privileges granted to a given user, hence they are irrelevant to detect security
violations. Leveraging these two observations, the abstract semantics consists
of: (i) a finite-range abstraction function α : O → O, mapping each object in
the unbounded set O to some canonical representative; and (ii) an abstract re-
duction relation, defining the dynamics of configurations abstracted by α. The
abstraction function can be chosen arbitrarily, as long as it satisfies some syntac-
tic conditions given below: one may choose different trade-offs between precision
and efficiency by using different abstractions for verification.

We presuppose two functions αu : Users → Users and αi : Items → Items.
We then build on top of them an abstraction function α : O → O as follows:

α(o) =


αu(u) if o is a user u

αi(i) if o is an item i

r[αi(i)] if o is a parametrized role r[i]

o otherwise.

We extend α to formulas, (sequences of) labels, tuples and sets by applying it
to any object syntactically occurring therein.



The abstract reduction relation P ` σ α7−→ σ′ is obtained from the rules in
Table 3 by excluding (Remove-Role), (Remove-Group), (Remove-User)
and (Remove-Item), and by dropping the side-condition u1 6∈ dom(UU ) from
rule (Impersonate). For convenience, the rules are shown in the appendix.

We let P ` σ
−→
βZ==⇒ σ′ be the obvious generalization to the abstract semantics of

the relation P ` σ
−→
β

=⇒ σ′ defined above. We then let P, σ |=α ϕ be the satisfaction
relation obtained from the rules in Table 4 by replacing (LP-Finally) with:

(ALP-Finally)

α(P) ` α(σ)
α(
−→
β )

Z====⇒ σ′ α(P), σ′ |= α(φ)

P, σ |=α ♦φ

and by introducing the obvious counterparts of rules (LP-Not), (LP-And) and
(LP-Or). Since any abstraction function has a finite range, it is easy to prove:

Lemma 1. There exists a decision procedure Abs-Sat(α,P, σ, ϕ) for P, σ |=α ϕ.

We verify security properties of the infinite-state concrete semantics by model-
checking the finite-state abstract semantics. To isolate the fragment of the modal
logic amenable for verification, we let negation-free formulas ϕ̂ and rank-1 for-
mulas ψ be defined by the following productions:

Negation-free formulas ϕ̂ ::= ♦φ | ϕ̂ ∧ ϕ̂ | ϕ̂ ∨ ϕ̂,
Rank-1 formulas ψ ::= ¬ϕ̂ | ψ ∧ ψ | ψ ∨ ψ.

We can construct a procedure which determines if an arbitrary rank-1 formula
is satisfied or not by the concrete semantics (see Fig. 1). The next subsections
discuss sufficient conditions for the soundness and the completeness of the al-
gorithm, i.e., conditions on the policy P and the abstraction function α which
ensure that a positive (resp. negative) answer by Sat(α,P, σ, ψ) implies that ψ
is satisfied (resp. not satisfied) by P, σ. Notice that all the example properties
previously described are expressed by a rank-1 formula.

Sat(α,P, σ, ψ):
match ψ with

| ¬ϕ̂ → not Abs-Sat(α,P, σ, ϕ̂)
| ψ1 ∧ ψ2 → Sat(α,P, σ, ψ1) and Sat(α,P, σ, ψ2)
| ψ1 ∨ ψ2 → Sat(α,P, σ, ψ1) or Sat(α,P, σ, ψ2)

Fig. 1. Abstract Model-Checking Algorithm



3.3 Soundness of Verification

We first prove the soundness of the algorithm in Fig. 1, i.e., we show that,
assuming a mild syntactic restriction on the abstraction function α, a positive
answer by Sat(α,P, σ, ψ) implies that P, σ |= ψ holds true.

Definition 2 (Group-preserving Abstraction). An abstraction function α
is group-preserving iff ∀i ∈ Items : i.groups ⊆ α(i).groups.

Definition 3 (Permission-based Ordering). We let σ vP σ′ if and only if
P, σ ` granted(u, p, o) implies P, σ′ ` granted(u, p, o) for any u, p and o.

The next theorem states that any behaviour of the concrete semantics has a
counterpart in the abstract semantics. It also ensures that the abstract semantics
over-approximates the permissions granted to each user. The result would not
hold in general if the side-condition of rule (Impersonate) was included in the
abstract semantics: we omit further technical details due to space constraints.

Theorem 1 (Soundness). Let α be group-preserving. If P ` σ
−→
β

=⇒ σ′, then

there exists a sub-trace of
−→
β , call it −→γ , such that α(P) ` α(σ)

α(−→γ )
Z====⇒ σ′′ for

some σ′′ such that α(σ′) vα(P) σ′′.

Using the theorem above, we can prove the soundness of verification. Notice
that the only assumption needed for soundness is on the abstraction function α:
the result applies to any choice of P, σ and ψ.

Theorem 2 (Sound Verification). Let α be a group-preserving abstraction
function. If Sat(α,P, σ, ψ) returns a positive answer, then P, σ |= ψ.

3.4 Completeness of Verification

We now identify conditions for the completeness of the algorithm in Fig. 1, i.e.,
we discuss under which assumptions a negative answer by Sat(α,P, σ, ψ) ensures
that P, σ 6|= ψ. This is important for the precision of the analysis.

To state and prove the completeness result, we focus on a particular class
of policies which does not allow to impersonate users. We remark that this
corresponds to a realistic use case, since Liferay can be configured to prevent
impersonation by setting the property portal.impersonation.enable to false
in the file webapps/ROOT/WEB-INF/classes/portal-developer.properties.

Definition 4 (Impersonation-free Policy/Configuration). A policy P =
(PR,GR) is impersonation-free iff ∀(r, p, o, s) ∈ PR : p 6= Impersonate and
∀(r[·], p) ∈ PR : p 6= Impersonate. A configuration σ = (U, I,UR,UG ,UU ) is
impersonation-free iff UU = ∅.



Given a configuration σ = (U, I,UR,UG ,UU ), let: users(σ) = U ; items(σ) = I;
groupsσ(u) = {g | (u, g) ∈ UG}; and rolesσ(u) = {r | (u, r) ∈ UR}.

The completeness result requires to find sufficient conditions which ensure
that the abstract semantics is under-approximating the concrete semantics. If
impersonation is never used, it is enough to require that each user in the ab-
stract semantics belongs to fewer groups and has fewer roles than one of his
corresponding users in the concrete semantics, as formalized next.

Definition 5 (Abstract Under-Approximation). A configuration σ is an
abstract under-approximation of a configuration σ′, written σ .α σ′, if and
only if both the following conditions hold true:

– ∀u ∈ users(σ) : ∃u′ ∈ users(σ′) : u = α(u′) ∧ groupsσ(u) ⊆ groupsσ′(u′) ∧
rolesσ(u) ⊆ α(rolesσ′(u′));

– ∀i ∈ items(σ) : ∃i′ ∈ items(σ′) : i = α(i′).

Definition 6 (Group-forgetting Abstraction). An abstraction function α
is group-forgetting iff ∀i ∈ Items : α(i).groups ⊆ i.groups.

The next theorem states that any behaviour in the abstract semantics has
a counterpart in the concrete semantics, assuming that impersonation is never
used. It additionally ensures that the desired under-approximation is preserved
upon reduction.

Theorem 3 (Completeness). Let P, σ be impersonation-free and let α be

group-forgetting. If α(σ) .α σ and α(P) ` α(σ)
α(
−→
β )

Z====⇒ σ′ for some
−→
β and σ′,

then there exists σ′′ such that P ` σ
−→
β

=⇒ σ′′ and σ′ .α σ′′.

We need also an additional condition to prove the completeness of verifica-
tion: we must ensure that the identity of any object occurring in the formula ψ
to verify is respected by the abstraction function, in the following sense.

Definition 7 (Respectful Abstraction). An abstraction function α respects
an object o iff α(o) = o and ∀o′ ∈ O : o′ 6= o ⇒ α(o′) 6= o. An abstraction
function α respects ψ iff it respects any object occurring in ψ.

Theorem 4 (Complete Verification). Let P, σ be impersonation-free and
let α be a group-forgetting abstraction function which respects ψ. If α(σ) .α σ
and P, σ |= ψ, then Sat(α,P, σ, ψ) returns a positive answer.

Completeness of verification does not hold in general if impersonation is used.
Specifically, if a user u is allowed to impersonate both u1 and u2, he will be able
to do it at the same time in the abstract semantics, thus getting the union of
their privileges; however, the two users cannot be impersonated at the same time
in the concrete semantics, which breaks the intended under-approximation.



4 Implementation: LifeRBAC

LifeRBAC is a Liferay plugin providing a simple user interface to let portal
administrators input security queries about the underlying RBAC system. The
plugin takes a snapshot of the portal and translates it into a corresponding
representation in our formal model, encoded in the ASLAN specification lan-
guage [17]. The initial state representation is joined with a set of (hand-coded)
transition rules, corresponding to the ASLAN implementation of the abstract se-
mantics, and the query is translated into a modal logic formula, which is verified
using the state-of-art model-checker SATMC [1].

4.1 Implementation Details

LifeRBAC currently supports two different analyses, corresponding to the choice
of two different abstraction functions. In the fast analysis, only the identity of
the users occurring in the security query is preserved by the abstraction func-
tion, while all the other users are abstracted into a super-user with the union
of their privileges. In the precise analysis, the identity of the users occurring
in the security query is still preserved, but all the other users are abstracted
into a canonical representative sharing their same groups and roles. As to items,
in both cases we preserve their identity when they occur in the security query,
while we abstract them into a canonical representative sharing the same groups
otherwise. Observe that both the choices of the abstraction function satisfy the
conditions of Theorem 2, hence both the analyses are sound. Moreover, the pre-
cise analysis satisfies also the conditions of Theorem 4, hence it is complete for
any policy which does not allow to impersonate users.

At the moment LifeRBAC only supports the verification of security queries
predicating over a subset of the objects available in Liferay, i.e., users, groups
and layouts. Including additional types of objects (e.g., portlets) is essentially a
matter of programming.

4.2 Experiments

Inspired by a previously published case study [22], we consider an experimental
setting modelling a hypothetical university with 3 departments and 10 courses.
We represent the university as the only company in the portal and the depart-
ments as three different organizations; then, we create a private site for each
department and a corresponding child site for every course. We consider 15 role
templates: 6 templates are used to generate site roles, while 9 templates are used
to generate organization roles. We also include 14 regular roles to collect per-
missions which are not scoped to any specific site or organization. Overall, we
have 6 ·13 + 9 ·3 + 14 = 119 roles; for each of them, we model access permissions
to different resources as read/write privileges on specific web pages in the sites,
and we enable administrative permissions where appropriate, e.g., a user with
role Professor[c] for some course c can assign the parametrized role Student[c].
Finally, we create 1000 users with different role combinations.



In the experiments, we consider three different security queries:

– q1: can student u1, who is a member of site s1, delete a page from s1?
– q2: can student u2 join site s2 belonging to another department?
– q3: can student u3, who is a member of site s3, assign a user u4 to s3?

All the three queries are performed against three slightly different configura-
tions of increasing complexity. In the first configuration no user is allowed to
impersonate other users or to assign members to existing sites/organizations. In
the second configuration clerks can move users along the group hierarchy, but
no impersonation is possible, while in the third configuration administrators are
allowed to impersonate any user. The last scenario is a “stress test” for our tool,
since unconstrained impersonation leads to a state-space explosion.

The time required to check the three queries against the three described
configurations and their results are given in Table 5. In the table, we also keep
track of the number of users obtained after applying the abstraction; all the
attacks have been confirmed by hand on Liferay 6.2 CE. The experiments have
been performed on an Intel Xeon 2.4Ghz running Ubuntu Linux 12.04 LTS.

Table 5 Experimental Results

Fast Analysis Precise Analysis

conf. query #users time attack real #users time attack real

A
q1 3 1m 58s yes yes 62 6m 10s yes yes
q2 3 1m 46s no - 62 1m 52s no -
q3 3 1m 48s no - 62 1m 53s no -

B
q1 3 2m 40s yes yes 62 49m 01s yes yes
q2 3 1m 50s yes yes 62 21m 46s yes yes
q3 3 1m 50s no - 62 22m 30s no -

C
q1 3 2m 53s yes yes 62 182m 21s yes yes
q2 3 1m 59s yes yes 62 56m 02s yes yes
q3 3 2m 37s no - 62 54m 46s no -

A = no impersonate and no groups; B = only groups; C = groups and impersonate
#users = the number of users after the abstraction; real = attack confirmed

For the first configuration, where we do not include Liferay-specific features,
the verification time is very good and in line with previous work on standard
RBAC systems [8]. In the worst case, verification takes around 6 minutes and we
are able to prove the existence of an attack by the completeness result, something
which is beyond previous abstraction-based proposals. Based on the numbers in
the table, we observe that the possibility of assigning and removing groups,
thus activating and deactivating parametrized roles, has a significant impact
on the performances, especially for the precise analysis. Impersonation further
contributes to complicate the verification problem, as the results for the precise
analysis clearly highlight, but it does not hinder too much the performances of



the fast analysis. Remarkably, despite the huge approximation applied by the
fast analysis, we did not identify false positives for these queries (and also for
other tests we performed). We leave as future work further study on the precise
analysis, to improve its performance by the usage of static slicing techniques [7].

4.3 Discussion: Adequacy of the Semantics

A thorny issue when verifying a complex framework like Liferay RBAC is bridg-
ing the gap between the formal model and the real system. In particular, observe
that: (i) Liferay features many different permissions and it is not obvious which
ones correspond to the few administrative permissions (e.g., AssignRole) we in-
clude in the model; and (ii) the Liferay permission checker is a complicated piece
of code, which selectively grants or denies some permissions based on the type
of the object of an access request, but types have only a marginal role in the
permission granting process formalized in Table 2.

The key insight is that both the problems above can be dealt with just by
carefully constructing the permission-assignment relation PR used in the formal
model. We assessed the adequacy of our solution by testing, an idea proposed
by the programming languages community [11]. Specifically, we created a tool,
LR-Test, which takes a snapshot of the Liferay portal and constructs its cor-
responding representation in our formal model. The tool systematically queries
both the Liferay permission checker and its formal counterpart (deriving the
judgements in Table 2) to detect any mismatch on resource accesses and en-
abled administrative actions. Mismatches may be of two types: false positives
lead to an over-conservative security analysis, while false negatives lead to over-
looking real security flaws. In the current prototype, we eliminated all the false
negatives we identified and we only left a few false positives to be fixed.

5 Related Work

Abstraction techniques as an effective tool for RBAC verification have been
first concurrently proposed by Bugliesi et al. [3] and Ferrara et al. [8]. The first
paper proposes a formal semantics for grsecurity, an RBAC system built on
top of the Linux kernel, and then uses abstract model-checking to verify some
specific security properties of interest. Notably, the abstraction adopted in [3] is
fixed, while the results in this paper are parametric with respect to the choice
of an abstraction function. The authors of [8], instead, do not apply model-
checking techniques, but rather construct an imperative program abstracting
the dynamics of the RBAC system and apply standard results from program
verification to soundly approximate the role reachability problem. The proposed
abstraction is incomplete, i.e., the analysis may produce false positives. In recent
work [7], the same research group presented VAC, a tool for role reachability
analysis, which can be used both to prove RBAC policies correct and to find
errors in them (adopting different analysis backends).



A different approach to RBAC verification is based on SMT solving. Armando
and Ranise proposed a symbolic verification framework for RBAC systems with
an unbounded number of users [2]. More recent research holds great promise in
making similar techniques scale to verify large RBAC policies [18].

Error finding in RBAC policies is complementary to verification and ab-
straction techniques have proved fundamental also for this problem, since plain
model-checking does not scale to the analysis of real systems. The most known
proposal in the area is Mohawk, a tool based on an abstraction-refinement
model-checking strategy [12]. Interestingly, Mohawk has been recently extended
to prove RBAC policies correct [13]. The analysis is limited to separate admin-
istration policies, a restriction which we do not assume in this paper.

To overcome the performance issues affecting RBAC policy verification, many
authors identified tractable fragments of the general RBAC model and presented
different algorithms to answer useful security queries under specific policy restric-
tions [22, 10, 20, 15]. Most of these results are proved for a finite set of users, while
our work assumes an unbounded set of users entering and leaving the system.

6 Conclusion

We presented a formal semantics for Liferay RBAC and we tackled the verifica-
tion problem through abstract model-checking, discussing sufficient conditions
for the soundness and the completeness of the analysis. We then implemented a
tool, LifeRBAC, which can be used to verify the security of real Liferay portals
and we reported on experiments showing the effectiveness of our solution.

As a future work, we plan to strengthen the completeness result to policies
involving impersonation. Moreover, we want to extend LifeRBAC to support
error finding in the underlying RBAC policy, to include a counter-example gen-
eration module for flawed policies, and to make it significantly faster by adapting
static slicing techniques from the literature [7].
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A Proofs

We start by making explicit the full definition of the abstract semantics (Table 6).

Table 6 Abstract Semantics of Liferay RBAC

(Abs-Assign-Role)

S ` granted(u1,AssignRole, r) r 6= Ownerj [i]

P ` (U, I,UR,UG,UU )
assign role(u1,u2,r)7−−−−−−−−−−−−−→ (U, I,UR ∪ {(u2, r)},UG,UU )

(Abs-Assign-Group)

S ` granted(u1,AssignGroup, g)

P ` (U, I,UR,UG,UU )
assign group(u1,u2,g)7−−−−−−−−−−−−−−→ (U, I,UR,UG ∪ {(u2, g)},UU )

(Abs-Impersonate)

S ` granted(u1, Impersonate, u2)

P ` (U, I,UR,UG,UU )
impersonate(u1,u2)7−−−−−−−−−−−−−→ (U, I,UR,UG,UU ∪ {(u1, u2)})

(Abs-Deimpersonate)

P ` (U, I,UR,UG,UU )
deimpersonate(u1,u2)7−−−−−−−−−−−−−−→ (U, I,UR,UG,UU \ {(u1, u2)})

(Abs-Add-User)

P ` (U, I,UR,UG,UU )
add user(u)7−−−−−−−−→ (U ∪ {u}, I,UR,UG,UU )

(Abs-Add-Item)

S ` granted(u,AddItem, g) g ∈ i.groups

P ` (U, I,UR,UG,UU )
add item(u,i)7−−−−−−−−−→ (U, I ∪ {i},UR ∪ {(u,Owner0[i])},UG,UU )

Notation: we assume P = (PR,GR) and S = (PR,GR, U, I,UR,UG,UU )

A.1 Proof of Theorem 1

Theorem 1 (Soundness). Let α be group-preserving. If P ` σ
−→
β

=⇒ σ′, then

there exists a sub-trace of
−→
β , call it −→γ , such that α(P) ` α(σ)

α(−→γ )
Z====⇒ σ′′ for

some σ′′ such that α(σ′) vα(P) σ′′.

Proof. Let α be group-preserving and let P ` σ
−→
β

=⇒ σ′. By Lemma 9 there exist

a sub-trace of
−→
β , call it −→γ1, and a configuration σ̂ such that P ` σ

−→γ1Z==⇒ σ̂ and

σ′ vsyn σ̂. Since P ` σ
−→γ1Z==⇒ σ̂ and α is group-preserving, by Lemma 11 we have

α(P) ` α(σ)
α(−→γ1)Z====⇒ α(σ̂). By Lemma 4, σ′ vsyn σ̂ implies α(σ′) vsyn α(σ̂) and



the latter implies α(σ′) vα(P) α(σ̂) by Lemma 7. Hence, the conclusion follows
by picking −→γ = −→γ1 and σ′′ = α(σ̂).

Definition 8 (Sound Abstraction). An abstraction function α is sound if
and only if ∀S, u, p, o : S ` granted(u, p, o)⇒ α(S) ` granted(α(u), p, α(o)).

Lemma 2 (Group-preserving Abstraction). Let α be group-preserving. If
g ∈ groupsUG(o), then g ∈ groupsα(UG)(α(o)).

Proof. By induction on the derivation of g ∈ groupsUG(o), using the definition
of group-preserving abstraction function to deal with case (G-Item). Recall also
that for any group g we have α(g) = g.

Lemma 3 (Structure Implies Soundness). Any group-preserving abstrac-
tion function is sound.

Proof. Let α be group-preserving, we show that ∀S, u, p, o : S ` granted(u, p, o)⇒
α(S) ` granted(α(u), p, α(o)). The proof is by induction on the derivation of
S ` granted(u, p, o), using Lemma 2 to deal with cases (P-RegG), (P-GroupG)
and (P-Template).

We write σ vsyn σ
′ iff each component of σ is contained in the corresponding

component of σ′, with the proviso that the UU components coincide. We write
S vsyn S ′ iff each component of S is contained in the corresponding component
of S ′, with the proviso that the UU components coincide.

Lemma 4. If σ vsyn σ
′, then α(σ) vsyn α(σ′).

Proof. By a simple syntactic observation.

Lemma 5. If UG ⊆ UG ′ and g ∈ groupsUG(o), then g ∈ groupsUG′(o).

Proof. By induction on the derivation of g ∈ groupsUG(o), using the hypothesis
UG ⊆ UG ′ to deal with case (G-User).

Lemma 6 (Monotonicity of vsyn). If S vsyn S ′ and S ` granted(u, p, o),
then S ′ ` granted(u, p, o).

Proof. By induction on the derivation of S ` granted(u, p, o), using Lemma 5 to
deal with cases (P-RegG), (P-GroupG) and (P-Template).

Lemma 7 (vsyn Implies vP). If σ vsyn σ
′, then σ vP σ′ for any policy P.

Proof. The hypothesis σ vsyn σ
′ implies P, σ vsyn P, σ′ for any P, hence the

conclusion follows by Lemma 6.

Lemma 8 (Weak Simulation). If P ` σ1
β−→ σ′1 and σ1 vsyn σ2, then:

– either P ` σ2
β7−→ σ′2 and σ′1 vsyn σ

′
2,

– or σ′1 vsyn σ2.



Proof. For the sake of readability, we first stipulate the following:

– P = (PR,GR);
– σ1 = (U1, I1,UR1,UG1,UU 1);
– S1 = (PR,GR, U1, I1,UR1,UG1,UU 1);
– σ2 = (U2, I2,UR2,UG2,UU 2);
– S2 = (PR,GR, U2, I2,UR2,UG2,UU 2).

The proof is by a case analysis on P ` σ1
β−→ σ′1. For the six cases correspond-

ing to rules included in the definition of the abstract semantics we prove the
first point, while in the other four cases (Remove-Role), (Remove-Group),
(Remove-User) and (Remove-Item) we prove the second point.

We provide the proof of two representative cases:

Case (Assign-Role): assume that:

(Assign-Role)

S1 ` granted(u1,AssignRole, r) r 6= Ownerj [i]

P ` (U1, I1,UR1,UG1,UU 1)
assign role(u1,u2,r)−−−−−−−−−−−−−→ (U1, I1,UR1 ∪ {(u2, r)},UG1,UU 1)

Since σ1 vsyn σ2, we have S1 vsyn S2, hence S2 ` granted(u1,AssignRole, r) by
Lemma 6. We then get:

(Abs-Assign-Role)

S2 ` granted(u1,AssignRole, r) r 6= Ownerj [i]

P ` (U2, I2,UR2,UG2,UU 2)
assign role(u1,u2,r)7−−−−−−−−−−−−−→ (U2, I2,UR2 ∪ {(u2, r)},UG2,UU 2)

Since σ1 vsyn σ2, we have (U1, I1,UR1∪{(u2, r)},UG1,UU 1) vsyn (U2, I2,UR2∪
{(u2, r)},UG2,UU 2) and we conclude;

Case (Remove-Role): assume that:

(Remove-Role)

S1 ` granted(u1,RemoveRole, r) r 6= Ownerj [i]

P ` (U1, I1,UR1,UG1,UU 1)
remove role(u1,u2,r)−−−−−−−−−−−−−−→ (U1, I1,UR1 \ {(u2, r)},UG1,UU 1)

Since σ1 vsyn σ2, we have (U1, I1,UR1 \ {(u2, r)},UG1,UU 1) vsyn σ2 and we
conclude.

Lemma 9 (Multistep Weak Simulation). If P ` σ
−→
β

=⇒ σ′, then there exists

a sub-trace of
−→
β , call it −→γ , such that P ` σ

−→γZ==⇒ σ′′ for some σ′′ such that
σ′ vsyn σ

′′.

Proof. By induction on the length of
−→
β = β1, . . . , βn. If n = 0, we have σ′ = σ,

hence the conclusion follows by picking an empty −→γ and letting σ′′ = σ. If n > 0,

let
−→
βp = β1, . . . , βn−1, then there exists σ̂ such that:

P ` σ
−→
βp
=⇒ σ̂ ∧ P ` σ̂ βn−−→ σ′.



By induction hypothesis there exist a sub-trace of
−→
βp, call it −→γp, and a configu-

ration σ̂′ such that:

P ` σ
−→γpZ==⇒ σ̂′ ∧ σ̂ vsyn σ̂

′.

The desired conclusion then follows by Lemma 8.

Lemma 10 (Abstract Simulation). Let α be a group-preserving abstraction

function. If P ` σ β7−→ σ′, then α(P) ` α(σ)
α(β)7−−−→ α(σ′).

Proof. For the sake of readability, we first stipulate the following:

– P = (PR,GR);
– σ = (U, I,UR,UG ,UU );
– S = (PR,GR, U, I,UR,UG ,UU );
– α(σ) = (α(U), α(I), α(UR), α(UG), α(UU )) = (U ′, I ′,UR′,UG ′,UU ′).

The proof is by a case analysis on P ` σ β7−→ σ′, observing first that α is sound
by Lemma 3. We provide the proof of three representative cases:

Case (Abs-Assign-Role): assume that:

(Abs-Assign-Role)

S ` granted(u1,AssignRole, r) r 6= Ownerj [i]

P ` (U, I,UR,UG ,UU )
assign role(u1,u2,r)7−−−−−−−−−−−−−→ (U, I,UR ∪ {(u2, r)},UG ,UU )

Since S ` granted(u1,AssignRole, r) and α is sound, by Definition 8 we have
α(S) ` granted(α(u1),AssignRole, α(r)). Let u′1 = α(u1), u′2 = α(u2) and r′ =
α(r). Notice that r 6= Ownerj [i] implies r′ 6= Ownerj [i] for any i, j, hence we
get:

(Abs-Assign-Role)

α(S) ` granted(u′1,AssignRole, r
′) r′ 6= Ownerj [i]

α(P) ` (U ′, I ′,UR′,UG ′,UU ′)
assign role(u′

1,u
′
2,r

′)7−−−−−−−−−−−−−→ (U ′, I ′,UR′ ∪ {(u′2, r′)},UG ′,UU ′)

Since α(UR ∪ {(u2, r)}) = α(UR) ∪ {(α(u2), α(r))} = UR′ ∪ {(u′2, r′)}, we
conclude;

Case (Abs-Impersonate): assume that:

(Abs-Impersonate)

S ` granted(u1, Impersonate, u2)

P ` (U, I,UR,UG ,UU )
impersonate(u1,u2)7−−−−−−−−−−−−−→ (U, I,UR,UG ,UU ∪ {(u1, u2)})

Since S ` granted(u1, Impersonate, u2) and α is sound, by Definition 8 we have
α(S) ` granted(α(u1), Impersonate, α(u2)). Let u′1 = α(u1) and u′2 = α(u2), we
get:

(Abs-Impersonate)

α(S) ` granted(u′1, Impersonate, u′2)

α(P) ` (U ′, I ′,UR′,UG ′,UU ′)
impersonate(u′

1,u
′
2)7−−−−−−−−−−−−−→ (U ′, I ′,UR′,UG ′,UU ′ ∪ {(u′1, u′2)})



Since α(UU ∪ {(u1, u2)}) = α(UU ) ∪ {(α(u1), α(u2))} = UU ′ ∪ {(u′1, u′2)},
we conclude. Notice that, if we had not dropped the side-condition from rule
(Impersonate), we would not have been able to close this case;

Case (Abs-Add-Item): assume that:

(Abs-Add-Item)

S ` granted(u,AddItem, g) g ∈ i.groups

P ` (U, I,UR,UG ,UU )
add item(u,i)7−−−−−−−−−→ (U, I ∪ {i},UR ∪ {(u,Owner0[i])},UG ,UU )

Since S ` granted(u,AddItem, g) and α is sound, by Definition 8 we have α(S) `
granted(α(u),AddItem, α(g)). Let u′ = α(u), i′ = α(i) and observe that α(g) =
g. Since α is group-preserving, g ∈ i.groups implies g ∈ i′.groups, hence we get:

(Abs-Add-Item)

α(S) ` granted(u′,AddItem, g) g ∈ i′.groups

α(P) ` (U ′, I ′,UR′,UG ′,UU ′)
add item(u′,i′)7−−−−−−−−−−→ (U ′, I ′ ∪ {i′},UR′ ∪ {(u′,Owner0[i′])},UG ′,UU ′)

Since α(I ∪ {i}) = α(I) ∪ {α(i)} = I ′ ∪ {i′} and α(UR ∪ {(u,Owner0[i])}) =
α(UR) ∪ {(α(u), α(Owner0[i]))} = UR′ ∪ {(u′,Owner0[i′])}, we conclude.

Lemma 11 (Multistep Abstract Simulation). Let α be group-preserving.

If P ` σ
−→
βZ==⇒ σ′, then α(P) ` α(σ)

−→γZ==⇒ α(σ′) with −→γ = α(
−→
β ).

Proof. By induction on the length of
−→
β = β1, . . . , βn. If n = 0, we have σ′ =

σ, hence the conclusion follows by picking an empty −→γ . If n > 0, let
−→
βp =

β1, . . . , βn−1, then there exists σ̂ such that:

P ` σ
−→
βpZ==⇒ σ̂ ∧ P ` σ̂ βn7−−→ σ′.

By induction hypothesis, for −→γp = α(
−→
βp) we have:

α(P) ` α(σ)
−→γpZ==⇒ α(σ̂).

The desired conclusion then follows by Lemma 10.

A.2 Proof of Theorem 2

Theorem 2 (Sound Verification). Let α be a group-preserving abstraction
function. If Sat(α,P, σ, ψ) returns a positive answer, then P, σ |= ψ.

Proof. By induction on the structure of ψ:

Case ψ = ¬ϕ̂: we observe that Sat(α,P, σ,¬ϕ̂) returns a positive answer when-
ever Abs-Sat(α,P, σ, ϕ̂) returns a negative answer. A negative answer by
Abs-Sat(α,P, σ, ϕ̂) implies P, σ 6|=α ϕ̂ by Lemma 1. Since α is group-preserving,
P, σ 6|=α ϕ̂ implies P, σ 6|= ϕ̂ by Lemma 14. Hence, we know that P, σ |= ¬ϕ̂ by
rule (LP-Not);



Case ψ = ψ1 ∧ ψ2: we observe that Sat(α,P, σ, ψ1 ∧ ψ2) returns a positive
answer if both Sat(α,P, σ, ψ1) and Sat(α,P, σ, ψ2) return a positive answer.
By induction hypothesis this implies that P, σ |= ψ1 and P, σ |= ψ2, hence
P, σ |= ψ1 ∧ ψ2 by rule (LP-And);

Case ψ = ψ1∨ψ2: we observe that Sat(α,P, σ, ψ1∨ψ2) returns a positive answer
whenever at least one between Sat(α,P, σ, ψ1) and Sat(α,P, σ, ψ2) returns a
positive answer. By induction hypothesis this implies that there exists i ∈ {1, 2}
such that P, σ |= ψi, hence P, σ |= ψ1 ∨ ψ2 by rule (LP-Or).

Lemma 12. If α is sound and P, σ |= φ, then α(P), α(σ) |= α(φ).

Proof. By induction on the structure of φ, using the soundness hypothesis to
deal with the base case.

Lemma 13 (Monotonicity of vP). If σ vP σ′ and P, σ |= φ, then P, σ′ |= φ.

Proof. By induction on the derivation of P, σ |= φ, using the hypothesis σ vP σ′
to deal with the base case.

Lemma 14 (Abstract Satisfiability). Let α be group-preserving. If P, σ |= ϕ̂,
then P, σ |=α ϕ̂.

Proof. By induction on the derivation of P, σ |= ϕ̂:

Case (LP-Finally): let P, σ |= ♦φ, then there exist
−→
β and σ′ such that P `

σ
−→
β

=⇒ σ′ and P, σ′ |= φ. By Theorem 1, there exists a sub-trace of
−→
β , call it

−→γ , such that α(P) ` α(σ)
α(−→γ )
Z====⇒ σ′′ for some σ′′ such that α(σ′) vα(P) σ′′.

Since α is group-preserving, we know that α is sound by Lemma 3. Hence, by
applying Lemma 12 on P, σ′ |= φ we know that α(P), α(σ′) |= α(φ). Since
α(σ′) vα(P) σ′′, the judgement α(P), α(σ′) |= α(φ) implies α(P), σ′′ |= α(φ)
by Lemma 13. Hence, we have:

(ALP-Finally)

α(P) ` α(σ)
α(−→γ )
Z====⇒ σ′′ α(P), σ′′ |= α(φ)

P, σ |=α ♦φ

Case (LP-And): let P, σ |= ϕ̂1 ∧ ϕ̂2, then we have P, σ |= ϕ̂1 and P, σ |= ϕ̂2.
By induction hypothesis P, σ |=α ϕ̂1 and P, σ |=α ϕ̂2, hence P, σ |=α ϕ̂1 ∧ ϕ̂2

by rule (ALP-And);
Case (LP-Or): let P, σ |= ϕ̂1 ∨ ϕ̂2, then we have P, σ |= ϕ̂i for i ∈ {1, 2}. By
induction hypothesis P, σ |=α ϕ̂i, hence P, σ |=α ϕ̂1 ∨ ϕ̂2 by rule (ALP-Or).

A.3 Proof of Theorem 3

Theorem 3 (Completeness). Let P, σ be impersonation-free and let α be

group-forgetting. If α(σ) .α σ and α(P) ` α(σ)
α(
−→
β )

Z====⇒ σ′ for some
−→
β and

σ′, then there exists σ′′ such that P ` σ
−→
β

=⇒ σ′′ and σ′ .α σ′′.



Proof. By induction on the length of
−→
β = β1, . . . , βn. If n = 0, we have

σ′ = α(σ), hence the conclusion follows by letting σ′′ = σ. If n > 0, let
−→
βp = β1, . . . , βn−1, then there exists σ̂ such that:

α(P) ` α(σ)
α(
−→
βp)Z====⇒ σ̂ ∧ α(P) ` σ̂ α(βn)7−−−−→ σ′.

By induction hypothesis there exists a configuration σ such that:

P ` σ
−→
βp
=⇒ σ ∧ σ̂ .α σ.

Given that P and σ are impersonation-free, we know that α(P), σ̂ and σ are
all impersonation-free by Lemma 15. The desired conclusion then follows by
Lemma 18.

Lemma 15. All the following properties hold true:

1. if P is impersonation-free, then α(P) is impersonation-free for any α;
2. if σ is impersonation-free, then α(σ) is impersonation-free for any α;

3. if P, σ are impersonation-free and P ` σ
−→
β

=⇒ σ′ for some
−→
β and σ′, then σ′

is impersonation-free;

4. if P, σ are impersonation-free and P ` σ
−→
βZ==⇒ σ′ for some

−→
β and σ′, then σ′

is impersonation-free.

Proof. Points 1 and 2 follow by simple syntactic observations. Points 3 and 4

are proved by induction on the length of
−→
β , observing that for any reachable

configuration σ̂ we have P, σ̂ 6` granted(u, Impersonate, u′) for any u, u′.

Lemma 16. Let σ = (U, I,UR,UG ,UU ) and σ′ = (U ′, I ′,UR′,UG ′,UU ′) be
two configurations such that σ .α σ′. If g ∈ groupsUG(o) for some object o ∈
U ∪ I ∪G and α is group-forgetting, then there exists o′ ∈ U ′ ∪ I ′ ∪G such that
α(o′) = o and g ∈ groupsUG′(o′).

Proof. By induction on the derivation of g ∈ groupsUG(o):

Case (G-Item): let g ∈ groupsUG(i) by the premise g ∈ i.groups. Since σ .α σ′,
there exists i′ ∈ I ′ such that α(i′) = i. Since α is group-forgetting, i.groups ⊆
i′.groups, hence we conclude g ∈ groupsUG′(i′) by rule (G-Item);

Case (G-User): let g ∈ groupsUG(u) by the premise (u, g) ∈ UG . Notice that
u ∈ U by definition of configuration. Since σ .α σ′, there exists u′ ∈ U ′ such
that α(u′) = u and (u′, g) ∈ UG ′. We get g ∈ groupsUG′(u′) by rule (G-User);

Case (G-Group): let g ∈ groupsUG(g). Since α(g) = g for any abstraction func-
tion, to conclude we just observe that g ∈ groupsUG′(g) by rule (G-Group);

Case (G-Inherit): let g ∈ groupsUG(o) by the premise g′ ∈ groupsUG(o) with
g′ 4 g. By induction hypothesis there exists o′ ∈ U ′∪I ′∪G such that α(o′) = o
and g′ ∈ groupsUG′(o′). We conclude g ∈ groupsUG′(o′) by rule (G-Inherit).



Lemma 17 (Adequacy of Abstract Under-Approximation). Let P, σ, σ′
be impersonation-free and let α be a group-forgetting abstraction function. If
σ .α σ′ and α(P), σ ` granted(u, p, o), then there exist u′ and o′ such that
α(u′) = u, groupsσ(u) ⊆ groupsσ′(u′), rolesσ(u) ⊆ α(rolesσ′(u′)), α(o′) = o and
P, σ′ ` granted(u′, p, o′).

Proof. Let P = (PR,GR), σ = (U, I,UR,UG , ∅) and σ′ = (U ′, I ′,UR′,UG ′, ∅).
Since σ is impersonation-free, the derivation of α(P), σ ` granted(u, p, o) cannot
be concluded by rule (P-Impersonate), hence it must have depth 1. The proof
of the lemma is by a case analysis on the rule applied to prove the judgement:

Case (P-RegI): let (α(PR), α(GR), U, I,UR,UG , ∅) ` granted(u, p, o) by the
premises (u, r) ∈ UR and (r, p, o,−) ∈ α(PR). We first observe that, since r is
a regular role, we have α(r) = r and no other object is abstracted into r. Since
(r, p, o,−) ∈ α(PR), there exists o′ such that α(o′) = o and (r, p, o′,−) ∈ PR.
Since σ .α σ′, there exists u′ such that α(u′) = u, groupsσ(u) ⊆ groupsσ′(u′)
and rolesσ(u) ⊆ α(rolesσ′(u′)), hence (u, r) ∈ UR implies (u′, r) ∈ UR′ by the
initial observation. We then get (PR,GR, U ′, I ′,UG ′,UG ′, ∅) ` granted(u′, p, o′)
by rule (P-RegI);

Case (P-RegG): let (α(PR), α(GR), U, I,UR,UG , ∅) ` granted(u, p, o) by the
premises (u, r) ∈ UR, (r, p, g, ↓) ∈ α(PR) and g ∈ groupsUG(o). We first observe
that, since r is a regular role, we have α(r) = r and no other object is abstracted
into r. Since (r, p, g, ↓) ∈ α(PR) and the abstraction function does not change
groups, we have (r, p, g, ↓) ∈ PR. Since σ .α σ′, there exists u′ such that
α(u′) = u, groupsσ(u) ⊆ groupsσ′(u′) and rolesσ(u) ⊆ α(rolesσ′(u′)), hence
(u, r) ∈ UR implies (u′, r) ∈ UR′ by the initial observation. Since σ .α σ′ and
g ∈ groupsUG(o), there exists o′ such that α(o′) = o and g ∈ groupsUG′(o′) by
Lemma 16. We then conclude (PR,GR, U ′, I ′,UG ′,UG ′, ∅) ` granted(u′, p, o′)
by rule (P-RegG);

Case (P-GroupI): we observe that the abstraction function does not change
groups and then we proceed like in case (P-RegI);

Case (P-GroupG): we observe that the abstraction function does not change
groups and then we proceed like in case (P-RegG);

Case (P-Template): let (α(PR), α(GR), U, I,UR,UG , ∅) ` granted(u, p, o) by
the premises (u, r[g]) ∈ UR, (r[·], p) ∈ α(PR), g ∈ groupsUG(u) and g ∈
groupsUG(o). We observe that (r[·], p) ∈ α(PR) implies (r[·], p) ∈ PR. Since
σ .α σ′, there exists u′ such that α(u′) = u and groupsσ(u) ⊆ groupsσ′(u′)
and rolesσ(u) ⊆ α(rolesσ′(u′)). Given that the abstraction function does not
change groups, we have α(r[g]) = r[g]. Moreover, no other object is abstracted
into r[g], hence (u, r[g]) ∈ UR implies (u′, r[g]) ∈ UR′ by the inclusion above.
Since g ∈ groupsUG(o) and σ .α σ′, there exists o′ such that α(o′) = o and
g ∈ groupsUG′(o′) by Lemma 16. Since groupsσ(u) ⊆ groupsσ′(u′) and g ∈
groupsUG(u), we have g ∈ groupsUG′(u′), hence (PR,GR, U ′, I ′,UR′,UG ′, ∅) `
granted(u′, p, o′) by rule (P-Template);

Case (P-Owner): let (α(PR), α(GR), U, I,UR,UG , ∅) ` granted(u, p, i) by the
premises (u,Ownerj [i]) ∈ UR and (Ownerj [·], p) ∈ α(PR). We first observe
that (Ownerj [·], p) ∈ α(PR) implies (Ownerj [·], p) ∈ PR. Since σ .α σ′, there



exists u′ such that α(u′) = u, groupsσ(u) ⊆ groupsσ′(u′) and rolesσ(u) ⊆
α(rolesσ′(u′)), hence (u,Ownerj [i]) ∈ UR implies (u′,Ownerj [i

′]) ∈ UR′ for
some i′ such that α(i′) = i. We then conclude (PR,GR, U ′, I ′,UR′,UG ′, ∅) `
granted(u′, p, i′) by rule (P-Owner).

Lemma 18 (Concrete Simulation). Let P, σ1, σ2 be impersonation-free and

let α be group-forgetting. If σ1 .α σ2 and α(P) ` σ1
α(β)7−−−→ σ′1 for some β and

σ′1, then there exists σ′2 such that P ` σ2
β−→ σ′2 and σ′1 .α σ

′
2.

Proof. By a case analysis on α(P) ` σ1
α(β)7−−−→ σ′1, using Lemma 17 to ensure that

the transitions of the concrete semantics can be fired.

A.4 Proof of Theorem 4

Theorem 4 (Complete Verification). Let P, σ be impersonation-free and let
α be a group-forgetting abstraction function which respects ψ. If α(σ) .α σ and
P, σ |= ψ, then Sat(α,P, σ, ψ) returns a positive answer.

Proof. By induction on the structure of ψ:

Case ψ = ¬ϕ̂: since P, σ |= ¬ϕ̂, by inverting rule (LP-Not) we know that
P, σ 6|= ϕ̂. By Lemma 20 this implies that P, σ 6|=α ϕ̂, hence Abs-Sat(α,P, σ, ϕ̂)
returns a negative answer by Lemma 1. We conclude then that Sat(α,P, σ,¬ϕ̂)
returns a positive answer;

Case ψ = ψ1 ∧ ψ2: since P, σ |= ψ1 ∧ ψ2, by inverting rule (LP-And) we know
that P, σ |= ψ1 and P, σ |= ψ2. By induction hypothesis both Sat(α,P, σ, ψ1)
and Sat(α,P, σ, ψ2) return a positive answer, hence Sat(α,P, σ, ψ1 ∧ ψ2) re-
turns a positive answer;

Case ψ = ψ1 ∨ ψ2: since P, σ |= ψ1 ∨ ψ2, by inverting rule (LP-Or) we know
that P, σ |= ψi for some i ∈ {1, 2}. By induction hypothesis Sat(α,P, σ, ψi)
returns a positive answer, hence Sat(α,P, σ, ψ1∨ψ2) returns a positive answer.

We generalize the notion of respectful abstraction function from rank-1 for-
mulas to arbitrary formulas in the obvious way.

Lemma 19 (State Formula Satisfiability). Let P, σ, σ′ be impersonation-
free and let α be a group-forgetting abstraction function which respects φ. If
σ .α σ′ and α(P), σ |= α(φ), then P, σ′ |= φ.

Proof. By induction on the structure of φ:

Case φ = granted(u, p, o): let α(P), σ |= granted(α(u), p, α(o)). By inverting
rule (LS-Basic) we get α(P), σ ` granted(α(u), p, α(o)). Since σ .α σ′ and
α respects φ, we have P, σ′ ` granted(u, p, o) by Lemma 17. Hence P, σ′ |=
granted(u, p, o) by rule (LS-Basic);

Case φ = φ1 ∧ φ2: let α(P), σ |= α(φ1)∧α(φ2). By inverting rule (LS-And) we
get α(P), σ |= α(φ1) and α(P), σ |= α(φ2). By induction hypothesis P, σ′ |= φ1
and P, σ′ |= φ2, hence we have P, σ′ |= φ1 ∧ φ2 by rule (LS-And);



Case φ = φ1 ∨ φ2: let α(P), σ |= α(φ1) ∨ α(φ2). By inverting rule (LS-Or) we
get α(P), σ |= α(φi) for some i ∈ {1, 2}. By induction hypothesis P, σ′ |= φi,
hence we have P, σ′ |= φ1 ∨ φ2 by rule (LS-Or).

Lemma 20 (Concrete Satisfiability). Let P, σ be impersonation-free and let
α be a group-forgetting abstraction function which respects ϕ̂. If α(σ) .α σ and
P, σ |=α ϕ̂, then P, σ |= ϕ̂.

Proof. By induction on the derivation of P, σ |=α ϕ̂:

Case (ALP-Finally): let P, σ |=α ♦φ, then there exist
−→
β and σ′ such that

α(P) ` α(σ)
α(
−→
β )

Z====⇒ σ′ and α(P), σ′ |= α(φ). By Theorem 3, there exists σ′′

such that P ` σ
−→
β

=⇒ σ′′ and σ′ .α σ′′. Observe that both σ′ and σ′′ are
impersonation-free by Lemma 15. By Lemma 19 we have P, σ′′ |= φ, hence the
conclusion P, σ |= ♦φ follows by rule (LP-Finally);

Case (ALP-And): let P, σ |=α ϕ̂1 ∧ ϕ̂2, then P, σ |=α ϕ̂1 and P, σ |=α ϕ̂2. By
induction hypothesis P, σ |= ϕ̂1 and P, σ |= ϕ̂2, hence we get P, σ |= ϕ̂1 ∧ ϕ̂2

by rule (LP-And);
Case (ALP-Or): let P, σ |=α ϕ̂1 ∨ ϕ̂2, then we have P, σ |=α ϕ̂i for some
i ∈ {1, 2}. By induction hypothesis P, σ |= ϕ̂i, hence we get P, σ |= ϕ̂1 ∨ ϕ̂2 by
rule (LP-Or).


